Single Mode VCSEL Fabrication Techniques:
https://link.springer.com/chapter/10.1007/978-3-642-24986-0_4#:~:text=A%20single%2Dmode
%20VCSEL%20produces,are%20required%20in%20many%20applications.
Cryogenic VCSELs:
https://pubs.aip.org/aip/apl/article/119/4/041101/41188/2-6-K-VCSEL-data-link-for-cryogenic-c
omputing
Single Mode VCSELs under Room Temperature: Still looking for a good one we can cite from
https://www.nature.com/articles/s41467-017-00743-w
Energy/Efficiency Requirements:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6449287
Only Single Mode Cryo-VCSEL Research I can find:
https://iopscience.iop.org/article/10.1088/1674-4926/24070025/pdf
https://www.mdpi.com/2304-6732/9/2/107?type=check_update&version=1
[1] Bhat, Hilal & Khanday, Farooq & Kaushik, Brajesh Kumar & Bashir, Faisal & Shah,
Khurshed. (2022). “Quantum Computing: Fundamentals, Implementations and
Applications.” IEEE Open Journal of Nanotechnology. IEEE Open Journal of
Nanotechnology. 1-1. 10.1109/OJNANO.2022.3178545.
[2] Wu, Haonan & Fu, Wenning & Feng, Milton & Deppe, Dennis. (2021). "2.6 K VCSEL data
link for cryogenic computing." Applied Physics Letters 119.4.
[3] Hofmann, W. & Grabherr, M. & Jager, R. (2019). VCSEL Arrays for Sensing and
Communications. IEEE Journal of Selected Topics in Qunatum Electronics, 25(6), 1-9.
[4] Cheng, Hao-Tien & Yang, Yun-Cheng & Liu, Te-Hua & Wu, Chao-Hsin. (2022). "Recent
advances in 850 nm VCSELs for high-speed interconnects." Photonics. Vol. 9. No. 2.
MDPI, 2022.
[5] Kao, Hsuan-Yun & Chi, Yu-Chieh & Peng, Chun-Yen & Leong, Shan-Fong & Chang,
Chun-Kai & Wu, Yun-Chen (2017). “Modal Linewidth Dependent Transmission
Performance of 850-nm VCSELs With Encoding PAM-4 Over 100-m MMF” IEEE
Journal of Quantum Electronics.
[6] Li, Ming-Jun & Li, Kangmei & Chen, Xin & Mishra, Snigdharaj K. & Juarez, Adrian A. &
Hurley, Jason E. (2013). "Single-mode VCSEL transmission for short reach
communications." IEEE Journal of Lightwave Technology. 39-4.
[7] Larsson, Anders, & Johan S. Gustavsson. (2012). "Single-Mode VCSELs." VCSELs:
Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers.
Berlin, Heidelberg: Springer Berlin Heidelberg. 119-144.
[8] Liu, Anjin & Hao, Chenxi & Han, Hailong & Wang, Minglu & Tang, Bao & Li, Lingyun &
You, Lixing & Zheng, Wanhua. (2024) "Single-fundamental-mode cryogenic (3.6 K)
850-nm oxide-confined VCSEL." Journal of Semiconductors 45.10: 102401.
[9] Shang, Jingzhi & Cong, Chunxiao & Wang, Zilong & Peimyoo, Namphung & Wu, Lishu &
Zou, Chenji & Chen, Yu & Chin, Xin Yu & Wang, Jianpu & Soci, Cesare & Huang, Wei
&Yu, Ting. (2017) "Room-temperature 2D semiconductor activated vertical-cavity
surface-emitting lasers." Nature communications 8.1:543.
[10] Yu, Shaoliang & Wu, Xiaoqin & Wang, Yipei & Guo, Xin & Tong, Limin. (2017) "2D
materials for optical modulation: challenges and opportunities." Advanced Materials
29.14: 1606128.
[11] Ma, Zhizhen & Tahersima, Mohammad H. & Khan, Sikandar & Sorger, Volker J. (2017).
"Two-dimensional material-based mode confinement engineering in electro-optic
modulators." IEEE Journal of Selected Topics in Quantum Electronics 23.1: 81-88.
[12] O. S. Heavens. (1955) “Optical Properties of Thin Films”. Photonics. Butterworth, London.
[13] Zielińska, A. & Musial, Anna & Kuniej, Mateusz & Heuser, Tobias & Srocka, Nicole &
Grosse, Jan & Reithmaier, Johann Peter & Benyoucef, Mohamed & Rodt, Sven &
Reitzenstein, Stephan & Rudno-Rudzinski, Wojciech. (2022). "Temperature dependence
of refractive indices of Al0.9Ga0.1As and In0.53Al0.1Ga0.37As in the
telecommunication spectral range," Opt. Express 30, 20225-20240.
[14] Hu, Z. & Matsik, S. & Perera, A. & Winckel, Gregory & Stintz, Andreas & Krishna, S..
(2005). Optical characterizations of heavily doped p-type AlxGa1−xAs and GaAs
epitaxial films at terahertz frequencies. Journal of Applied Physics. 97. 093529-093529.
10.1063/1.1894581.
[15] Demeulenaere, B. & De Zutter, D. & Baets, R. (1996) “Rigorous electromagnetic study of
diffraction loss in VCSEL mirrors,” IEE Proc.-Optoelectron 143: 221-227.
[16] Liu, A. & Wolf, P. & Lott, J. A. & Bimberg, D. (2019). Vertical-cavity surface-emitting
lasers for data communication and sensing. Photonics Research, 7(2), 121.
https://doi.org/10.1364/prj.7.000121
[17] Piprek, J. (2003). Semiconductor Optoelectronic Devices: Introduction to Physics and
Simulation. Academic Press.
[18] Coldren, L. A. & Corrine, S. W. & & Mashanovitch, M. L. (2012). Diode Lasers and
Photonics Integrated Circuits (2nd ed.). Wiley.
[19] Iga, K. (2018). Vertical-Cavity Surface-Emitting Laser: A Review of Its Records. IEEE
Journal of Selected Topics in Quantum Electronics, 24(6), 1-26.
[20] Young, D. B. & Scott, J.W. & Peters F.H. & Peters M.G. & Majewski, M.L. & Thibeault,
B.J. (1993) "Enhanced performance of offset-gain high-barrier vertical-cavity
surface-emitting lasers." IEEE Journal of Quantum Electronics 29.6: 2013-2022.
[21] Unold, H. J. & Grabherr, M. & Eberhard, F. & Mederer, F. & Jager, R. & Riedl, M. &
Ebeling, K.J. (1999). "Increased-area oxidised single-fundamental mode VCSEL with
self-aligned shallow etched surface relief." Electronics Letters 35.16: 1340-1341.
[22] Nishiyama, N. & Arai, M. & Shinada, S. & Suzuki, K. & Koyama, F. & Iga, K. (2000)
"Multi-oxide layer structure for single-mode operation in vertical-cavity surface-emitting
lasers." IEEE Photonics Technology Letters 12.6: 606-608.
[23] Alfaro-Bittner, K. & Rojas, R.G. & Lafleur, G. & Calvez, S. & Almuneau, G. & Clerc, M.G.
& Barbay, S. (2019) "Modeling the Lateral Wet Oxidation of Al x Ga 1− x As into
Arbitrary Mesa Geometries." Physical Review Applied 11.4: 044067.
[24] Zheng, X., & Zhang, X. (2019). Excitons in two-dimensional materials (arXiv:1911.00087).
arXiv.
[25] Ye, Y., Wong, Z. J., Lu, X., Ni, X., Zhu, H., Chen, X., Wang, Y., & Zhang, X. (2015).
Monolayer excitonic laser. Nature Photonics, 9(11), 733–737.
[26] Li, L., Ling, J., Zhang, D., Wang, N., Lin, J., Xi, Z., & Xu, W. (2024). Direct measurement
of built-in electric field inside a 2D cavity. The Journal of Chemical Physics, 160(1),
011102.
[27] Peimyoo, N., Shang, J., Cong, C., Shen, X., Wu, X., Yeow, E. K. L., & Yu, T. (2013).
Nonblinking, intense two-dimensional light emitter: Monolayer ws2 triangles. ACS Nano,
7(12), 10985–10994.
[28] Yamamoto, Y., Machida, S., & Björk, G. (1991). Microcavity semiconductor laser with
enhanced spontaneous emission. Physical Review A, 44(1), 657–668.
[29] Concepts, D. (n.d.). WS2 - Tungsten disulfide. https://www.hqgraphene.com/WS2.php
[30] Hsu, C., Frisenda, R., Schmidt, R., Arora, A., De Vasconcellos, S. M., Bratschitsch, R., Van
Der Zant, H. S. J., & Castellanos‐Gomez, A. (2019). Thickness‐Dependent refractive
index of 1L, 2L, and 3L MOS2, MOSE2, WS2, and WSE2. Advanced Optical Materials,
7(13).
[31] Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P.-H., & Eda, G. (2013).
Evolution of electronic structure in atomically thin sheets of ws2 and wse2. ACS Nano,
7(1), 791–797.
[32] Yun, Won Seok; Han, S. W.; Hong, Soon Cheol; Kim, In Gee; Lee, J. D. (2012). "Thickness
and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2
semiconductors (M = Mo, W; X = S, Se, Te)". Physical Review B. 85 (3): 033305.
[33] Kang, T., Tang, T. W., Pan, B., Liu, H., Zhang, K., & Luo, Z. (2022). Strategies for
controlled growth of transition metal dichalcogenides by chemical vapor deposition for
integrated electronics. ACS Materials Au, 2(6), 665–685.
[34] Meitl, M. A., Zhu, Z.-T., Kumar, V., Lee, K. J., Feng, X., Huang, Y. Y., Adesida, I., Nuzzo,
R. G., & Rogers, J. A. (2006). Transfer printing by kinetic control of adhesion to an
elastomeric stamp. Nature Materials, 5(1), 33–38.
[35] Arakawa, Y., & Holmes, A. L. (2020). Progress in Quantum-Dot Lasers: Reducing
Thresholds, Improving Linewidth and Coherence, and Exploring New Device
Geometries. Philosophical Transactions of the Royal Society A, 378(2169), 20190153
[36] Dickmann, J., Klappstein, J., &Brenk, C. (2016). LIDAR-Based Perception for Automotive
Applications. In Intelligent Systems for Smart Road Traffic and Transporation (pp.
69-93). Springer
[37] Nagpal, M., Kielpinski, M., Majerus, L., et al. (2020). Co-Packaged Optics for Data Center
Switches: Opportunities and Challenges. Journal of Lightwave Technology, 38(17),
4755-4766
[38] Nakamura, S., Chuo, Y., & Nozaki, K. (2019). Trends in Silicon Photonics and
Co-Packaged Optics for Datacenter Switch Systems. IEICE Transactions on Electronics,
E102.C(7), 469-476.
[39] Oktyabrsky, S., & Uttamchandani, D. (Eds.). (2010). Semiconductor Quantum Dots:
Fundamentals, Applications, and Frontiers. Springer