0% found this document useful (0 votes)
50 views4 pages

MSE 461 Final Project Proposal

The document discusses various fabrication techniques for single-mode Vertical-Cavity Surface-Emitting Lasers (VCSELs), highlighting their importance in applications such as cryogenic computing and high-speed interconnects. It references multiple studies and articles that explore advancements in VCSEL technology, including performance metrics and energy efficiency requirements. The document serves as a comprehensive overview of the state of research and development in single-mode VCSELs.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
50 views4 pages

MSE 461 Final Project Proposal

The document discusses various fabrication techniques for single-mode Vertical-Cavity Surface-Emitting Lasers (VCSELs), highlighting their importance in applications such as cryogenic computing and high-speed interconnects. It references multiple studies and articles that explore advancements in VCSEL technology, including performance metrics and energy efficiency requirements. The document serves as a comprehensive overview of the state of research and development in single-mode VCSELs.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Single Mode VCSEL Fabrication Techniques:

https://link.springer.com/chapter/10.1007/978-3-642-24986-0_4#:~:text=A%20single%2Dmode
%20VCSEL%20produces,are%20required%20in%20many%20applications.

Cryogenic VCSELs:
https://pubs.aip.org/aip/apl/article/119/4/041101/41188/2-6-K-VCSEL-data-link-for-cryogenic-c
omputing

Single Mode VCSELs under Room Temperature: Still looking for a good one we can cite from
https://www.nature.com/articles/s41467-017-00743-w
Energy/Efficiency Requirements:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6449287

Only Single Mode Cryo-VCSEL Research I can find:


https://iopscience.iop.org/article/10.1088/1674-4926/24070025/pdf

https://www.mdpi.com/2304-6732/9/2/107?type=check_update&version=1

[1] Bhat, Hilal & Khanday, Farooq & Kaushik, Brajesh Kumar & Bashir, Faisal & Shah,
Khurshed. (2022). “Quantum Computing: Fundamentals, Implementations and
Applications.” IEEE Open Journal of Nanotechnology. IEEE Open Journal of
Nanotechnology. 1-1. 10.1109/OJNANO.2022.3178545.
[2] Wu, Haonan & Fu, Wenning & Feng, Milton & Deppe, Dennis. (2021). "2.6 K VCSEL data
link for cryogenic computing." Applied Physics Letters 119.4.
[3] Hofmann, W. & Grabherr, M. & Jager, R. (2019). VCSEL Arrays for Sensing and
Communications. IEEE Journal of Selected Topics in Qunatum Electronics, 25(6), 1-9.
[4] Cheng, Hao-Tien & Yang, Yun-Cheng & Liu, Te-Hua & Wu, Chao-Hsin. (2022). "Recent
advances in 850 nm VCSELs for high-speed interconnects." Photonics. Vol. 9. No. 2.
MDPI, 2022.
[5] Kao, Hsuan-Yun & Chi, Yu-Chieh & Peng, Chun-Yen & Leong, Shan-Fong & Chang,
Chun-Kai & Wu, Yun-Chen (2017). “Modal Linewidth Dependent Transmission
Performance of 850-nm VCSELs With Encoding PAM-4 Over 100-m MMF” IEEE
Journal of Quantum Electronics.
[6] Li, Ming-Jun & Li, Kangmei & Chen, Xin & Mishra, Snigdharaj K. & Juarez, Adrian A. &
Hurley, Jason E. (2013). "Single-mode VCSEL transmission for short reach
communications." IEEE Journal of Lightwave Technology. 39-4.
[7] Larsson, Anders, & Johan S. Gustavsson. (2012). "Single-Mode VCSELs." VCSELs:
Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers.
Berlin, Heidelberg: Springer Berlin Heidelberg. 119-144.
[8] Liu, Anjin & Hao, Chenxi & Han, Hailong & Wang, Minglu & Tang, Bao & Li, Lingyun &
You, Lixing & Zheng, Wanhua. (2024) "Single-fundamental-mode cryogenic (3.6 K)
850-nm oxide-confined VCSEL." Journal of Semiconductors 45.10: 102401.
[9] Shang, Jingzhi & Cong, Chunxiao & Wang, Zilong & Peimyoo, Namphung & Wu, Lishu &
Zou, Chenji & Chen, Yu & Chin, Xin Yu & Wang, Jianpu & Soci, Cesare & Huang, Wei
&Yu, Ting. (2017) "Room-temperature 2D semiconductor activated vertical-cavity
surface-emitting lasers." Nature communications 8.1:543.
[10] Yu, Shaoliang & Wu, Xiaoqin & Wang, Yipei & Guo, Xin & Tong, Limin. (2017) "2D
materials for optical modulation: challenges and opportunities." Advanced Materials
29.14: 1606128.
[11] Ma, Zhizhen & Tahersima, Mohammad H. & Khan, Sikandar & Sorger, Volker J. (2017).
"Two-dimensional material-based mode confinement engineering in electro-optic
modulators." IEEE Journal of Selected Topics in Quantum Electronics 23.1: 81-88.
[12] O. S. Heavens. (1955) “Optical Properties of Thin Films”. Photonics. Butterworth, London.
[13] Zielińska, A. & Musial, Anna & Kuniej, Mateusz & Heuser, Tobias & Srocka, Nicole &
Grosse, Jan & Reithmaier, Johann Peter & Benyoucef, Mohamed & Rodt, Sven &
Reitzenstein, Stephan & Rudno-Rudzinski, Wojciech. (2022). "Temperature dependence
of refractive indices of Al0.9Ga0.1As and In0.53Al0.1Ga0.37As in the
telecommunication spectral range," Opt. Express 30, 20225-20240.
[14] Hu, Z. & Matsik, S. & Perera, A. & Winckel, Gregory & Stintz, Andreas & Krishna, S..
(2005). Optical characterizations of heavily doped p-type AlxGa1−xAs and GaAs
epitaxial films at terahertz frequencies. Journal of Applied Physics. 97. 093529-093529.
10.1063/1.1894581.
[15] Demeulenaere, B. & De Zutter, D. & Baets, R. (1996) “Rigorous electromagnetic study of
diffraction loss in VCSEL mirrors,” IEE Proc.-Optoelectron 143: 221-227.
[16] Liu, A. & Wolf, P. & Lott, J. A. & Bimberg, D. (2019). Vertical-cavity surface-emitting
lasers for data communication and sensing. Photonics Research, 7(2), 121.
https://doi.org/10.1364/prj.7.000121
[17] Piprek, J. (2003). Semiconductor Optoelectronic Devices: Introduction to Physics and
Simulation. Academic Press.
[18] Coldren, L. A. & Corrine, S. W. & & Mashanovitch, M. L. (2012). Diode Lasers and
Photonics Integrated Circuits (2nd ed.). Wiley.
[19] Iga, K. (2018). Vertical-Cavity Surface-Emitting Laser: A Review of Its Records. IEEE
Journal of Selected Topics in Quantum Electronics, 24(6), 1-26.
[20] Young, D. B. & Scott, J.W. & Peters F.H. & Peters M.G. & Majewski, M.L. & Thibeault,
B.J. (1993) "Enhanced performance of offset-gain high-barrier vertical-cavity
surface-emitting lasers." IEEE Journal of Quantum Electronics 29.6: 2013-2022.
[21] Unold, H. J. & Grabherr, M. & Eberhard, F. & Mederer, F. & Jager, R. & Riedl, M. &
Ebeling, K.J. (1999). "Increased-area oxidised single-fundamental mode VCSEL with
self-aligned shallow etched surface relief." Electronics Letters 35.16: 1340-1341.
[22] Nishiyama, N. & Arai, M. & Shinada, S. & Suzuki, K. & Koyama, F. & Iga, K. (2000)
"Multi-oxide layer structure for single-mode operation in vertical-cavity surface-emitting
lasers." IEEE Photonics Technology Letters 12.6: 606-608.
[23] Alfaro-Bittner, K. & Rojas, R.G. & Lafleur, G. & Calvez, S. & Almuneau, G. & Clerc, M.G.
& Barbay, S. (2019) "Modeling the Lateral Wet Oxidation of Al x Ga 1− x As into
Arbitrary Mesa Geometries." Physical Review Applied 11.4: 044067.
[24] Zheng, X., & Zhang, X. (2019). Excitons in two-dimensional materials (arXiv:1911.00087).
arXiv.
[25] Ye, Y., Wong, Z. J., Lu, X., Ni, X., Zhu, H., Chen, X., Wang, Y., & Zhang, X. (2015).
Monolayer excitonic laser. Nature Photonics, 9(11), 733–737.
[26] Li, L., Ling, J., Zhang, D., Wang, N., Lin, J., Xi, Z., & Xu, W. (2024). Direct measurement
of built-in electric field inside a 2D cavity. The Journal of Chemical Physics, 160(1),
011102.
[27] Peimyoo, N., Shang, J., Cong, C., Shen, X., Wu, X., Yeow, E. K. L., & Yu, T. (2013).
Nonblinking, intense two-dimensional light emitter: Monolayer ws2 triangles. ACS Nano,
7(12), 10985–10994.
[28] Yamamoto, Y., Machida, S., & Björk, G. (1991). Microcavity semiconductor laser with
enhanced spontaneous emission. Physical Review A, 44(1), 657–668.
[29] Concepts, D. (n.d.). WS2 - Tungsten disulfide. https://www.hqgraphene.com/WS2.php
[30] Hsu, C., Frisenda, R., Schmidt, R., Arora, A., De Vasconcellos, S. M., Bratschitsch, R., Van
Der Zant, H. S. J., & Castellanos‐Gomez, A. (2019). Thickness‐Dependent refractive
index of 1L, 2L, and 3L MOS2, MOSE2, WS2, and WSE2. Advanced Optical Materials,
7(13).
[31] Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P.-H., & Eda, G. (2013).
Evolution of electronic structure in atomically thin sheets of ws2 and wse2. ACS Nano,
7(1), 791–797.
[32] Yun, Won Seok; Han, S. W.; Hong, Soon Cheol; Kim, In Gee; Lee, J. D. (2012). "Thickness
and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2
semiconductors (M = Mo, W; X = S, Se, Te)". Physical Review B. 85 (3): 033305.
[33] Kang, T., Tang, T. W., Pan, B., Liu, H., Zhang, K., & Luo, Z. (2022). Strategies for
controlled growth of transition metal dichalcogenides by chemical vapor deposition for
integrated electronics. ACS Materials Au, 2(6), 665–685.
[34] Meitl, M. A., Zhu, Z.-T., Kumar, V., Lee, K. J., Feng, X., Huang, Y. Y., Adesida, I., Nuzzo,
R. G., & Rogers, J. A. (2006). Transfer printing by kinetic control of adhesion to an
elastomeric stamp. Nature Materials, 5(1), 33–38.
[35] Arakawa, Y., & Holmes, A. L. (2020). Progress in Quantum-Dot Lasers: Reducing
Thresholds, Improving Linewidth and Coherence, and Exploring New Device
Geometries. Philosophical Transactions of the Royal Society A, 378(2169), 20190153
[36] Dickmann, J., Klappstein, J., &Brenk, C. (2016). LIDAR-Based Perception for Automotive
Applications. In Intelligent Systems for Smart Road Traffic and Transporation (pp.
69-93). Springer
[37] Nagpal, M., Kielpinski, M., Majerus, L., et al. (2020). Co-Packaged Optics for Data Center
Switches: Opportunities and Challenges. Journal of Lightwave Technology, 38(17),
4755-4766
[38] Nakamura, S., Chuo, Y., & Nozaki, K. (2019). Trends in Silicon Photonics and
Co-Packaged Optics for Datacenter Switch Systems. IEICE Transactions on Electronics,
E102.C(7), 469-476.
[39] Oktyabrsky, S., & Uttamchandani, D. (Eds.). (2010). Semiconductor Quantum Dots:
Fundamentals, Applications, and Frontiers. Springer

You might also like