0% found this document useful (0 votes)
14 views22 pages

WorldBank2 Ipynb

The document contains a Jupyter notebook that imports necessary libraries and reads a CSV file containing World Bank population metadata. It displays a DataFrame with country codes, regions, income groups, and special notes for various countries. Additionally, there is a visualization generated from the data, though the image is not displayed in the text output.

Uploaded by

satishtej754
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as TXT, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
14 views22 pages

WorldBank2 Ipynb

The document contains a Jupyter notebook that imports necessary libraries and reads a CSV file containing World Bank population metadata. It displays a DataFrame with country codes, regions, income groups, and special notes for various countries. Additionally, there is a visualization generated from the data, though the image is not displayed in the text output.

Uploaded by

satishtej754
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as TXT, PDF, TXT or read online on Scribd
You are on page 1/ 22

{

"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "962086b0-f623-442d-9004-78c1233d3a26",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f9cd430a-fba9-402b-b5c2-7dc87d3dc8bb",
"metadata": {},
"outputs": [],
"source": [
"df =
pd.read_csv(\"C:/Users/saswa/OneDrive/Desktop/Pinaki_WorldBank_Population/
Metadata_Country_API_SP.POP.TOTL_DS2_en_csv_v2_5871594.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "7b739e6e-eef9-4273-8ee8-c9c4270c267b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Country Code</th>\n",
" <th>Region</th>\n",
" <th>IncomeGroup</th>\n",
" <th>SpecialNotes</th>\n",
" <th>TableName</th>\n",
" <th>Unnamed: 5</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>ABW</td>\n",
" <td>Latin America &amp; Caribbean</td>\n",
" <td>High income</td>\n",
" <td>NaN</td>\n",
" <td>Aruba</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>AFE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>26 countries, stretching from the Red Sea in t...</td>\n",
" <td>Africa Eastern and Southern</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>AFG</td>\n",
" <td>South Asia</td>\n",
" <td>Low income</td>\n",
" <td>The reporting period for national accounts dat...</td>\n",
" <td>Afghanistan</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>AFW</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>22 countries, stretching from the westernmost ...</td>\n",
" <td>Africa Western and Central</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>AGO</td>\n",
" <td>Sub-Saharan Africa</td>\n",
" <td>Lower middle income</td>\n",
" <td>The World Bank systematically assesses the app...</td>\n",
" <td>Angola</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>260</th>\n",
" <td>XKX</td>\n",
" <td>Europe &amp; Central Asia</td>\n",
" <td>Upper middle income</td>\n",
" <td>NaN</td>\n",
" <td>Kosovo</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>261</th>\n",
" <td>YEM</td>\n",
" <td>Middle East &amp; North Africa</td>\n",
" <td>Low income</td>\n",
" <td>The World Bank systematically assesses the app...</td>\n",
" <td>Yemen, Rep.</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>262</th>\n",
" <td>ZAF</td>\n",
" <td>Sub-Saharan Africa</td>\n",
" <td>Upper middle income</td>\n",
" <td>Fiscal year end: March 31; reporting period fo...</td>\n",
" <td>South Africa</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>263</th>\n",
" <td>ZMB</td>\n",
" <td>Sub-Saharan Africa</td>\n",
" <td>Lower middle income</td>\n",
" <td>National accounts data were rebased to reflect...</td>\n",
" <td>Zambia</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>264</th>\n",
" <td>ZWE</td>\n",
" <td>Sub-Saharan Africa</td>\n",
" <td>Lower middle income</td>\n",
" <td>National Accounts data are reported in Zimbabw...</td>\n",
" <td>Zimbabwe</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>265 rows × 6 columns</p>\n",
"</div>"
],
"text/plain": [
" Country Code Region IncomeGroup \\\n",
"0 ABW Latin America & Caribbean High income \n",
"1 AFE NaN NaN \n",
"2 AFG South Asia Low income \n",
"3 AFW NaN NaN \n",
"4 AGO Sub-Saharan Africa Lower middle income \n",
".. ... ... ... \n",
"260 XKX Europe & Central Asia Upper middle income \n",
"261 YEM Middle East & North Africa Low income \n",
"262 ZAF Sub-Saharan Africa Upper middle income \n",
"263 ZMB Sub-Saharan Africa Lower middle income \n",
"264 ZWE Sub-Saharan Africa Lower middle income \n",
"\n",
" SpecialNotes \\\n",
"0 NaN \n",
"1 26 countries, stretching from the Red Sea in t... \n",
"2 The reporting period for national accounts dat... \n",
"3 22 countries, stretching from the westernmost ... \n",
"4 The World Bank systematically assesses the app... \n",
".. ... \n",
"260 NaN \n",
"261 The World Bank systematically assesses the app... \n",
"262 Fiscal year end: March 31; reporting period fo... \n",
"263 National accounts data were rebased to reflect... \n",
"264 National Accounts data are reported in Zimbabw... \n",
"\n",
" TableName Unnamed: 5 \n",
"0 Aruba NaN \n",
"1 Africa Eastern and Southern NaN \n",
"2 Afghanistan NaN \n",
"3 Africa Western and Central NaN \n",
"4 Angola NaN \n",
".. ... ... \n",
"260 Kosovo NaN \n",
"261 Yemen, Rep. NaN \n",
"262 South Africa NaN \n",
"263 Zambia NaN \n",
"264 Zimbabwe NaN \n",
"\n",
"[265 rows x 6 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "70eea6fc-bb5f-47c2-b5d5-a0b1865c310a",
"metadata": {},
"outputs": [
{
"data": {
"image/png":
"iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIH
ZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/
OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYhElEQVR4nOzddVhU6dsH8O8gKUgZhEopdqNiYYFit66u3b
vW2t266trurl3Y3S1i54odawcWICogoOT3/cN3zo8RdA1gYLw/
1zWXznnOzNznMHPmnidVJAkhhBBCCJHh6Wk7ACGEEEIIkTIksRNCCCGE0BGS2AkhhBBC6AhJ7IQQQgghdIQ
kdkIIIYQQOkISOyGEEEIIHSGJnRBCCCGEjpDETgghhBBCR0hiJ4QQQgihIySxE0IkMXbsWKhUqjR5rapVq6
Jq1arK/aNHj0KlUmHz5s1p8vodOnSAk5NTmrzWt4qIiECXLl1ga2sLlUqFvn37ajukZKn/
dkePHtV2KEL8sCSxE0LH+fj4QKVSKTdjY2PY29vD29sbf/75J96+fZsir/
P8+XOMHTsWly9fTpHnS0npObYvMWnSJPj4+ODXX3/FqlWr0LZt20/
u6+TkpPH3NjU1RdmyZbFy5co0jFgIoS0qWStWCN3m4+ODjh07Yvz48XB2dkZsbCwCAwNx9OhR+Pr6wsHBAT
t37kSxYsWUx8TFxSEuLg7GxsZf/Dr+/
v4oU6YMli9fjg4dOnzx42JiYgAAhoaGAD7U+lSrVg2bNm1Cs2bNvvh5vjW22NhYJCQkwMjIKEVeKzWUK1cO
+vr6OHny5H/
u6+TkBCsrKwwYMAAA8OLFCyxZsgR37tzBokWL0LVr11SLMyEhATExMTA0NISentQbCKEN+toOQAiRNmrXro
3SpUsr94cNG4bDhw+jXr16aNCgAf7991+YmJgAAPT19aGvn7qXh6ioKGTOnFlJ6LTFwMBAq6//
JYKDg1GoUKEv3j9nzpxo06aNcr9Dhw5wcXHBrFmzUjWx09PT+6ofA0KIlCc/
qYT4gVWvXh2jRo3C48ePsXr1amV7cn3sfH19UalSJVhaWsLMzAz58+fH8OHDAXyoZStTpgwAoGPHjkozoI+
PD4AP/eiKFCmCCxcuoHLlysicObPy2I/72KnFx8dj+PDhsLW1hampKRo0aIAnT55o7OPk5JRs7WDi5/
yv2JLrYxcZGYkBAwYgd+7cMDIyQv78+TF9+nR83MChUqnQq1cvbN++HUWKFIGRkREKFy6M/fv3J3/
CPxIcHIzOnTvDxsYGxsbGKF68OFasWKGUq/usPXz4EHv27FFif/To0Rc9v1r27NlRoEAB3L9/
X2N7QkICZs+ejcKFC8PY2Bg2Njbo3r073rx5k2S/sWPHwt7eHpkzZ0a1atVw8+bNJOf/
U33sNm3aBDc3N5iYmCBbtmxo06YNnj17prFPhw4dYGZmhmfPnqFRo0YwMzND9uzZMXDgQMTHx3/
V8QrxI5PETogfnLq/1sGDBz+5z40bN1CvXj1ER0dj/
PjxmDFjBho0aIBTp04BAAoWLIjx48cDALp164ZVq1Zh1apVqFy5svIcr169Qu3atVGiRAnMnj0b1apV+2xc
v//+O/bs2YMhQ4agT58+8PX1hZeXF969e/dVx/clsSVGEg0aNMCsWbNQq1YtzJw5E/nz58egQYPQv3//
JPufPHkSPXr0QMuWLTF16lS8f/
8eTZs2xatXrz4b17t371C1alWsWrUKrVu3xrRp02BhYYEOHTpgzpw5SuyrVq1CtmzZUKJECSX27Nmzf9U5i
IuLw9OnT2FlZaWxvXv37hg0aBAqVqyIOXPmoGPHjlizZg28vb0RGxur7Dds2DCMGzcOpUuXxrRp0+Dq6gpv
b29ERkb+52v7+PigRYsWyJQpEyZPnoyuXbti69atqFSpEkJDQzX2jY+Ph7e3N7JmzYrp06ejSpUqmDFjBhY
tWvRVxyvED41CCJ22fPlyAuD58+c/
uY+FhQVLliyp3B8zZgwTXx5mzZpFAHz58uUnn+P8+fMEwOXLlycpq1KlCgFwwYIFyZZVqVJFuX/
kyBECYM6cORkeHq5s37hxIwFwzpw5yjZHR0e2b9/+P5/
zc7G1b9+ejo6Oyv3t27cTACdOnKixX7NmzahSqXjv3j1lGwAaGhpqbLty5QoB8K+//
kryWonNnj2bALh69WplW0xMDMuXL08zMzONY3d0dGTdunU/
+3yJ961ZsyZfvnzJly9f8tq1a2zbti0BsGfPnsp+J06cIACuWbNG4/H79+/
X2B4YGEh9fX02atRIY7+xY8cSgMb5V//tjhw5ohxPjhw5WKRIEb57907Zb/fu3QTA0aNHK9vat29PABw/
frzG65QsWZJubm5fdOxCCFJq7IQQMDMz++zoWEtLSwDAjh07kJCQ8E2vYWRkhI4dO37x/
u3atUOWLFmU+82aNYOdnR327t37Ta//pfbu3YtMmTKhT58+GtsHDBgAkti3b5/
Gdi8vL+TJk0e5X6xYMZibm+PBgwf/
+Tq2trZo1aqVss3AwAB9+vRBREQEjh079s3HcPDgQWTPnh3Zs2dH0aJFsWrVKnTs2BHTpk1T9tm0aRMsLCx
Qo0YNhISEKDc3NzeYmZnhyJEjAAA/Pz/ExcWhR48eGq/Ru3fv/
4zD398fwcHB6NGjh0bfu7p166JAgQLYs2dPksf88ssvGvc9PDz+81wKIf5HEjshBCIiIjSSqI/
99NNPqFixIrp06QIbGxu0bNkSGzdu/
KokL2fOnF81UMLV1VXjvkqlQt68eb+6f9nXevz4Mezt7ZOcj4IFCyrliTk4OCR5DisrqyT91JJ7HVdX1ySj
Rz/1Ol/D3d0dvr6+2L9/P6ZPnw5LS0u8efNG4/
zfvXsXYWFhyJEjh5IEqm8REREIDg7WiCNv3rwar2FtbZ2kaTe5YwSA/
PnzJykrUKBAkmM0NjZO0sz8JedSCPE/MipWiB/c06dPERYWluSLOzETExMcP34cR44cwZ49e7B//
35s2LAB1atXx8GDB5EpU6b/
fB31iNuU9KlJlOPj478oppTwqdehFmeSypYtG7y8vAAA3t7eKFCgAOrVq4c5c+Yo/
QQTEhKQI0cOrFmzJtnn+Np+fCkhrf5mQugyqbET4ge3atUqAB8SgM/R09ODp6cnZs6ciZs3b+L333/
H4cOHlSa7lF6p4u7duxr3SeLevXsaI1itrKySdMAHktZ2fU1sjo6OeP78eZKm6Vu3binlKcHR0RF3795NUu
uZ0q8DfGj6rFKlCiZNmqQMeMiTJw9evXqFihUrwsvLK8mtePHiGnHcu3dP4zlfvXr1nzVp6sfevn07Sdnt2
7dT9BiFEB9IYifED+zw4cOYMGECnJ2d0bp160/u9/
r16yTbSpQoAQCIjo4GAJiamgJAsonWt1i5cqVGcrV582a8ePECtWvXVrblyZMHZ8+eVSY5BoDdu3cnmRbla
2KrU6cO4uPj8ffff2tsnzVrFlQqlcbrf486deogMDAQGzZsULbFxcXhr7/+gpmZGapUqZIir6M2ZMgQvHr1
CosXLwYAtGjRAvHx8ZgwYUKSfePi4pRz5enpCX19fcyfP19jn4/
PT3JKly6NHDlyYMGCBcr7BAD27duHf//
9F3Xr1v2OIxJCJEeaYoX4Qezbtw+3bt1CXFwcgoKCcPjwYfj6+sLR0RE7d+787MSy48ePx/
Hjx1G3bl04OjoiODgY8+bNQ65cuVCpUiUAH5IsS0tLLFiwAFmyZIGpqSnc3d3h7Oz8TfFaW1ujUqVK6NixI
4KCgjB79mzkzZtXY4LdLl26YPPmzahVqxZatGiB+/fvY/
Xq1RqDGb42tvr166NatWoYMWIEHj16hOLFi+PgwYPYsWMH+vbtm+S5v1W3bt2wcOFCdOjQARcuXICTkxM2b
96MU6dOYfbs2Z/t8/
gtateujSJFimDmzJno2bMnqlSpgu7du2Py5Mm4fPkyatasCQMDA9y9exebNm3CnDlz0KxZM9jY2OC3335Tp
ripVasWrly5gn379iFbtmyfrQ01MDDAH3/8gY4dO6JKlSpo1aoVgoKCMGfOHDg5OaFfv34peoxCCMh0J0Lo
OvV0J+qboaEhbW1tWaNGDc6ZM0djWg21j6c78fPzY8OGDWlvb09DQ0Pa29uzVatWvHPnjsbjduzYwUKFClF
fX19jepEqVaqwcOHCycb3qelO1q1bx2HDhjFHjhw0MTFh3bp1+fjx4ySPnzFjBnPmzEkjIyNWrFiR/
v7+SZ7zc7F9PN0JSb59+5b9+vWjvb09DQwM6OrqymnTpjEhIUFjP3w0hYjap6Zh+VhQUBA7duzIbNmy0dDQ
kEWLFk12Spavne7kU/
v6+PgkmfZl0aJFdHNzo4mJCbNkycKiRYty8ODBfP78ubJPXFwcR40aRVtbW5qYmLB69er8999/
mTVrVv7yyy/Kfh9Pd6K2YcMGlixZkkZGRrS2tmbr1q359OlTjX3at29PU1PTJDF//
F4UQnyerBUrhBDiq4WGhsLKygoTJ07EiBEjtB2OEOL/SR87IYQQn5Xcah+zZ88GgGSXgxNCaI/
0sRNCCPFZGzZsgI+PD+rUqQMzMzOcPHkS69atQ82aNVGxYkVthyeESEQSOyGEEJ9VrFgx6OvrY+rUqQgPD1
cGVEycOFHboQkhPiJ97IQQQgghdIT0sRNCCCGE0BGS2AkhhBBC6Aid72OXkJCA58+fI0uWLCm+5JEQQgghR
Gojibdv38Le3h56ev9RJ6fVWfRIPn36lK1bt6a1tTWNjY1ZpEgRnj9/
XilPSEhQJsY0Njamp6dnkklRP+fJkycak7PKTW5yk5vc5CY3uWXE25MnT/
4z79Fqjd2bN29QsWJFVKtWDfv27UP27Nlx9+5dWFlZKftMnToVf/
75J1asWAFnZ2eMGjUK3t7euHnz5meXQFJTL8vz5MkTmJubp9qxCCGEEEKkhvDwcOTOnfuLlhrU6qjYoUOH4
tSpUzhx4kSy5SRhb2+PAQMGYODAgQCAsLAw2NjYwMfHBy1btvzP1wgPD4eFhQXCwsIksRNCCCFEhvM1uYxW
B0/
s3LkTpUuXRvPmzZEjRw6ULFkSixcvVsofPnyIwMBAeHl5KdssLCzg7u6OM2fOJPuc0dHRCA8P17gJIYQQQv
wItJrYPXjwAPPnz4erqysOHDiAX3/9FX369MGKFSsAAIGBgQAAGxsbjcfZ2NgoZR+bPHkyLCwslFvu3LlT9
yCEEEIIIdIJrSZ2CQkJKFWqFCZNmoSSJUuiW7du6Nq1KxYsWPDNzzls2DCEhYUptydPnqRgxEIIIYQQ6ZdW
Ezs7OzsUKlRIY1vBggUREBAAALC1tQUABAUFaewTFBSklH3MyMgI5ubmGjchhBBCiB+BVhO7ihUr4vbt2xr
b7ty5A0dHRwCAs7MzbG1t4efnp5SHh4fj3LlzKF++fJrGKoQQQgiR3ml1upN+/fqhQoUKmDRpElq0aIF//
vkHixYtwqJFiwAAKpUKffv2xcSJE+Hq6qpMd2Jvb49GjRppM3QhhBBCiHRHq4ldmTJlsG3bNgwbNgzjx4+H
s7MzZs+ejdatWyv7DB48GJGRkejWrRtCQ0NRqVIl7N+//
4vmsBNCCCGE+JFodR67tCDz2AkhhBAiI8sw89gJIYQQQoiUI4mdEEIIIYSO0GofO13iNHSPtkNIc4+m1NV2
CEIIIYRIRGrshBBCCCF0hCR2QgghhBA6QhI7IYQQQggdIYmdEEIIIYSOkMROCCGEEEJHSGInhBBCCKEjJLE
TQgghhNARktgJIYQQQugISeyEEEIIIXSEJHZCCCGEEDpCEjshhBBCCB0hiZ0QQgghhI6QxE4IIYQQQkdIYi
eEEEIIoSMksRNCCCGE0BGS2AkhhBBC6AhJ7IQQQgghdIQkdkIIIYQQOkISOyGEEEIIHSGJnRBCCCGEjpDET
gghhBBCR0hiJ4QQQgihIySxE0IIIYTQEZLYCSGEEELoCEnshBBCCCF0hCR2QgghhBA6QhI7IYQQQggdIYmd
EEIIIYSO0GpiN3bsWKhUKo1bgQIFlPL379+jZ8+eyJo1K8zMzNC0aVMEBQVpMWIhhBBCiPRL6zV2hQsXxos
XL5TbyZMnlbJ+/
fph165d2LRpE44dO4bnz5+jSZMmWoxWCCGEECL90td6APr6sLW1TbI9LCwMS5cuxdq1a1G9enUAwPLly1Gw
YEGcPXsW5cqVS+tQhRBCCCHSNa3X2N29exf29vZwcXFB69atERAQAAC4cOECYmNj4eXlpexboEABODg44My
ZM598vujoaISHh2vchBBCCCF+BFpN7Nzd3eHj44P9+/dj/
vz5ePjwITw8PPD27VsEBgbC0NAQlpaWGo+xsbFBYGDgJ59z8uTJsLCwUG65c+dO5aMQQgghhEgftNoUW7t2
beX/xYoVg7u7OxwdHbFx40aYmJh803MOGzYM/
fv3V+6Hh4dLcieEEEKIH4LWm2ITs7S0RL58+XDv3j3Y2toiJiYGoaGhGvsEBQUl2ydPzcjICObm5ho3IYQQ
QogfQbpK7CIiInD//
n3Y2dnBzc0NBgYG8PPzU8pv376NgIAAlC9fXotRCiGEEEKkT1ptih04cCDq168PR0dHPH/
+HGPGjEGmTJnQqlUrWFhYoHPnzujfvz+sra1hbm6O3r17o3z58jIiVgghhBAiGVpN7J4+fYpWrVrh1atXyJ
49OypVqoSzZ88ie/
bsAIBZs2ZBT08PTZs2RXR0NLy9vTFv3jxthiyEEEIIkW6pSFLbQaSm8PBwWFhYICwsLFX72zkN3ZNqz51eP
ZpSV9shCCGEEDrva3KZdNXHTgghhBBCfDtJ7IQQQgghdITWlxQTP6Yfrelamq2FEEKkBamxE0IIIYTQEZLY
CSGEEELoCEnshBBCCCF0hCR2QgghhBA6QhI7IYQQQggdIYmdEEIIIYSOkMROCCGEEEJHSGInhBBCCKEjJLE
TQgghhNARktgJIYQQQugISeyEEEIIIXSEJHZCCCGEEDpCEjshhBBCCB0hiZ0QQgghhI6QxE4IIYQQQkdIYi
eEEEIIoSMksRNCCCGE0BGS2AkhhBBC6AhJ7IQQQgghdIQkdkIIIYQQOkISOyGEEEIIHSGJnRBCCCGEjpDET
gghhBBCR0hiJ4QQQgihI/
S1HYAQ4vOchu7Rdghp6tGUutoOQQghMiypsRNCCCGE0BGS2AkhhBBC6AhJ7IQQQgghdES6SeymTJkClUqFv
n37Ktvev3+Pnj17ImvWrDAzM0PTpk0RFBSkvSCFEEIIIdKxdJHYnT9/
HgsXLkSxYsU0tvfr1w+7du3Cpk2bcOzYMTx//
hxNmjTRUpRCCCGEEOmb1hO7iIgItG7dGosXL4aVlZWyPSwsDEuXLsXMmTNRvXp1uLm5Yfny5Th9+jTOnj2r
xYiFEEIIIdInrSd2PXv2RN26deHl5aWx/
cKFC4iNjdXYXqBAATg4OODMmTOffL7o6GiEh4dr3IQQQgghfgRancdu/
fr1uHjxIs6fP5+kLDAwEIaGhrC0tNTYbmNjg8DAwE8+5+TJkzFu3LiUDlUIIYQQIt3TWo3dkydP8Ntvv2HN
mjUwNjZOsecdNmwYwsLClNuTJ09S7LmFEEIIIdIzrSV2Fy5cQHBwMEqVKgV9fX3o6+vj2LFj+PPPP6Gvrw8
bGxvExMQgNDRU43FBQUGwtbX95PMaGRnB3Nxc4yaEEEII8SPQWlOsp6cnrl27prGtY8eOKFCgAIYMGYLcuX
PDwMAAfn5+aNq0KQDg9u3bCAgIQPny5bURshBCCCFEuqa1xC5LliwoUqSIxjZTU1NkzZpV2d65c2f0798f1
tbWMDc3R+/
evVG+fHmUK1dOGyELIYQQQqRrWh088V9mzZoFPT09NG3aFNHR0fD29sa8efO0HZYQQgghRLqUrhK7o0ePat
w3NjbG3LlzMXfuXO0EJIQQQgiRgWh9HjshhBBCCJEyJLETQgghhNARktgJIYQQQugISeyEEEIIIXSEJHZCC
CGEEDpCEjshhBBCCB2RrqY7EUKI7+E0dI+2Q0hzj6bU1XYIQoh0RGrshBBCCCF0hCR2QgghhBA6QhI7IYQQ
QggdIYmdEEIIIYSOkMROCCGEEEJHSGInhBBCCKEjJLETQgghhNARktgJIYQQQuiIb0rsXFxc8OrVqyTbQ0N
D4eLi8t1BCSGEEEKIr/
dNid2jR48QHx+fZHt0dDSePXv23UEJIYQQQoiv91VLiu3cuVP5/4EDB2BhYaHcj4+Ph5+fH5ycnFIsOCGEE
EII8eW+KrFr1KgRAEClUqF9+/YaZQYGBnBycsKMGTNSLDghhBBCCPHlviqxS0hIAAA4Ozvj/
PnzyJYtW6oEJYQQQgghvt5XJXZqDx8+TOk4hBBCCCHEd/qmxA4A/
Pz84Ofnh+DgYKUmT23ZsmXfHZgQQgghhPg635TYjRs3DuPHj0fp0qVhZ2cHlUqV0nEJIYQQQoiv9E2J3YIF
C+Dj44O2bdumdDxCCCGEEOIbfdM8djExMahQoUJKxyKEEEIIIb7DNyV2Xbp0wdq1a1M6FiGEEEII8R2+qSn
2/
fv3WLRoEQ4dOoRixYrBwMBAo3zmzJkpEpwQQgghhPhy35TYXb16FSVKlAAAXL9+XaNMBlIIIYQQQmjHNyV2
R44cSek4hBBCCCHEd/
qmPnZCCCGEECL9+aYau2rVqn22yfXw4cPfHJAQQgghhPg231RjV6JECRQvXly5FSpUCDExMbh48SKKFi36x
c8zf/58FCtWDObm5jA3N0f58uWxb98+pfz9+/
fo2bMnsmbNCjMzMzRt2hRBQUHfErIQQgghhM77phq7WbNmJbt97NixiIiI+OLnyZUrF6ZMmQJXV1eQxIoVK
9CwYUNcunQJhQsXRr9+/
bBnzx5s2rQJFhYW6NWrF5o0aYJTp059S9hCCCGEEDrtm9eKTU6bNm1QtmxZTJ8+/Yv2r1+/vsb933//
HfPnz8fZs2eRK1cuLF26FGvXrkX16tUBAMuXL0fBggVx9uxZlCtXLiVDF0IIIYTI8FJ08MSZM2dgbGz8TY+
Nj4/
H+vXrERkZifLly+PChQuIjY2Fl5eXsk+BAgXg4OCAM2fOfPJ5oqOjER4ernETQgghhPgRfFONXZMmTTTuk8
SLFy/g7++PUaNGfdVzXbt2DeXLl8f79+9hZmaGbdu2oVChQrh8+TIMDQ1haWmpsb+NjQ0CAwM/+XyTJ0/
GuHHjvioGIYQQQghd8E2JnYWFhcZ9PT095M+fH+PHj0fNmjW/
6rny58+Py5cvIywsDJs3b0b79u1x7NixbwkLADBs2DD0799fuR8eHo7cuXN/8/MJIYQQQmQU35TYLV+
+PMUCMDQ0RN68eQEAbm5uOH/
+PObMmYOffvoJMTExCA0N1ai1CwoKgq2t7Sefz8jICEZGRikWnxBCCCFERvFdgycuXLiAf//
9FwBQuHBhlCxZ8rsDSkhIQHR0NNzc3GBgYAA/
Pz80bdoUAHD79m0EBASgfPny3/06QgghhBC65psSu+DgYLRs2RJHjx5VatNCQ0NRrVo1rF+/HtmzZ/
+i5xk2bBhq164NBwcHvH37FmvXrsXRo0dx4MABWFhYoHPnzujfvz+sra1hbm6O3r17o3z58jIiVgghhBAiG
d80KrZ37954+/Ytbty4gdevX+P169e4fv06wsPD0adPny9+nuDgYLRr1w758+eHp6cnzp8/
jwMHDqBGjRoAPsyXV69ePTRt2hSVK1eGra0ttm7d+i0hCyGEEELovG+qsdu/
fz8OHTqEggULKtsKFSqEuXPnftXgiaVLl3623NjYGHPnzsXcuXO/JUwhhBBCiB/
KN9XYJSQkwMDAIMl2AwMDJCQkfHdQQgghhBDi631TYle9enX89ttveP78ubLt2bNn6NevHzw9PVMsOCGEEE
II8eW+KbH7+++/ER4eDicnJ+TJkwd58uSBs7M
zwsPD8ddff6V0jEIIIYQQ4gt8Ux+73Llz4+LFizh06BBu3boFAChYsKDG8l9CCCGEECJtfVWN3eHDh1GoUC
GEh4dDpVKhRo0a6N27N3r37o0yZcqgcOHCOHHiRGrFKoQQQgghPuOrErvZs2eja9euMDc3T1JmYWGB7t27Y
+bMmSkWnBBCCCGE+HJfldhduXIFtWrV+mR5zZo1ceHChe8OSgghhBBCfL2vSuyCgoKSneZETV9fHy9fvvzu
oIQQQgghxNf7qsQuZ86cuH79+ifLr169Cjs7u+8OSgghhBBCfL2vSuzq1KmDUaNG4f3790nK3r17hzFjxqB
evXopFpwQQgghhPhyXzXdyciRI7F161bky5cPvXr1Qv78+QEAt27dwty5cxEfH48RI0akSqBCCCGEEOLzvi
qxs7GxwenTp/Hrr79i2LBhIAkAUKlU8Pb2xty5c2FjY5MqgQohhBBCiM/
76gmKHR0dsXfvXrx58wb37t0DSbi6usLKyio14hNCCCGEEF/
om1aeAAArKyuUKVMmJWMRQgghhBDf4ZvWihVCCCGEEOmPJHZCCCGEEDpCEjshhBBCCB0hiZ0QQgghhI6QxE
4IIYQQQkdIYieEEEIIoSMksRNCCCGE0BGS2AkhhBBC6AhJ7IQQQgghdIQkdkIIIYQQOkISOyGEEEIIHSGJn
RBCCCGEjpDETgghhBBCR0hiJ4QQQgihIySxE0IIIYTQEZLYCSGEEELoCEnshBBCCCF0hL42X3zy5MnYunUr
bt26BRMTE1SoUAF//PEH8ufPr+zz/
v17DBgwAOvXr0d0dDS8vb0xb9482NjYaDFyIYTI+JyG7tF2CGnq0ZS62g5BiFSn1Rq7Y8eOoWfPnjh79ix8
fX0RGxuLmjVrIjIyUtmnX79+2LVrFzZt2oRjx47h+fPnaNKkiRajFkIIIYRIn7RaY7d//
36N+z4+PsiRIwcuXLiAypUrIywsDEuXLsXatWtRvXp1AMDy5ctRsGBBnD17FuXKldNG2EIIIYQQ6VK66mMX
FhYGALC2tgYAXLhwAbGxsfDy8lL2KVCgABwcHHDmzJlknyM6Ohrh4eEaNyGEEEKIH0G6SewSEhLQt29fVKx
YEUWKFAEABAYGwtDQEJaWlhr72tjYIDAwMNnnmTx5MiwsLJRb7ty5Uzt0IYQQQoh0Id0kdj179sT169exfv
3673qeYcOGISwsTLk9efIkhSIUQgghhEjftNrHTq1Xr17YvXs3jh8/
jly5cinbbW1tERMTg9DQUI1au6CgINja2ib7XEZGRjAyMkrtkIUQQggh0h2t1tiRRK9evbBt2zYcPnwYzs7
OGuVubm4wMDCAn5+fsu327dsICAhA+fLl0zpcIYQQQoh0Tas1dj179sTatWuxY8cOZMmSRek3Z2FhARMTE1
hYWKBz587o378/
rK2tYW5ujt69e6N8+fIyIlYIIYQQ4iNaTezmz58PAKhatarG9uXLl6NDhw4AgFmzZkFPTw9NmzbVmKBYCCG
EEEJo0mpiR/I/
9zE2NsbcuXMxd+7cNIhICCGEECLjSjejYoUQQgghxPeRxE4IIYQQQkdIYieEEEIIoSMksRNCCCGE0BGS2Ak
hhBBC6AhJ7IQQQgghdIQkdkIIIYQQOkISOyGEEEIIHSGJnRBCCCGEjpDETgghhBBCR0hiJ4QQQgihIySxE0
IIIYTQEZLYCSGEEELoCEnshBBCCCF0hCR2QgghhBA6QhI7IYQQQggdIYmdEEIIIYSOkMROCCGEEEJHSGInh
BBCCKEjJLETQgghhNARktgJIYQQQugISeyEEEIIIXSEJHZCCCGEEDpCEjshhBBCCB0hiZ0QQgghhI6QxE4I
IYQQQkdIYieEEEIIoSMksRNCCCGE0BGS2AkhhBBC6AhJ7IQQQgghdIQkdkIIIYQQOkKrid3x48dRv3592Nv
bQ6VSYfv27RrlJDF69GjY2dnBxMQEXl5euHv3rnaCFUIIIYRI57Sa2EVGRqJ48eKYO3dusuVTp07Fn3/+iQ
ULFuDcuXMwNTWFt7c33r9/n8aRCiGEEEKkf/
rafPHatWujdu3ayZaRxOzZszFy5Eg0bNgQALBy5UrY2Nhg+/
btaNmyZVqGKoQQQgiR7qXbPnYPHz5EYGAgvLy8lG0WFhZwd3fHmTNnPvm46OhohIeHa9yEEEIIIX4E6TaxC
wwMBADY2NhobLexsVHKkjN58mRYWFgot9y5c6dqnEIIIYQQ6UW6Tey+1bBhwxAWFqbcnjx5ou2QhBBCCCHS
RLpN7GxtbQEAQUFBGtuDgoKUsuQYGRnB3Nxc4yaEEEII8SNIt4mds7MzbG1t4efnp2wLDw/
HuXPnUL58eS1GJoQQQgiRPml1VGxERATu3bun3H/48CEuX74Ma2trODg4oG/
fvpg4cSJcXV3h7OyMUaNGwd7eHo0aNdJe0EIIIYQQ6ZRWEzt/f39Uq1ZNud+/
f38AQPv27eHj44PBgwcjMjIS3bp1Q2hoKCpVqoT9+/fD2NhYWyELIYQQQqRbWk3sqlatCpKfLFepVBg/
fjzGjx+fhlEJIYQQQmRM6baPnRBCCCGE+DqS2AkhhBBC6AitNsUKIYQQGYHT0D3aDiFNPZpSV9shiG8kNXZ
CCCGEEDpCEjshhBBCCB0hiZ0QQgghhI6QxE4IIYQQQkdIYieEEEIIoSMksRNCCCGE0BGS2AkhhBBC6AhJ7I
QQQgghdIQkdkIIIYQQOkISOyGEEEIIHSGJnRBCCCGEjpDETgghhBBCR0hiJ4QQQgihIySxE0IIIYTQEZLYC
SGEEELoCEnshBBCCCF0hCR2QgghhBA6QhI7IYQQQggdIYmdEEIIIYSOkMROCCGEEEJH6Gs7ACGEEELoDqeh
e7QdQpp6NKWutkPQIDV2QgghhBA6QhI7IYQQQggdIYmdEEIIIYSOkMROCCGEEEJHSGInhBBCCKEjJLETQgg
hhNARktgJIYQQQuiIDJHYzZ07F05OTjA2Noa7uzv++ecfbYckhBBCCJHupPvEbsOGDejfvz/
GjBmDixcvonjx4vD29kZwcLC2QxNCCCGESFfSfWI3c+ZMdO3aFR07dkShQoWwYMECZM6cGcuWLdN2aEIIIY
QQ6Uq6XlIsJiYGFy5cwLBhw5Rtenp68PLywpkzZ5J9THR0NKKjo5X7YWFhAIDw8PBUjTUhOipVnz89+p5z+
qOdLzlXX07O1deR8/
Xl5Fx9OTlXXy6184vEr0Hyv3dmOvbs2TMC4OnTpzW2Dxo0iGXLlk32MWPGjCEAuclNbnKTm9zkJjeduj158
uQ/c6d0XWP3LYYNG4b+/
fsr9xMSEvD69WtkzZoVKpVKi5GljvDwcOTOnRtPnjyBubm5tsNJ1+RcfTk5V19OztXXkfP15eRcfTldP1ck
8fbtW9jb2//
nvuk6scuWLRsyZcqEoKAgje1BQUGwtbVN9jFGRkYwMjLS2GZpaZlaIaYb5ubmOvlmTg1yrr6cnKsvJ+fq68
j5+nJyrr6cLp8rCwuLL9ovXQ+eMDQ0hJubG/z8/JRtCQkJ8PPzQ/ny5bUYmRBCCCFE+pOua+wAoH///
mjfvj1Kly6NsmXLYvbs2YiMjETHjh21HZoQQgghRLqS7hO7n376CS9fvsTo0aMRGBiIEiVKYP/+/
bCxsdF2aOmCkZERxowZk6T5WSQl5+rLybn6cnKuvo6cry8n5+rLybn6HxX5JWNnhRBCCCFEepeu+9gJIYQQ
QogvJ4mdEEIIIYSOkMROCCGEEEJHSGInhBBCCKEjJLETQgghhNARktgJIUQyZMIAIURGJImd0JqEhIQv2va
jkwQj9anPcXh4OEJDQwFAJ9aWVh/
XxYsXcfjwYURERGg5oh+HfG6FtqT7CYqFbkpISICe3offFdeuXUN8fDxsbGxgZ2en5ci0hyRUKhX8/f1x/
vx5qFQqVKhQAcWKFVPKROpQqVTYsWMHJk6ciJiYGJQtWxbTpk3L0OtMq98zW7ZswS+//IJ+/
fohd+7ccHV11XZoOk997k+dOoWzZ88iNDQUderUQZkyZaCvr52vXXVMN2/
exKtXrxAbG4vq1atrJRZdoT6nN27cwKtXrxAREYE6depoOyyAQqSxhIQE5f+jRo2ii4sLXVxcmCVLFq5YsY
Jv3rzRXnBaoj4nW7ZsoZ2dHd3d3Vm9enVaWlry0KFDGvuIlHf27FlaWVlxyJAhnDRpEu3t7VmlShXeu3dP2
6F9tcTvkxMnTtDc3JyLFi1iRESEFqP6cST+LJubm7Np06YsXrw4K1euzHHjxjE6OlprMW3dupX29vYsVqwY
DQwM2KZNG547dy7N49EFic9p7ty5WbhwYZqbm7NBgwa8efOmVmOTxE6kqfj4eOX/
48aNo52dHQ8cOMCEhAS2bt2aFhYWnD59OsPCwrQYpXacOHGC2bNn56JFi0iSFy9epEqlor6+Prds2UJSkrv
UcPPmTW7ZsoUTJ05Utj19+pROTk708PDg/
fv3tRjdl7t7926SbSNHjmSDBg00tiX+DIrUcerUKebMmZNLliwhSd65c4empqYsUKAAhwwZwpiYmDSJI/
Hf2tfXl9bW1sr1xdfXlyqVio0bN+apU6fSJB5d4+vrSysrK+XvfPbsWapUKtaqVYtXr17VWlyS2Ik0sXr1a
o37N27cYI0aNbhr1y6S5Pbt22llZcX69etTpVJxxowZfPXqlTZC1Yr3799zwoQJHDlyJEnyyZMndHBwYKdO
ndi9e3fq6+tz//
79JCW5S0mhoaG0sLCgSqVi3759NcrUyV21atV4584dLUX4ZaZPn8569eolqZVr2bIlmzRpQjJpQnf16lW+f
fs2zWL8kSxYsIBdu3YlST548IAuLi5s164de/
fuTRsbG44ZMyZVa+7mzZvHwMBA5X5ERAR79+7NESNGkCTv37/
PvHnzslGjRsyVKxerVasmyd1Xevv2Lfv27csxY8aQ/N/
fuW3btsydOzcrV67MS5cuaSU2SexEqpsxYwZbt26t8cXy+PFjLlu2jDExMTx+/Djt7e35119/
kSSbNWtGKysrjhs3Tqebjz5O0C5fvsxTp07x7du3LF+
+vPLFcO7cOerp6VGlUnHHjh3aCFWnnT17lnny5GHlypX58uVLkv/
72zx79ozm5uasU6dOmtWyfC1fX18+ffqUt27dIkmNH0QTJkyglZUVHz58SPJ/
yd3r1685bNgwnjx5Ms3j1UXq94s6WQsLC+O1a9f4/
v17VqtWjR07diT54YdEzpw5aW9vryRZKe3y5cusVauWRjeCd+/
e8eDBg7x79y7fvHnDUqVKsXPnziTJffv20cjIiN7e3jx9+nSqxKSLYmNjuXPnTt6+fZuvX79m6dKllXN64M
ABqlQqlitXjtevX0/z2CSxE6kuODiYcXFxJKlx4VB/
AXXt2pWdOnVSvjh79OjB4sWLs2LFijpbO6U+rhMnTnDOnDmMjY1Vyi5cuEA3NzflgnDr1i22bNmSo0aN0nr
fjYzuU+
+nc+fO0drams2bN2doaKjGvs+fP0+2mTM9GDx4MFUqlVI7c+rUKVatWlWp3X38+DE9PDzo7u7OBw8ekCRjY
mI4YsQI5s6dmwEBAVqLXVeo3yeHDx/
m7NmzNT6j165dY4ECBZR+bPfv32e9evU4fPjwVD336vfwuXPn+Pz5c5JUamc3bNjAMmXK8PHjxyTJbdu2sV
y5cixbtiyfPHmSajFldOq/
87lz55TaTfV1e+vWrSxTpozSbWPXrl2sW7cuixQponzu0pJMdyJSFUlkz54dmTJlwv79+9GhQwdMnjwZAGB
tbY13797h7t27MDMzg4GBAQDgxYsXWLlyJU6cOAGVSqWT0waoRys2bNgQDx8+xLVr15SyN2/
e4OLFi4iMjAQArF69Gq9fv8aQIUNQsGBBbYWc4fH/R7D9888/WLFiBaZPn47Xr18DAMqWLYs9e/
bg0KFD6Nq1K8LDw5X3np2dHfLmzavl6JO6efMmNm7ciGPHjsHGxgZPnjxBvnz58PTpU8yZMwfHjx+Hg4MDR
o8eDXNzcxQvXhyenp7w9PTEwoULsWPHDuTOnVvbh5HhqT/
L9evXR2hoqMb1iiTi4+Nx5swZREREYOXKlQCAgQMHpsq5V08XZWFhgcDAQPTv3x9NmzZFYGAgzMzMAACvXr
1CVFQU3r9/DwDw9/dHo0aNcPToUeTKlSvFY9IF6mvH1q1b0aBBA6xfvx4vXrxQRjg/
evQIISEhyJw5MwDgzJkzKFeuHC5fvgxnZ2etBCxEqvi4T8/jx4/5yy+/
sEKFCpw6daqyfeTIkcoIrVKlSrFQoULKLyFdqrFLfD78/
f1pbW3NBQsWJNkvOjqaLVu2pEqlopubG7NkycLLly+nZag6J/
FIxRw5crBcuXIsUqQIc+bMyX379jEqKookeebMGebIkYPe3t4MDw/XZsj/6fXr1yxcuDBHjhypjMwLDw/
n/fv3Wbx4cXp6eio1C69eveLff//NAQMG8I8//
ki3NZAZ0ZUrV2hvb690oE8sLCyMHTt2pIuLC52cnJgjRw5euHAh1WL5+Hq5du1aVq9enV5eXnzx4gVJ8p9/
/qGlpSXd3d1ZsWJFmpub88qVK6kWk644duwYzczMuHz58iQzNzx+/
JjW1tYsVKgQPTw8aGFhodVrtiR2IlUkTmLWr1+vNCs+f/
6cPXv2pLu7OydPnqzsM27cOLZs2ZLdu3dXmmTVzbcZ3eHDh5NsW7x4MatXr873798rF+PEx/
v27Vv6+Pjw77//li/hFHLs2DFmy5aNy5YtI/mhi4BKpaKjoyO3bt3Kd+/
ekfzQPO7s7MynT59qM9xPUiehERER/
Pvvv+nq6kqVSsVVq1Yp+zx48EBJ7o4ePaqtUHXO4cOHlX6Yalu3bmXRokU1Biskvv6FhYXxwIEDXLVqVao2
y6mvI0eOHKGPj4/y43jTpk2sXLkyvby8lPf0iRMn2K9fP/
bv3583btxItZgyKnVTdmITJkxgixYtGB8fr1yrE1+z7969y19//ZVDhgzR+jmVxE6kuMS/
GocOHUp7e3tOmzZNqQF59uwZe/
bsybJly3LKlCnKvolHiSXuc5aR7dq1iyVLlmRwcLDGeZkyZQrz58+fbK3Q6dOndeb404vo6GjOmDFDGXX84
MEDOjo6sk+fPmzatCmzZ8/O7du3MzIykiSVJC+9mT59OidPnqx8oaxevZp6enp0dHTUmK6F/
F9yV7t2be7bt08b4eqU3bt3s2DBggwODtbYPn36dDo4OCj3E392z507lybT5SSukbaysmK/
fv00Xnfjxo308PCgp6enktzpyg/
nlDZnzhwWLlyYsbGxGtfsxo0b09PTU7mfuEx9rtPLVEKS2IlUM3HiRGbLlo3+/
v5KLYP6jR8UFMTevXuzXLlyqTY6LD0ICAhQOi8n/
rW+atUqZs2alYcOHdK4QMTHx7NTp05cvHgxSd1qitaGxOfv9OnTyhQflSpVYpcuXUh+
+LsYGxszS5YsyvQ76dWIESOU0a/
kh47vixcv5vjx41myZEklcVV78OABHRwc2KRJEyVpFd8u8Wc5KCiI5Iepm0xNTfn7779r7BsXF8fevXtzwY
IFaZJEHTt2jFmyZKGPj0+y5bt27WLVqlXp5uamNMuKpB48eKBMb/T+/Xtl+59//
skSJUrw7Nmzyrb4+HgGBQWxU6dOPH/
+fJrH+imS2IlUERYWxjp16ijNXgEBAfT19WXz5s05c+ZMvnjxgsHBwWzdujW7du2qkwlM4mO6ffs28+XLx/
HjxyvbvL29mTNnTu7fv5/BwcEMDQ3lsGHDaG9vnyFXPEhPPvd+
+ueff1iiRAnlQnz16lV27NiRbdu25b///ptWIX6Vj4/
nxIkTnDBhgjKR97Nnzzh8+PBkk7tHjx5lmEmW06vEtXCPHz+mjY0NJ0yYoCR3o0aNoqOjI8eNG8fY2Fg+eP
CAI0eOZNasWXn79u00iXHatGls3rw5yQ9dOQ4ePMhWrVqxTZs23LhxI8kPfe7q1aunjIgVn3b+/
HnmzJlTGb186tQp5s+fn507d1b6rkZFRXHs2LF0cnJSphRKD2StWJEq9PT0cPv2bZw7dw6Ojo6YO3cuAgMD
YWxsjEmTJiEsLAxjx47FrFmzkDVrVmUEoi6uh3rjxg1ERkaiTp062LhxIwwMDDB06FDs378fDRs2RKdOnQA
ADg4OePz4Mfbs2YM8efJoOeqMS/
0+Onz4MDZs2IA3b97A1dUVgwcPhoWFBYKCgnD37l0kJCQgKioKmzdvxtu3b7F+/XpkypRJ2+EnS/
25YKLRebt37wZJ9OjRA/b29ujVqxcAYM+ePciUKRPGjh0LAHB0dNRW2DpD/b7w8/
NDpUqV0KVLFyxfvhxGRkb49ddf0bt3b5ibm2PChAlYuHAhzMzMEBsbC19fX+TLly/F4vj4Gpn4/
qtXr+Dn54f9+/
dj7ty5iIuLg56eHuLi4jB9+nR4enqiVatWqFevHrJkyZJiMekS9fm8ffs29PX1kStXLlSvXh1HjhxBhQoVM
HXqVIwfPx7du3eHoaEhrK2tcfHiRRw6dAhOTk7aDv9/
tJhUCh3x+vVrjaYGdXPrli1baGNjQ0tLSw4dOlQZRNC7d282b95coz9CeumbkBISH8uOHTuoUql4+fJl3rt
3j0OGDGH+/Pn5xx9/KPvs2bOHy5Yt4/
r16+WXdArZtm0bs2TJwm7dunH27Nk0MzNjrVq1GBISQpKsXr06jYyMWKxYMVpaWvLixYtajvjz1DV2iZvQh
gwZwlKlSnHs2LFKh/
7nz59z1KhRdHZ2TtI0KL7P8ePHqVKpuGnTJpLk8OHDmTt3bk6dOlWpOX38+DHXrFlDX1/
fFJ8TTn1dCQkJ0XgfqN8b8fHxrFatGp2cnNi2bVtljWl/
f38WLFhQWgG+0LZt21i4cGGePXuW9+7do4eHBx0cHJS/
54ULF7hhwwZ269aNs2bNSper0khiJ77L+vXraW9vz2HDhinV/
Ym9fPlSo29ZfHw8vby8OHDgwLQMM00sXrxYoynvzZs3nDlzJqdPn65se/
TokZLcJR4VLFLO8+fPWaxYMc6aNYvkh24BNjY27N27t0bSPWfOHC5atChdXpgTU39x79y5k2XLluXmzZuVs
oEDByZJ7p4+fcoJEyZoZWJUXbFo0SJevHhROfd3797lhAkTND7LpGZylxb91gICAmhtbc0mTZqwT58+jIyM
TDLQ5+O/
+9ChQ1m2bNkfaonGr6X+O7969YoNGjTgnDlzlLL79+8nSe7SO0nsxHfp0aMHzc3N6ePjw2zZsrFz586cO3d
ukv3Cw8N56NAhZTZuXZunTj36V93P4vr169TX12f+/Pk1vojJ/
yV3RYoU4bhx47QQrW579OgRS5QowZiYGD5+/
Jj29vbs1q2bUq6uychIdu7cSRMTE06bNi3JnGPq5G7ChAnKiE0Z8fjtxowZQ5VKxUePHpH80D+2QoUKzJ07
N1esWEFSs1P98OHD6eLiwnHjxiWZCiWl+fn50dTUlJs3b2bVqlXp6enJTp068ebNm0mWvNuzZw/
79+9PS0tLra1ZmpEcOnSI3t7erFmzZpJlwNTJXd68eTPEai2y8oT4LkOHDkXevHmRN29enDt3DlmyZMGOHT
tQqFAhLF+
+HHfv3gUAXL9+HYsXL0ZcXBwuXrwIfX19xMfH60SfuhcvXmDv3r0YN24cnJyc8ODBAxgYGKBTp064c+cOQk
JCAABxcXEAPvR56tGjB6pWrYrdu3crqx+IlGFiYoKoqCisWbMG1apVQ7169TB37lwAwJ07dzBx4kScOnVKy
1F+udDQUPzxxx8YMmQIBg4ciGLFigEAYmNjAQDTpk1DjRo1sGzZMixbtgwJCQnQ05NL+7cICgqCn58fVq5c
CUdHR1y7dg2urq4oWbIkIiMj4evrCwAwMjJCTEwMAOD3339H/fr1sXnz5lQ/
79WrV4eXlxfOnj2LI0eOoFOnTjA0NES1atXw22+/YcuWLQA+9Le7cO
ECTp8+jePHj6NEiRKpGpcuyJ07N06cOAFfX188fPhQo8zFxQUrVqyAiYkJ6tevj/
j4eC1F+YW0nVmKjCshIYGRkZHs3Lkzx4wZo2yPjIykSqVi8eLFmT17dk6bNo3r16/
no0ePlKYwXZqn7fnz53Rzc+OECRM4b9485s2bl3fv3mVgYCA7depEExMTHj9+nKRmTUpAQIAyqk58vYSEhG
RrfOPi4tilSxdmyZKF9erV0ygbNmwYy5Ytq0xbkRE8e/
aMDg4Oyvqv8fHxynEnPv6RI0dK8+t3SkhIYMWKFVmlShXu2rWLKpWKd+7cYUhICAcMGMBChQppjGxPPPfmx
/
PbpTT1tWPHjh2sV6+exusVLVqUTk5OzJIlCxs3bqyM2P14hQTxeffv32fWrFlZtWrVZEczP3z4UKnJTc8ks
RPfbevWrTQ1NVWSlBIlSrBKlSq8cuUKFyxYQFtbW7Zv316jk6+uWbNmDc3NzWlgYKCxXFpQUBDbtWvHzJkz
8+TJkySlmex7ffxldfjwYU6YMIG9e/
fm2bNnGRkZyatXr9Ld3Z3VqlXjsmXLuGPHDvbu3Zvm5uYZbnm2sLAw5s2bV6NPpvo9dPr0aa5fv15boekU9
XXp0aNHtLS0pLGxMVevXq2Uv3z5kn379qW7uzsnTJigbE+c3KWFly9f0sXFhdOmTSNJtmvXjra2trx48SJv
3rzJunXrsmzZshmiyVBb1N9F165d49atW7lt2zalf/S///
5LS0tL1qlTJ8Ou+iOJnUgRHTp04ODBg1mwYEFWrFhRGX1Ikvfu3VMumrrSp05NfVznz5+nSqWiqakpp0+fr
tGROjg4mG3btqWFhQWPHDmipUh1w9KlS5kzZ07lgrtjxw4aGhqyZs2azJ8/
Px0cHNi9e3eGhITw7Nmz7NChA62trVmiRAl6eXllyDUxIyIi+PPPP7Ny5co8ePCgRlm/
fv1YvXr1dL+ubXr28TXp5MmTNDAwoLm5OevUqaNRFhwczL59+7JixYocNmxYWoZJ8n/
Xm40bN9LT05PVqlWjjY2NxqjuqKgoqan7Aps3b2bu3Lnp5ubGqlWr0tLSUqkVv3PnDq2srNigQQONCcEzCk
nsxBf7XFI2Y8YMqlQqNmjQgBEREck+Rhdq6pI7hri4ON69e5fHjh3j3LlzaW5uzokTJ2qsHRkcHMxGjRrR3
t5eWYVDfL3AwEAWK1aMxYsX5+3bt9m2bVvOnz9fKf/rr79YuXJl/vrrr3z//j3j4+MZHBzMt2/
farwv0yP1Z+XChQv08fGhj4+PMkXFzZs3Wbp0aVapUoUjRozg2rVr2aVLF1nA/
TuoP8sfDzo4ffo0jxw5wtOnT9POzo41a9bUKA8ODmaXLl3o5eWV6oMlPuX69evMnz8/
nZycNKZI0oVrbFr4559/aGVlxQULFpD88DdXqVQcPny4Uht++/ZtqlQqtmjRIsl7JL2TxE58Vu/
evZWRYOTnk7uKFSvyl19+SYuwtOr69evs2bOnxtqiiU2dOjXZ5O7ly5d89uxZWoaqk4KDg1myZEkWLFiQFS
pUSLLI/
Zw5c5g7d25eu3ZNSxF+vcRrfebMmZMlS5ZkxYoVaWNjw3PnzpH8UIvQs2dPFilShAULFsywNZDpybVr1+jh
4cGNGzcmmeft/
fv3PHjwYLLJ3cuXLzU+29owceJE5syZU2rnvsHKlSuVVToePXrE3Llzs0ePHkq5+jp99+5dqbETuuXRo0ds
2rQpCxUqpEzKSSZN7tS/
EmfMmMEqVaqkq6VVUlJCQgKjo6NZp04dWltbs0+fPsyTJw+3bdvGmzdvauw7ZcoUmpubc/
LkyRmqo35GERQURE9PT6pUKq5Zs4akZm1F7ty5OXr0aG2F91XUn6ejR48ya9asXLRoEckPC8irVCqamZkpT
bAxMTGMj4/n69evpeY3BfTo0YMqlYplypRhs2bN2LVrVwYHByu1u+/
fv6evry9tbGySNMumlY9r4dT379y5wwoVKnDevHk618Ultc2ePZu1a9fmnTt3mDt3bnbr1k05r/
v37+egQYMy9Lx/
ktiJz7py5Qq7du3KAgUKaExAnNyF5O7du1SpVFyyZElahpjmVqxYQQcHB96+fZuTJ09mjRo1WKpUKU6cOFF
jguKZM2dSpVJx+vTpMmDiO3yqeSkoKIju7u50dXXljRs3lO3R0dF0d3fnX3/9lVYhfpWPmwDVc6INHz5cSU
afPn1KBwcHdujQgS1btmTmzJmV9SlFyjl27Bj79u3L48eP8+jRoyxWrBi9vLzYqlUrXr58WfncHj58mIaGh
mzcuHGqxRIXF6dcV8PDwzUmHv7UZ6BKlSqsVq1ahmsq1La9e/
eyTJkyzJEjBzt37kzyf99pvXv3Ztu2bfn27VtthvhdJLET/
+nKlSvs0qXLZ5M79YVn3bp1OjWVSXLevHnDn376iVu3biVJPnnyhMeOHaNKpWLZsmXZrFkzZUj86tWr0+3C
8umd+stK/T67fv06Dxw4QH9/f2Wqh5CQEJYoUYJ58+blokWLuHfvXg4bNoxZsmRJl00o6s/
JrVu32KVLF3p6evLXX3/
lnTt3+PjxY548eZJhYWF0d3dXJlVWv7dUKhWPHTumzfB1TkhICIsWLcopU6Yo2/z8/
JglSxZmz56dnTp14vr16xkVFcXDhw+nyiol6uuI2o4dO1imTBlWqlSJXbt2TfYxiUfwJjcth/
hAfe24evUqz5w5w/PnzytlrVu3pr6+PtevX89Xr14xODiYQ4cOZfbs2TV+KGZEktiJJJKbluTSpUv/
mdwlpuvJXc+ePenu7q7c//
XXX2lnZ8e5c+eyfPnyNDMzY4cOHaSJ5BtNmjSJ06dPV0Z7btmyhaampsybNy+NjIzo7e3NdevWkfzw5VyuX
DmqVCrWrFmTXbt2TZdTmqg/
T5cvX6aVlRVbtGjBmjVr0sXFhSVKlFD6eJ0+fZplypRREtMrV66wefPm7Nu3b5Imf/
Ht1H+PHTt2sFixYsr5btu2LfPly8c5c+awe/
fuVKlUbNKkSao0fT98+FB5fvLDuq6mpqYcPHgwhwwZQjs7O1apUoWhoaFJHivXli+zdetWmpub08nJidmzZ
9dY7cfb25v58+enpaUlPTw86OTklO7Xjf4SktgJDYmTuY+r9/39/
b8qudNF6mMNCwtjyZIluWXLFrZv3562trYanfUXLVokk8V+h379+lGlUnHu3Ln8999/
WbRoUc6bN48hISE8dOgQ27Rpw1KlSnHDhg0kPwyoKFGiBCtVqpTm84p9jRs3btDY2FhjTroNGzbQ2tpamf9
w27ZtVKlUSk3MyJEjWb9+/WQH6ojvd//
+fXp5edHX15edOnVS5oQjP1wDb9y4kWrrCSckJPDAgQO0sbFhq1ateOjQIeW9kZCQwOvXrzNv3rysXLkyw8
LCUiUGXZWQkMCwsDBWqlSJK1as4IULF/jXX3/RwMCAAwYMUPY7evQoly5dSj8/
Pz59+lSLEaccSeyEInFSN3fuXLZo0YI//
fSTxpeQOrn7eEDFjyQhIYHv379nnz59aGFhwQIFCtDf35+kTD78vRKPTBw3bhwNDAz4+++/
8+eff9bo83LlyhW2bNmSDRo0UL7wXr58yfv376d5zF8qLCyMVapUYa5cuZKsOFKyZEkOHTqU5Id56+rUqUO
VSsVy5crRzMwsXdZA6pLRo0dTpVLR3t5eoxkuNX+0Jl495ODBg8yWLRuNjY2TzI93/
fp15smTh9WrV0+25k5oUp/
XqKgovn79mj169FCmpYmOjqaPjw8NDAw4cOBAbYaZqiSxE0kMGTKEtra2HD58OAcNGkRnZ2d27NhRKff392
e3bt1obW3Nw4cPazFS7bp48SIzZ86cbjvpZzSTJk1i8+bNNWomRowYQZVKRWtr6yTTUezatYsGBgZJFuxOz
/7++29Wr16drVq1UmqBbt++TSMjI2V0L0m+ePGC8+bN4/Tp01Ottkj8Lwl48eIFq1Spwt9//11je0pT/
3hOXPt6584dJiQk0NfXl3ny5KGnp2eS+G7cuEErKyvWrVv3h2oh+Vbbt29n9erVWaNGDTo5OWl8hmJiYujj
48PMmTOzV69eWowy9UhiJzSsXr2a+fLl49mzZ0mSmzZtYubMmWlubq4xIuz06dOcPHnyD1tDpb5A9+jRgy1
atJBf0ing5s2bSh+yxBO/Tp06lSqVihMmTODr16+V7Y8ePWLevHl55syZNI/
1ayX+Ml60aBE9PDzYqVMnHjt2jI6OjhpzaAntaNu2LatUqZLqr/
P48WO2b9+eV69e5ZYtW6hSqXjz5k3GxcXx4MGDzJo1K1u0aKHsr37v/
Pvvvxl2iau0dOrUKVpbW7NLly785ZdfaGxszG7dummMMo6JieHChQuZI0cOnVyvWxK7H9zHw+hXrlzJUaNG
kSR37txJKysrzp49m0uWLGGmTJk0au7UdC25+9TC8slZu3YtTUxMNEZbia+XeLDNiRMn6O3tTT8/
P2Xb6NGjqaenxzFjxvD69esMDg7m4MGDmT179gwzT2Diz9qiRYtYsWJFGhsbs1WrVsnuI75P4ulDPpbciP4
nT55QT08v1Wvgjxw5wuLFi7NChQo0NjbmqlWrNOL6XHInPu/
OnTtcsGABJ02apGzbtWsXjY2N2bNnzyTJna7+IJfETpAkJ0yYwKVLl5L8UBMSEhLCUqVKKdMA3Lt3j7ly5a
JKpdLpvgnqC+ipU6c4d+5cLl+
+XPnwf2qkb4MGDaS57Dupz3tAQABfvHjB3Llzs1GjRhqrSqj7QWXJkoWtWrWim5tbhhvBljhxW7ZsGcuUKc
OWLVsqk3pLYvf9Pu5nefz4cQ4fPpx//
vmnRrN94nOdkJDA0NBQ9urVK01qxaZNm0aVSkU3Nzelf27iWA4ePEhbW1vWqlUr1WPRBepJuzNlypTsd9Su
XbtoZGTE33777YeY2FsSux9U4ovamjVrmCtXLqX5lfww633ivgl3797lzz//
TF9fX52rofvYli1bmCVLFhYuXJjOzs4sWrSoUl2fOLlTJyMyOWjK2LZtGw0MDPjixQtev36dBQsWZP369TW
SO/Wkz3Pnzs2wM8N/XHPn4eHBNm3aSDNbCli1ahUrV67MvXv3kvywioC+vj5r1qzJLFmy0Nvbm6tXr1b2/
ziRVk8WnRoS17pt3LiR48aNY6VKldikSZMky+IlJCRw9+7ddHFx0ZmRmikl8d/s4+
+i06dP08LCItkVkPbs2UOVSsVBgwalRZhaJYndD+7IkSPs378///zzT5L/+9A8ePCAOXPm5G+//
cYbN27Q29ubjRo1Ui5OupbcqY8rMjKSPXr04IoVKxgVFcVTp06xcuXKtLe3V9aG1PU5+rThyZMn7Nq1K+fP
n6/8La5du5ZscjdhwoR0Oenzx0nC55rPEu+7ZMkSFi1alF26dJH31nc6ceIEK1SowPr163Pbtm389ddfuXD
hQpIfBiA0adKEVatW5cqVK5XHpGUt6enTp/nbb78p18+9e/eyfPnybNKkCY8fP67sp/6RLVPcaFL/rZ4/
f67xd4uPj1c+O6dPn6ahoSHbtWvHJ0+eaDx+//
796fLakdIksfuBJCQkaHxxBAQE0NTUlCqVisOHD9fYLyoqirNmzaK9vT0dHR3p7u6eZCUAXXP69GkWKlSIt
WrV0pjy4MaNG/
Tw8GDOnDmVmjtdS2y16cKFC6xXrx7Lli3L69eva1yk1cldo0aN6Ovrq+VIP039JRMQEPDZOJPr20V+WKZOv
VqJ+Dbq83nmzBlWrlyZzZo1o4eHh8ZUMf/+
+y+bNm3KqlWravRtS6v4pkyZwgIFCvDXX39Vrqf79u1jhQoV2LRpU65fv57jxo2jSqXSyU79KeHBgwdUqVS
sUaMGp06dyn/+
+SfJPidOnFCSux+xxlMSux9I4qarbdu2MSYmhkePHqWjoyMrVaqUZABAVFQUnz17xrNnzyoXTV2uUTh06BD
LlClDU1NTPn78mKTmdAPVqlWjsbGxspyVSBnr1q1j6dKlmTlzZqXWInFyd/
36ddrY2LBly5bpsn+M+rNx5coV5suXj126dNFYzmzz5s2fbP6RPnXf51MTqqt/
jBkaGnL58uUaj7l16xZbtmzJEiVKKKuXpJW3b99y+vTpLFOmDLt3767EfPDgQXp7e7NgwYLMkyePDMb6jIc
PHzJv3rz86aefOHjwYJqbm3PUqFHcvn27xn5Hjx6lqakpGzVqxGfPnmkpWu2QxO4HceLECVpZWfHZs2ccNG
gQc+fOrVRTHzx4UFlw/OrVq8pjPq6Z0/
UvoZiYGPr5+bFIkSIsXrx4kiTiypUrrFOnjgyUSAU7duxg6dKl6eHhwQsXLpDUrGG+efNmknns0pPHjx/
T1taWo0ePVpZBIz9MiDpo0CB6eXkpTfkiZd2+fVuZT3PDhg1s1KgRyQ/
zTHp4eNDLy4v79u3TeMyNGzfYvn37NKkl/XgwR0REBP/44w+WLVuWv/
zyi5LcPXz4kLdv3+aLFy9SPaaMKj4+njExMRw8eDBnzpxJ8sOcdd26dWPp0qXZpEkT7tq1SzmHR48epY2Nj
SR2QjddvXqVTZo0obW1tZLgkf9rUty3bx8dHBzYsWNHjaWxdJU6aQ0ODmZ4eLjS7KFO7kqWLMkyZcok6eOS
nperygjU5z0kJIQvX77UmG5gw4YN9PT0ZIMGDXjp0iVl/4zQ7L1582YWKVIk2eQtODiYTk5OSj9WNV3/
oZQW4uLi2LdvX6pUKmXUtI+Pj1J+7tw5Vq5cmfXq1UuS3KXFoKdbt26xdOnSGl1dSDI8PJxjxoyhnZ0dBww
YIAOwvtLy5cuZI0cOjWUbq1atSiMjI3p4eLBIkSKcO3cuY2JiUnVATHolid0PZPjw4VSpVMyRI4fyKzImJk
b5gtm3bx+dnZ3ZsGHDdL000/dSJxe7du2ih4cHixYtyvLly3P37t0kPzQ3+/
n5sVSpUixfvjwjIiK0Ga7OUJ/
3HTt2sGrVqsyZMydbtGjBefPmKfusW7eOnp6ebNy4cbJ9Z9KrVatWUaVScePGjfT39+fJkyd5/
fp1Hj16lAcOHGC/
fv3YqlUrHj9+nEePHtWYT0t8P09PT2bKlImDBw8m+eEzrL6unT17lpUrV2ajRo24Y8eONI0rODiYv/
zyCytWrMjx48drlIWGhtLFxYWWlpb87bff0jQuXdC0aVOOHj2aJNmhQwc6ODjw4sWLPHv2LLt3785cuXL9k
P3rSEnsdJr6i1R9gfvnn3+4c+dONm/
enHZ2dkqza+JfNPv27WPjxo11vjZh586dNDU15dSpU7l7925269aNKpVKWVQ+NjaWhw8fprOzM6tXr67laH
XHrl27mDlzZk6ZMoX79u1jly5daG9vr8yXSH6ouStdujRbtWqVoX5t9+/
fn2XKlGHx4sXp6enJ8uXLs2DBgnR1daWzs7MyB5+dnZ3Sh1N8u8SDJfLly0cPDw8aGRnx4MGDJD/
U5iVO7ooVK8YWLVqk6g+15AaWBQcHK++NxMldSEgIf/
75Z06aNIkBAQGpFpOumjVrFmvXrs369eszZ86cPHfunEZ54qUJfzSS2OmoxIlZUFCQxgirK1eusGHDhrSzs
9OYsHPhwoUa/
cp0Nbl7+PAhPTw8lKaxZ8+e0cnJiQULFqSenp6yZmdMTAyPHTumUd0vvkxyX3D3799nmTJllBq60NBQ2tnZ
0c3NjS4uLhrJ3ZYtWzJM8pP4czJp0iR6enry3bt3fPfuHSMjIxkTE8MRI0awdevWDAoK+mFrEVLDzp07mTt
3bu7bt4+RkZHs2rVrkuSO/PA3unPnTqr2qVO/50+ePMk//
viDQ4YMUeIIDQ3lgAEDWKZMGfbs2ZPXrl3jkCFDWK1aNYaEhKRaTLosOjqa+fLlo6mpqcZgJfXfQVdnb/
gSktjpuJEjR7JIkSLMnTs3+/Tpo/
QZu3btGhs1akRra2uuWrWKXl5eLFmypM4mc4n7dkVFRXHYsGF89eoVnz17xgIFCrBr164MDg5mvXr1aGhoy
BUrVmg54oxL/R568+YNAwIClIuu+rw/
fPiQz549Y758+dijRw8GBATQ09OTVlZWynJ2GY36mKdNm8by5csnKe/evbusB5tC1J/
l169fs0uXLpwxY4ZS9urVK3br1o3GxsY8cOAAyQ/
JdrNmzdKkH9vmzZtpZmbGKlWq0N3dnSqViv369WNISAhDQ0M5ZcoUurq60s7Ojs7OzspAIfF11An73LlzWb
16dZ3uOvQtJLHTMR/
Pap8zZ04uWLCA06dPp6WlJRs2bKjU3t29e5edOnWiq6sr69Spo1z4dDW527x5M0uXLs03b94oU5YMHjyY9e
rVU0Yy9u3bl9myZaO1tTVDQ0N/6F9930L93rl58ybr1q3LRo0asX///
kqTqvrfoUOHsmnTpnzz5g1JctCgQXR1dWWlSpUYHBycYc97QEAAs2TJwvbt2/
Py5cs8deoUBw0aRCsrK968eVPb4emMU6dO0dXVlWXLltVYU5j8kNz16NGDKpWK1apVo5GRUZokUPfu3aODg
wMXL16svH/XrVvHrFmzKktcvXv3joGBgTxz5oyMkv5Cn7sW+Pv709bWlosXL07DiNI/Sex01LFjx/
jnn39y7dq1yrYrV64wa9asrF+/vkbT7NOnT5UPj67NU6c+rocPH7JKlSpctGiRxuoZderU4a+//
qrs36dPH65Zs0ZJOMSXUyd1165do7W1NYcOHcpz584le2GuX78+mzdvrtzv3bs3p02bxtevX6dZvClNffx7
9uyhjY0Nzc3NleRDPcpXpJzSpUtTpVJx/vz5yf4YXb9+PadMmZLi0xOpX+vj17x+/
TpdXFx4+fJljff8mjVrqKenx5MnT6ZoHLoocb/Ily9fMjo6+j/
72Xbt2pUFChRgdHR0hv1BmNIksdNB9+7do0qlokqlUvozqd/wV69eZbZs2dioUaMkHXZ1tabu/
Pnz7Nu3Lxs2bMjXr19rTJ8xevRoZs6cmTNnzmSXLl2YPXt2WbPzO7x48YLFihVjv379NLZ/
3O9l4sSJdHNz49ChQ9m7d29aW1vrVF/GV69e8cCBA7x+/
br0oUpF7u7udHR05MmTJ5O9fqX0F736NR4+fMiFCxdqTCTs7+9PAwMDZTmwxAlJkSJFOH369BSNRZds3bpV
Y7Wfbdu2sWzZsixatCgHDhzIK1eukEz+73nmzJkk68L+6CSx0wHJvdkPHDjArFmzsmXLlnz79q3GfteuXaN
KpeLQoUPTNE5tGTBgAK2srJgzZ06lCVad3AUEBLB3797Mnz8/PTw8pGblOx0+fJglSpTg1atXP/
tD4ebNm+zVqxeLFi3KChUqpPvzrv7svHjxgi9fvuTz5881tiemqz+QtEV9jm/evMl9+/bx9OnTGj+
+SpYsyXz58vH06dOp2nFe/
Xe9evUq8+XLx8aNG3PPnj0a+zRv3pyFChXS6PMVHR1NNzc3Llq0KMVj0gVXr15l8eLF2bhxYz5+/
JgPHjygubk5J02axN69e7N69eqsXr26MupVauX+myR2GVziL5G3b99qTMi4a9cuGhkZsUePHsq8WeoPxf37
9zPExK8pZcKECbSzs+Nvv/2W7JJgISEhGisGiG8zadIkZsuWLdky9XsvIiJCGZ34/
v37dD8tgTrunTt3slSpUixcuDAdHBy4adMmLUf249i8eTNz5MjBggUL0tramqVLl+ayZcuU8pIlS7Jw4cI8
duxYqn7x//vvv7SysuLQoUOTXc3gzJkzrFGjBvPnz08/Pz8eO3aMI0aMYLZs2aSD/
2csW7aM1atXZ6tWrfjHH39w7NixStnevXtZr149VqlSRZK7LySJXQaWOKmbOnUqGzZsSDc3N/7666/
Kwte7d++msbFxsskdqbt96t6/f59klYjBgwezVKlSHDNmjNI8JrUrKWvu3LnMnj0779+/z/
j4+GQvwNOmTWPfvn3T/blPHN+uXbtoZmbGmTNn8sKFC+zfvz8zZcqkMbmyS
B0XLlyghYUF586dy9evX/
PEiRPs3bs37e3tNdaBdXFxYZkyZVJt8ud3796xefPm7Nmzp8b2mJgYBgQEKInbrVu32Lx5c5qYmDBfvnwsX
LgwL168mCoxZXSJv39Wr17NatWq0dHRkUOGDNHYT53cVa9eXfoqfgFJ7HTAsGHDmDVrVq5YsYJLlixhiRIl
mDdvXmUAwJ49e2hqasqff/5Zp5fEUicRe/
fuZevWrVm8eHFOnjyZJ06cUPYZOHAgS5UqxXHjxvHly5faClVnXb9+nQYGBhw5cqSy7eOF2rt27cpZs2ZpI
bovc/
LkSY3a7GfPntHb21vpIxUQEEAXFxe6ublRT0+Pc+bM+aFqv1PLx4m+epT+0qVLWa5cOY0k4MGDB+zRowc9P
Dw0+gqnZj/N2NhYenh48K+//lK27d+/n3379qW5uTkdHBxYq1YtpezGjRt8/PixXGc+ov47J/
4uunr1KuPi4rh+/XoWK1aMhQsXTjLoZf/+/fTw8GDdunX57t07qbX7DEnsMrh///
2XJUuW5PHjx0l+SOKyZMnChQsXkvzfh2jz5s2sWrVquq8l+V7bt29n5syZOXjwYI4bN46VK1emp6cn9+7dq
+wzZMgQOjs7c/LkyTp/
PtKSeoHugQMHUqVSaUw4TH74Yhw5ciRdXV3TbbPUypUr6enpqTHg4dmzZ5w6dSqDg4P54sULFixYkJ07d2Z
CQgI7d+5MExMTzpgxQ75oUsCDBw+S1NasXr2adnZ2STrIHzhwgObm5krH+tQWFhamzHl569YtTpo0ifnz52
fTpk05Z84cLl26lHny5FEGDsn74dPUsxS8e/eOGzdupKmpKf39/
Ul+GEVcsWJFtmjRgrdv39Z4nK+vr6zS8QUksctgPm46PX/+PHPmzMmYmBhu376dZmZmnD9/
PkkyMjKSy5cvTzIqT1eTmevXr7NAgQJKJ+XIyEhmzZqVrq6urFy5Mvfv36/
sO2rUKJ0ahZme3Llzh506daJKpWKjRo04e/ZsTp48mT/99BOtra3TdbPUmzdvlP5/jx8/
Vmri1HOOjR07lt7e3kpt+MiRI5krVy5aW1vz1atXWolZVyQkJHDx4sW0sLDQWDv1xIkTzJs3L2fPns3Q0FB
le0BAAAsWLMgzZ86kWYx+fn7U19eno6Mjs2TJwgULFigDOWJiYlizZk22b98+zeLJqF68eMG8efPS1dWVKp
UqyYTwPj4+rFKlCps1a5bi09X8CCSxy0AOHDjAoUOHcvDgwbx37x7JD1+iXl5enDVrFs3NzblgwQJl/
3PnzrFVq1Y/zOzmN2/e5G+//caIiAg+fvyYLi4u7NGjBw8dOkQ7Ozt6eHhw69at2g7zh/
DkyRMuWbKEefPmZc6cOVm0aFF26NAhXU/Sm7g59dKlS3R3d+esWbM0lqVq2bIlW7VqpezXr18/
bt68Od0PAMkoXr16xblz59LZ2VmjL9ugQYOYNWtWzpgxgzdv3mR4eDgHDx5MJyenNJ/oNyAggP7+/
kmaWOPj49m8eXOOHDmSCQkJUmOXjMTnZdGiRVSpVHR0dEy2z7OPjw89PT3p7e2tfN+JLyOJXQaxbNky5syZ
k8OGDeOSJUs0ymrUqEGVSqWxwHRUVBRr167NBg0a6GwN3cfi4uKUkWrt2rVjmzZtlCXU6tWrRzs7OzZu3Jj
h4eFy0f1KyU3K+iXnMCIigsHBwYyKikqTJZ1SSkhICBs2bMjKlStz/
vz5SnI3ffp0GhgYcOjQofz5559paWmpsU6l+HKfui6FhITwr7/+orOzs8bk4UOGDGHBggVpaWnJUqVK0cbG
Jt3U/
kZHR3PkyJG0t7eXGqbPUF8zfH192bx5c86ZM4dubm4sUaKE0oKS+AfW8uXLWatWLVlf+SupSBIiXduyZQva
t28PHx8fNGvWTNkeFxcHfX19vHv3Dh4eHnj37h1atGgBExMT7N+/
H8HBwbh06RIMDAyQkJAAPT09LR5FylIfT0hICOLj42FjY6OUxcTEwMPDA/
Xr18fIkSMRHx+Pbt26oXDhwvj5559ha2urxcgzHvW5fvjwIY4fP46aNWvCzs5OKX/
16hWyZs2a5HEkoVKp0jLUb6aO9eLFizA0NESRIkXw5s0b9OrVC48ePULr1q3RvXt3ZMqUCaNGjcK+ffuQLV
s2/
PHHHyhevLi2w89w1Of77t272L59O1xdXVGnTh2QhJGREUJDQ7F69WpMnz4d3t7eWLhwIQDg4sWLePbsGeLj
4+Hm5obcuXNr+UiA1atX4/
z589iwYQP27duHkiVLajukdM3f3x9eXl5YunQpmjZtihcvXqBWrVrQ09PD9u3b4ejoCAA4ePAgPD098e7dO
5iZmWk56gxGm1ml+LyEhAS+efOGDRo0UKr3P6b+1RsREcGOHTvSw8ODNWrUYK9evZT+eLoypYmPjw8fP36s
3N+6dSsLFCjA/Pnzs0aNGnz06BETEhIYERHBRo0asXnz5ty0aROHDx9OJycnvnjxQovRZ0yJJ2W1s7Nj//
79+c8//yjl69evZ7du3RgZGZlha0HVcW/dupUODg4acx2+efOGrVq1Yvny5TVq7l6/
fs2oqCitxawL3rx5Q2dnZ2WVnAoVKrBWrVrcvn07//33X5Lk33//
zaJFi7J79+5ajjZ5t27dYtWqVdm4ceN03c0gvbhz5w7/+OMPDh48mOT/
audevHjB4sWLs3jx4jx48CAHDx5MKysrGSjxjSSxS+cCAwOZPXt2+vj4JFuu/
uJVf0Cio6M1mrx0JakLCwtjtmzZWKZMGb548YKXL19m9uzZOWHCBC5ZskSZfV7dn3Dr1q308PCgg4ODxnbx
9QIDA+ni4sJBgwYlaU5duXIlDQ0NeerUKS1FlzL27NlDY2NjLlmyJMlgo9evX7N169asVKkSZ8yYIVObpKD
ff/
+dRYsWZefOnTl06FD26NGDTk5OtLa25s8//8xffvmFAwYMYLZs2ZIsU5deBAUFaQzqEEklJCTw1atXzJ07N
w0NDdmhQwelTP0d9urVK7q7uzNv3rx0cXGRa/
Z3kMQunbty5QotLCx4+PBhkky2n1JISAiHDRuWZEWFjFqD8imPHj1ioUKFWLlyZe7YsYOjR49WyqKjo1mhQ
gXmyZNHWZ7q2bNnfPjwIYOCgrQUsW44cuQI8+TJ88l+Lv3792f79u0z7I+IqKgotmzZUnk/
vX37lrdu3eK4ceO4dOlSvn//nqGhoaxXr57GiFjx7RL3rxs7diwrVqyo/
HAICQnh4cOH2alTJ1asWJFZsmShSqWioaGhzAmXASX+Hjpy5Ajz5s3L4sWL8/Tp08r2xD+Wrly5In/
n76Sv7aZg8Xmurq5wcHDA1KlT4eHhkWx/
ubNnz+LatWtJ+jNllP5NX8rR0RH79u1DjRo10KhRI7Rp00YpMzQ0xJEjR1CtWjW0bNkSq1atQunSpXXuHGi
DjY0Nnj9/jiFDhqBhw4YAgMjISLx+/RqxsbF4/PgxgoODsXDhQpiYmKBw4cJwd3fXctTJYzL9/
oyMjBAYGAiSCA0NxbBhw3Dz5k28fPkS9+/fx7///
otp06Zh1apViIyMhKWlpXaC1yF6enrKdWzMmDHQ09PD5s2boVKp0Lt3b1SrVg0eHh7Q19fHsWPH8PDhQ5Qr
Vw7ZsmXTdujiC6k/awkJCciUKRMSEhJQtWpVLFq0CJ06dcLff/
8NExMTlChRApkyZUJsbCwMDAxQrFgxbYee4cngiXQuISEBo0ePxqJFi9CtWzeMGjUKRkZGSnl0dDRat24Na
2trLFy4UKcTGfWF4vHjx2jRogXCwsKwb98+ODs7K2UxMTEoWbIkTExMcOrUKY1zJb5NXFwcTp48iYkTJ+LG
jRvw9PRESEgI4uLikClTJrx58wb+/v5wc3PD48ePcebMGeTJk0fbYWtQJxExMTEwNDRUtqsHIG3atAn9+/
dHSEgIateujaZNm6J169aYPHkydu/
ejQMHDkgH7lSQ+EfqxIkTsXXrVnh5eaFPnz7IlSuXlqMT30p9Pfbz88O2bdsQGhqKQoUKoUuXLsiRIwd8fX
3RrVs3VKxYEYMGDZIBSClNe5WF4r+oq7Dfvn3LOnXqMEeOHGzXrh0DAgIYEBDAY8eOsXr16ixevLjSDKZrz
a+fOp5Hjx4xX758LF++vNJEqN43Ojo6ySz14vtt376ddevWTbJ9y5Yt9Pb25tu3b9P1fG43btxg/
vz5uWjRIu7evVujLCIiggEBAfTz89PY/
uuvv+r8UnzalrhZdsKECSxZsiSHDRvGJ0+eaDEq8b22bdtGY2NjdunShTVq1GDp0qXp6OioDIA7ePAgXV1d
2aBBA169elXL0eoWSezSOXXfg/
DwcHbp0oU5c+akmZkZzc3N6ebmxtq1ayv97nStU7c6UTt16hRnzpzJIUOG8MaNG0r5o0eP6OrqyvLlyyvz1
+laYpue7N+/nyYmJjx37pzG9j59+rBly5bpfpToiBEjqFKpOGbMGBYrVozt27fnwYMHk100/
saNGxwyZAgtLS3lS+cbffxZ/NxnM3FyN2nSJDo5OXHMmDE6d03TVR//bV+
+fMkSJUpw6tSpyrZr166xZs2adHZ2VvqD79+/n8WLF1eu3yJlSFNsBhAfH49MmTIhJiYG9+/fx/
nz56FSqVCgQAG4ublBT09PaVLSNdu2bUO3bt1QtGhRqFQqnDt3DgsWLED9+vVhYWGBx48fo3bt2gAAPz8/
jfnVRMoKDw9Hly5dcO3aNUycOBExMTHw9/
fH0qVLceLECRQtWlTbIX5WYGAgOnXqhA4dOqB06dLo06cPMmXKhICAAEyfPh0uLi5wdnbG2bNnsWLFChw5c
gQbNmyQZqJvoG5iffHiBR49eoTy5csnux8T9XlM3Cw7Y8YMNGnSBM7OzmkWs/h66r9fZGQkTE1Nlb/
ho0ePUK5cOaxatQo1atQA8OF77Pr16+jUqRM6duyIHj16QE9PD1FRUcicObOWj0THaDevFA8fPmR4eDjJpD
Oxf+ks/
7q2skTimjobGxsuXbqU5IcmaZVKRUtLS86bN085bw8ePKCbm5s0v6aB48eP8+eff6aenh7z5ctHb2/
vDFOjFR4ezo4dO3LYsGEkP7zPwsPDaWpqyrx587JMmTJcuHAhjx8/zrNnz0otwjdSX4+uXLnCQoUKsX///
hqLuW/
dupVz5sxJ9rFSQ5fxBAUFMVu2bNywYYOy7d27dyxdujRHjBihsW9CQgLLli3LXr16aWwTKUsSOy1asWIF3d
zcuH37dkZERCjbZ82apfz/R3jTq78IEk/
lEh0dzcWLF3PkyJEkPyTADg4O7NevHwcOHKjMOaaeeiKjTrWRnn3uh8W9e/
cYHh6uJNcZhZ+fHzNnzqzMkdWuXTs6ODhw7dq1nDZtGlUqFWvVqsXXr19rOdKM7eHDh8yePTtHjhypMT3M+
/fv2aJFC9aoUUPnfpD+qF6+fMlOnTrR0NCQ27dvJ/nh+t2zZ0+WL1+eW7Zs0di/
cePGsp5uKpPETkvWr19PU1NT+vj4aNQMPHr0iHp6ekpCo+vUF/
f79+9zwoQJ3LVrl1J248YNXr58mZGRkaxWrRq7dOnChIQEvnz5klZWVlSpVFy6dKlcHL6T+vzdu3ePZ8+e5
aVLl5JMfK0L1MfZpUsXzpw5ky1atKCNjQ0vX76s7HPnzh0+evRIWyHqjCVLlrB06dLKWs2JBQcH09bWlsuW
LdPYLolexpDc9TYoKIh9+vShSqXi1q1bSX6YX9Xb25vlypXjb7/9xo0bN7JXr140NzdXVhYRqUP3OmWlcyQ
RFRWFhQsXomfPnmjfvr1GuaOjIxYuXIi9e/ciNDRUp+fMUvfHuHbtGho2bIiKFSsif/
78SnmhQoUAAHfu3MGbN2/QunVrqFQqREREoEWLFrCyskL58uV1eoqX1Mb/7yOzbds2jBgxAm/
fvoW9vT0cHR2xZs0aGBgY6Ez/TfX7pGjRoujbty+cnJxw/Phx5MuXD8CH96Orq6s2Q9QZsbGxuHDhAvz9/
WFnZ4d3794hS5YseP36NSIiItCsWTPcvHkTly5dAvDhb6IL7zFdp75mR0ZGIj4+Hubm5gCAHDlyYOjQoUhI
SEDTpk2xadMmNG3aFGvWrMGUKVNw6tQp7N27F7a2tjh27BgKFCig5SPRbfJJSmMqlQrGxsbQ19fH7du38eD
BAzg6OuLdu3cICwuDiYkJsmTJgtu3b+PmzZsoUaIEIiMjkT17dm2HnuL09PRw+/
ZtVK1aFd26dcOAAQOSnYD0xYsXuHnzJiIjI/Hq1SssX74ct2/
fxsGDB2FgYKCFyHWHSqXCwYMH0b59e0yZMgUtW7bEli1b0L17d7x+/
Rp79+6FoaGhMoAnveNHExAn7pCvLuvTpw8OHToES0tLJakDoDHpt/g+nTt3hr+/
Pzp27AhTU1PY2NggKCgIERER0NfXx8uXLxEWFobFixfDwsICZ86cgb29vbbDFv9BT08Pd+/
eRYsWLWBmZoauXbvC1tYWNWvWhJ2dHaZPnw6SaN68OTZs2IDmzZtj8uTJUKlUeP36NTJnzgxTU1NtH4bOk1
GxWjJ16lScOXMGvr6+KFCgAAwMDHDv3j2QRPHixXHkyBGoVCrkzJkTtWrVwqJFi7QdcooiidjYWPTs2RP6+
vqYP3+
+Uvb27VsEBwfj8ePHqF69OgCgY8eOWLFiBQoUKIDAwEAcOnQIpUqV0lb4OuPVq1f45ZdfULZsWQwaNAjBwc
EoXbo0ihcvjjt37sDe3l5JoNNrcqdO3hIndf/+
+y9cXFySTFCtvtzNnDkT27dvx4YNGyShSEUjRozAnTt3sGbNGoSHh8PAwABGRkbo27cvQkNDMW3aNCQkJMD
R0VHboYovkJCQgFGjRmHy5MkwNjZGnjx5EBUVBWtra5QtWxadOnUCAOzcuRMTJkzAvn374O3treWof0Baag
L+YSXun/D8+XNWqFCBvr6+jIqK4vXr13nnzh1ev36dJUqU4KBBg7hp0yadHhjg6enJ/v37K/
d37drFbt260czMjBYWFnRzc2NgYCBJct26ddy0aRPv37+vrXB1ko+PD/39/fny5UsWLVqUv/
zyC+Pi4jhp0iSqVCqWKlUq2TWK05P79+
+zUaNGJD9MmOzs7MwrV658cv9Xr15RpVJx4sSJaRXiD0XdX65v376sVq1akvKuXbty+PDhaR2WSAEvXrxg3
759Wb9+ffbr14/37t3juHHj6OXlxRw5crBAgQKsU6cObWxsqFKpeOzYMW2H/
MORptg0plKplJoFa2trvHz5Evfu3YOXlxcKFy4MAHjw4AFsbW3Rpk0bZd08XennpEYS7969Q7Zs2fD8+XPs
2rULly5dwooVK1CpUiXMnj0bpUqVQosWLdC7d29s3LgRLVu21HbYGZ76vXf9+nW8ffsW5cuXV/
p5rlixAjY2NhgzZgwyZcoEFxcXVKpUCcbGxnj69Gm6nlPs1atXOH78ONzc3HDp0iWsWrXqk2tOxsfHw9raG
rNmzVLm2BIpS92s3blzZ7i7u6Nv374YPnw4nj9/
jg0bNmDz5s04c+aMlqMU38LW1haDBg3CpEmTcPLkSbi6umL06NEAgHPnzuH58+dYtGgRcuTIgeDgYFnfVxu
0nFj+sBISEhgTE8PWrVuzfv36PHjwIGNiYvjgwQPWrVuXHh4eOjUi8VOOHDnC4sWLM2/
evMyRIwd9fHw0RiX++uuvrFmzpox8TQHqc7hlyxa6uLhw+PDhGud61KhRzJUrl3J/yJAh7N+/
f7IjG9OjyZMnU6VSsUiRIsq2z420/
BE+X6lBfU6/5DMZExPDxYsX09ramqampsyXLx9LlSrFS5cupXKUIrU9f/
6cvXr1YpkyZfj7779rlMXExPD9+/cMCgrSUnQ/
Nuljp2VXr15Fu3btEBYWhvDwcDg6OsLExARHjx6FgYGBRudvXcP/rz16+vQpEhISkCVLFlhZWWns8/
PPPyNbtmyYPXu2zp6H1MKPBhIAwOHDh1G/fn3MnDkTLVu2hIWFhVJ25swZdO3aFSYmJnB2dsbevXvxzz//
KKOT06PEx7hz505cvHgRK1euhLOzM3x9faGnp5ekb2B67SuYkTx58gQPHjxAlSpVsGbNGhw7duyT/
YATEhIQFBSEY8eOIW/evHBwcECOHDnSOGKRGgIDA/H777/j/
PnzaNSoEYYOHQpA91qYMhpJ7FLJpxIyJrOEzqNHj3D58mUEBASgQIEC8PT0RKZMmXT+wxEbGwsDAwPl38Tn
5t27d/j999+xZMkSjSkpxJd78eKFssQaSSQkJKBPnz6Ij4/
HggULlPOtTnSioqLg6+uLjRs3IlOmTBg8eDCKFCmi5aP4NHX8x48fx/
3791GnTh3Y2NjgzJkzaNWqFVxcXHD48GFl/
+PHj8Pd3T3JgArx5UgiLi4ONWvWRFxcHDw9PTFhwgTMnz8f3bp1+
+RjZEoi3aVO7i5dugRPT0+MGzdO2yEJbVQT6rrEzT9XrlzhtWvXNCZBTexTzRm63kykPr7Hjx+za9eufPLk
iVK2evVqdu3alfb29rx48aK2QszQ/v77b7Zs2ZLv37/XeI/VrVuX7dq1S/Yxjx8/
Vv4fHR2d6jF+j8TNylmyZOHYsWN5584dpezMmTPMnTs3q1Wrxjt37nD48OHMly8fX7x4oc2wdUZkZCRdXV2
pUqk4dOhQZbt0mfgxvXjxgh06dKCXlxdDQkK0Hc4PT3erg7SEpFJTN3LkSOzcuRPv379HVFQU2rRpg3Hjxm
nUGHzql6wuNxWpayIfPnyISpUqoVmzZsiVKxcA4Pbt29iyZQssLCxw+PBhjQmLxZezsbHBhAkTYGRkhIiIC
JiZmSE2Nhbm5uZ4/PixRnMkSbx69Qpz5szBzz//DDc3t3Q/P6BKpcKJEyfQpUsX/
Pnnn+jQoYNSFhMTg3LlymHnzp1o1qwZatasifj4eGzduhW2trbaC1pHxMfHQ09PD5kyZYKDgwMuX76MQ4cO
wcvLCyqVKtm5A4Vus7W1xZQpUwAAWbNm1XI0QmrsUsnkyZNpbW3NkydPMjw8nP369aNKpfpkzZ0uio2NVX7
BBwcHMzg4WCmLi4ujpaUlO3bsmORXfkhICN++fZumseqqs2fPsn79+sraqNevX2fmzJn566+/
atTKDRs2jIULF+bz58+1FepXmzJlCmvXrk2SjIqK4sGDB9myZUu2aNGCK1asIPmh5vHIkSMZ6rjSK/
Xn9NatW4yKilKW9ytZsiQ9PT3p6+ur5QiFECQpvdFTQVxcHC5evIg5c+agYsWKOHToEJYvX4758+ejePHii
ImJ0XaIqWrp0qUIDw+Hvr6+slxVxYoVUb58eeTLl0/pZH3mzBksWbJE+UXP/+/umTVrVpiZmWkt/
owuISEBABAaGopnz54hKCgIkyZNwuXLl1G4cGGsXr0aq1atQtWqVVGvXj00a9YM8+fPx6pVq5Q+eemZ+n0S
FxeHoKAgLF26FK1atcKcOXMQEhICMzMzTJw4Ebdu3YKhoSGqVq2aIY4rPeP/17xt374djRs3xvTp0/
HmzRtky5YN27Ztw6tXrzB16lT4+voCAIYPH44ePXpoOWohflBaTix1Unh4OO3t7bl3714eOXKEZmZmnD9/
PskPNQgjR47k8ePHtRxl6nj58iVz5szJIkWKMCoqinfu3KGpqSknTZrEHTt2sGfPnnRxceHgwYOlFiUVrV6
9mnnz5uWbN2+4bt06VqtWjQ0bNuT169dJkg8ePGDfvn3ZoUMHDh48OEMuyn3v3j3WrFmTBQsWZIcOHXjo0C
GS5NGjR+nm5sZnz55pOULdsnPnThoZGXHevHlJPrsPHjygu7s7ixcvzsqVK9PCwoKnT5/WUqRC/
NhkVOx3+tTo1wEDBuD27ds4cuQI/
vzzT3Tu3BnAhxFEHTt2RLNmzZRtuub69eto164dAGD8+PE4efKk0v8CAGbNmoW///
4bo0ePRvv27WX6iRTC/69ViYyMRNeuXeHm5oYBAwYA
ANavX49FixbBwsICo0ePRsmSJZXzznTeD0od34ULF3Dp0iWoVCqUK1cOhQsXRnh4OCIiIjSWBRs5ciQOHDi
A/fv3S3+fFPL69Wu0aNECtWrVwsCBAxEVFYU3b95g9+7dyJMnD7y8vPDs2TOsWrUKb9+
+RZs2bVCwYEFthy3Ej0mraWUGl3j067NnzxgQEKDc37JlC21tbVmnTh2l5iA4OJh16tRhpUqVdHLUa+K+cu
pl0VQqFRs2bMiEhASNY+7SpQsLFSqkjTB12vHjx1mxYkXWrVuXd+/
e1XiPrlu3jtWrV2fTpk2VPndk+h7JmHj0q729Pd3c3Fi5cmVmy5aNJ06c0Nj34MGDHDBgAC0sLGQC3BT27t
07lipVimPHjuW7d+84YMAAVqpUibly5aKenh6XLl1K8sPfKz2/n4T4EUgfu+
+QePRr5cqVUbp0abi7u2PLli1o0qQJxo0bhzt37qB27dqoWrUq6tevj8DAQBw+fBiZMmVCfHy8lo8g9RQuX
BgrV65E1apVceHCBTx58gSZMmVS+n95eHhAX18fERERWo5Ud5BEcHAwgoODcfLkSVhYWEBPTw/
v378HALRs2RLdu3fHw4cPMXPmTKWvZ3qqrWOiBoT4+Hhl9Gv37t0xduxY+Pv7Y8aMGXj16hVq1qyJ/
fv3A/hQo7Ru3TpcunQJJ06cQIkSJbR0BLqJJOrVq4cVK1bA2toa9+/
fR7t27fDkyRO0bdsW27dvR1xcHFQqVbp6PwnxI5Km2G+QuPnVx8cHgwYNwsyZM2FjY4N58+bh/
v376NatG3r37o1jx47h+vXrCAgIQMGCBdGmTRvo6+vr7OTDBw4cwMWLFzFgwAAYGhrixo0baN26NeLj47Fr
1y7Y29vD0NAQPXr0wD///IOjR4/
KQIkUFBkZiUOHDuGXX35B0aJFcfDgQQAfpgAxNDQEAGzduhVubm5wdHTUZqhJqD9XgYGByrQk0dHRmDx5Mk
hi3LhxePbsGSpUqABPT0/Ex8djw4YN2L9/P6pWrYrXr1+DpDS/
fif+f9P3y5cvERsbi2zZssHQ0BAhISG4e/
cunj59isaNGyvXr7Zt2yJr1qyYNWuWJHVCpAfaqyzM+Hbu3MmFCxdy8eLFGtt79epFV1dX/
vPPP8k+ThebYdX+/PNPqlQqTp06VZlO4/r16yxevDjt7Ozo6enJPn360NLSUprLvpO6yevOnTs8e/
Ysz549q6zrumPHDjo4OLBBgwbK/u/
fv9dKnF9C3WR86dIlOjo6KgMhSPLixYs8ffo0w8PD6e7uzm7dupEkT548SZVKRZVKxf3792slbl2jfk/
t2LGDxYsXp6urK52dnbl+/Xq+evVKY9+AgAAOGzaM1tbWvHHjhjbCFUIkQxK7b/
Tw4UMaGBhQpVJxwoQJJD/
M26ZWsmRJtmnTRlvhadW8efOoUqk4ZcoUJbm7du0avb29qVKpePz4cT59+lTLUWZsifue5c6dm6VLl6adnR
0bNWqkJDlbt26li4sLGzdurM1Q/
5M6qbt8+TKNjY05bNiwZPc7d+4cS5curYzgvX79Olu0aMFBgwbx5s2baRavrtu9ezfNzc05efJkPn78mO3a
tWPu3Lk5Y8YMvnz5kiS5f/
9+dujQgXny5JEfaEKkM5LYfaPY2FgePHiQrq6urFq1qpLAqL+kevTowRYtWmgzxFSnTi6SW6bpr7/+UpI7d
U3RpUuXWKlSJT58+DAtw9RZp06doqWlJefOnUuSXL9+PfX09PjXX3+R/
FBDt337dlpYWLBVq1baDPWTEid1JiYmSZK6W7duKf/
fu3cvVSoVr127RpIcOXIk69Spo9RSiq+TeGCN2vPnz1m9enVOmTKFJBkUFMQ8efKwQIECtLa25rRp0xgeHs
7AwEBu2rSJjx49SuuwhRD/QRK7L/DxBTDx/
YMHD9La2pqNGzfmmzdv+O7dO8bGxrJMmTLs0qVLWoeaqtTHnfj4b926RT09Pfr4+CTZf8aMGcyUKRP/
+usv5cs3va9BmhGoE+rJkyezadOmJD/UILu4uLB79+7Kfm/
evGFcXBx3797Nu3fvaiXWL3H37l0aGxtz5MiRJP93fBMnTmTdunUZFBRE8sPIzEaNGlGlUrFs2bI0MzP7oV
ZySUnqz7C/vz8HDhyobA8JCeHixYv54sULBgUFMX/+/
ErTd4sWLZgrVy6OHz+eoaGhWolbCPHfZFTsf0g8UOLvv/
9G165d4enpiZUrV+LevXuoUaMG1q1bhxMnTsDd3R1NmjRBmzZtEBERgXnz5mk5+pSjPg+PHj3CkiVL4O/
vDwDInz8/
evfujZ49e2LdunUaj2nfvj1sbW3Rp08fLF68GACUDvzi+0VFRaFw4cKIjIxEpUqVUKNGDcyfPx8AsHPnTmz
ZsgV6enqoW7cu8ubNq+Vok5eQkIBly5YhS5YsyqAHlUqFyZMnY9q0aejduzdy5MgBADA2NsbChQuxYMECtG
rVChcvXkTx4sW1GX6GpP4sX7lyBRUqVEBsbKxSljVrVtStWxe2trb4+++/kSdPHvzxxx8AgLx58+L9+/
fYtm2bTo/oFyKj071hmSlMndQNGTIES5cuxc8//
wxLS0uMHTsWZcqUweDBg1GzZk2sXbsWffr0wY0bN7Bv3z4UKlQIAHRi9Kv6i+DatWto1qwZChcujJw5cyrl
s2fPhpGREdq3bw+S+PnnnwEAmTJlQtOmTeHk5IQaNWpoK3ydox55aG9vj/79+2P+/
Plo27Ytpk6dqpRt374dhoaGaN26NYyNjbUZ7mfp6emhV69eiIqKwvr162FsbIzw8HDMmDEDGzZsgLe3N4D/
jdTMkSMHunXrlu4nVU6vEid15cuXx+DBgzFhwgSNfdTLrwUHB8PU1BQGBgYAPoysXrFiBcqUKQNra+s0j10
I8YW0XGOYIZw9e5ZOTk4aS+Rs3ryZNWrUYLt27RgSEsKYmBj6+voya9asGn3rdGWyzn///
ZdWVlYcOnToJ5dqGjBgAPX19Tlr1iweO3aMY8aMYcmSJaUP1HdKPPr14sWLDAwMVMratWtHY2NjZVRieHg4
hw4dShsbmwy1TNiLFy/Yq1cv5s+fn/
r6+vTz8yOpOSBp1KhR7Nq1K0nd+Vxpw5UrV2hmZsYRI0ZobJ86dSoXLFig3B8+fDjt7Ow4cOBAtmnThmZmZ
um6SV8I8YEkdsn4uE/duXPnaGNjk6Q/
z5o1a2htbc2rV68qjzt48CBtbW1Zq1atNIs3tb17947Nmzdnz549NbbHxMTwyZMnGh3cJ06cSAsLC7q4uDB
Xrly8ePFiWoerkzZv3kx7e3taWlqyWrVqyoCJW7dusUaNGjQyMmLp0qVZqVIl5syZM0Oe98DAQPbp04fFih
Xj9OnTNcpGjx5NY2Nj+vv7ayk63fD27VsWKVKEzs7OGtsnT55MKysrjWlmSPKXX36hp6cnq1WrxitXrqRlq
EKIbySJ3WeMHDmSa9eu5eHDh5kjRw4ePnyY5IeERs3BwUEZhUh+qEnYvXs3XVxcdGZKj9jYWHp4eGgc5/79
+9m3b1+am5vTycmJ1atXV2pRrl69yuvXrydZKFx8vYSEBAYFBbFMmTJctmwZT5w4wfbt29Pd3V0ZuUiSK1a
s4NSpU7lq1aoMPVJRXXOX+PgmTpwoSV0Kef/
+PVesWEEzMzP269ePJDllyhRaW1vz4MGDyn6J59qMjo5mVFRUmscqhPg2ktglkrimbs+ePcycObOypmaTJk
3o4OCgMVVHUFAQCxcuzC1btmg8T0JCgk41P4aFhbFAgQLs2rUrb926xUmTJjF//
vxs2rQp58yZw6VLlzJv3rzs27evtkPVGeokOT4+nmFhYWzRogXfvHlD8sOaw3379mWZMmU4ceJELUaZOtTJ
nYeHB8uWLStJXQqLi4vj2rVraWBgwNKlS9PGxoa+vr4kNZu4N2zYwCdPnmgrTCHEN5IlxZKxfPlyxMTE4N2
7d+jbty8AICQkBC1btsSVK1cwePBgmJqaYteuXQgMDIS/
vz8yZcqk3aBT2eHDh+Ht7Y2cOXPi9evXmDZtGjw9PZE3b17ExsaiXr16sLOzg4+Pj7ZD1Rl79+7F3LlzYWp
qiufPn+PkyZNKWXBwMCZNmgR/f394eHhg8uTJWow05QUGBmL48OE4ceIENm3aJGu/
prD4+Hhs3rwZffv2RZkyZbBz504A/xukMmrUKPz++
+948OABnJyctBusEOLraDmxTHdevnxJFxcXqlQqDhgwQKMsOjqavXv3pru7O93c3Ni8eXOlWVaXlwlTCwgI
oL+/vzL7vFp8fDybN2/OkSNHMiEhQTq2p4CTJ08yU6ZM7NSpEytWrEgTExP26tVLY5/
g4GB27tyZXl5eDAkJ0VKkqSc4OFhjoIhIWe/
fv+e6detoZGSkUds+cuRIZs6cWWpJhcigpMYuEfVUAFevXsVvv/
2Gp0+f4sSJE7C1tUV8fLxSKxcWFgZ9fX1kzpwZKpVKJ6Y0+VYxMTGYMGECli1bhqNHj8LV1VXbIWV4N27cw
IMHD/
DgwQP89ttvCAkJwdKlS7FmzRp4eXlh5syZyr4hISGIj4+HjY2NFiMWGVV8fDw2btyIjh07YsCAAciSJQvGj
RuHkydPws3NTdvhCSG+gSR2/2/
SpEmIjo7GiBEjYGhoiBs3buDnn3+GSqXCiRMnkCVLFsTGxsLAwEBjDi3+wPNprV69GufPn8eGDRuwb98+lC
xZUtshZXjPnz9HmTJl8Pr1a/z+++/o378/ACjJ3apVq1C7dm1MmzZNy5GKjOZT16r4+Hhs2rRJmX/y/
PnzktQJkYHJyhP/
z8DAABMmTMCcOXMQExODwoULY+3atUhISEDlypXx9u3bJEkdgB82qbt9+zaWLl2KJ0+e4MiRI5LUfaXEv6c
S/
19dY2JnZ4fjx48r27Nly4YuXbqgQ4cOWLNmDUaOHJmm8YqMRf2eCg4ORmhoKF6+fPnJa1WmTJnQpEkTbN+
+Hbdv35akTogM7oessUu8TFhi8+bNQ69evTB58mT069dPqblr06YNgoKCcO/
ePWTOnFkLEadPwcHBMDIygoWFhbZDyVDU7783b94gISFBWUpLLSIiAlu3bkW/
fv3QuHFjLFmyRCl7+fIl1q5di/r168PFxSWtQxcZgPrH586dOzFp0iS8f/8eb968wdChQ/HTTz/
JqhFC6DptdOzTNnXnfvVs/Yn99ddfVKlUnDJlCt+/f0+SvHz5Mtu2bftDDJAQaeP+/
fu0t7dn0aJFuW3bNt6/
f1+jPDw8nD4+PrS1tWXnzp01yj6eQFuIj+3bt48mJiacM2cO79y5w1GjRlGlUvHo0aPaDk0Ikcp+qBo7f39
/lC5dGgBw5MgReHp6YtWqVWjdurXGftOmTcOIESMwa9YsdOrUCSYmJkpZ4kEUQnyrI0eOYNSoUfD09MT+/
fuRPXt25MuXDyNHjkTmzJlhbGyMsLAwbN++HSNGjEDFihWxYcMGbYct0qHEg7fUl/
NOnTrBxsYGU6ZMwaNHj1CzZk1UrVoVixYtUh7HH7h/
sBC67IfpY7dgwQI0aNAAt27dAgBUq1YNAwYMQNeuXbF27VqNfevXrw8TExP07t0bW7Zs0SiTpE6khEKFCiE
sLAxFihTBoUOH0L17dxw6dAjt2rVDz549cf/+fZibm6N9+/YYPXo0Ll+
+jBcvXmg7bJHOTJs2Da1atUJUVBSAD31+Y2JicPXqVZQtWxZRUVGoWLEiqlWrhoULFwIA/v77b/
z777+S1Amhq7RbYZg2Fi5cSD09PW7dujVJ2cCBA2lgYMA1a9Yo2x48eMDhw4dz48aNGouQC5ES1F0B1q1bx
zJlyvD27dtKWd68eWliYsKsWbOye/fuXLFiBUkyNDRUK7GK9G3fvn00NDRk586dNVa76d+/
Pxs2bEh7e3v26NFDmW/
z3bt3bNKkCSdOnChN+kLoKJ2ffG3hwoXo1asXNm3ahMaNGyvbz549i3LlymHatGnIlCkT2rZti7t376Jw4c
JYuXIlSOL3338HgB96njqR8tQ1JW5ubsicOTMePXqEfPnyoVOnToiKisLt27dx7Ngx7N69GwMGDEDt2rWRP
Xt2LUct0pMHDx4gV65cqFWrFvbt24cGDRogISEBf/75J8zMzODu7o49e/bA3t4eEyZMUEb0jx8/
HpcvX8bUqVOTHUAmhMj4dLqP3fbt29GkSRPs2LED9evXV7Y3bNgQVlZWmDdvnjLKddasWZg5cybMzMyQI0c
OHDp0CAYGBtoKXfwgBg0ahKNHjyJfvnw4cuQIduzYgTJlygD4MBF2QkICrKystBylSE82bdqEn376Cbt370
aNGjVgYGAAPz8/NGzYEM2bN8eSJUuQKVMmjB8/
Hlu3boWJiQmKFSuG4OBgnDhxAr6+vjI9kRA6TGcTu+joaPTt2xe+vr7o06cP+vTpAwBo1qwZbt68ib1798L
JyUmjA/
HDhw9hZGQEW1tb6OnpSU2dSDXqKU+ePn0KT09PxMbGYsuWLfKFK75I3bp1cenSJSxduhSenp4wNDRUkrsmT
Zpg5cqVAIAtW7bg+PHjePToEQoXLoz27dsjf/78Wo5eCJGadDaxA4AXL17gjz/
+wLlz59CyZUucPHkSd+7cwbZt2+Di4qIkdUxmdNin5roTIiXFxsaic+fOCAgIwNGjRwHIaEXxaTExMTA0NA
QANGrUCP/88w+WLl2K6tWrw8jISCO5W758uQz2EuIHpNOJHQAEBgbi999/
x549exAWFoarV68iZ86cyvJgwIdfv8WKFcPkyZO1HK34kagTuLt378Ld3R0zZ85Ehw4dtB2WSMfU75lr164
hMDAQtWvXRr58+TBjxowkNXctW7bE7NmzYWZmpu2whRBpSOerpGxtbTFy5EjUr18fzs7OWLduHYAPS4jFx8
ejbt26uHfvHsaPH6/lSIUuUf9eevfunTIVxcfUtcUODg4oVaoU/
Pz8EB0dnZZhigxGpVJhx44dcHNzw9mzZ9G1a1eYmpqiY8eO8PPzQ0xMDDw9PbFr1y4sW7YMQ4cO1XbIQog0
pvM1dmrqmrt//
vkHzZs3x8CBA9GwYUPcvn0b165dg4GBgfSpEylCXauya9cuLFy4EC9fvkTHjh3RvHnzJMuHqe3a9X/
t3XdQVOf+x/
H3LisrEFtsqwYMKvYENLEbI7ZRYy8YR8auWBAlFkJx1GsLYneiYok1lhkVSxKdSHSigo5ObIOJvY4GoxILt
hX2/P5w2BtS/F3vNVlZPq+/OGf37H4PswOffb7nOc8OqlSpQuXKlf/hauV1du/
ePeeSfQ6Hg8zMTIKDg2nTpg1Tpkxx7m/
Xrh1Hjx5lxYoVzrbsvn37KFWqFFWrVnXlKYjIP8ztR+xy2Gw2YmNjqVevHklJSZQuXZrTp08r1Mkrk/
MdyWQysW/fPnr16oWfnx/
vvPMO4eHhTJgwgUuXLv3pMe3bt1eok1wWLFhAVFQUFy5cAMBsNjsndfn5+QHPr9E0m81s374dm81GTEwMu3
btwm6306RJE4U6kXwo3wQ7wPmHr1KlSrz33nukpaUp1MkrkzPh4fr16xw/fpyJEyeycOFCli1bRlJSEl9+
+SUJCQm5wp0mSchfMZvNJCUlkZiYyMWLFwF44403KFKkCNu2bQOeX1Ly7NkzLBYLNWrU4MSJE0RFRfHs2TN
Xli4iLpSvgh08D3dz587lq6++UqiT/9mCBQv47rvvgOfrCF+9ehVfX18mTpyIw+FwPq99+/
asWrWKdevWMXv2bM6fP+
+qkiWPGD58ODNmzGD9+vUsXrzYuRxiXFwcp0+fdt7CKWcSmM1mIzU1leTkZHx8fFxWt4i4Vr4LdgDFihXDb
DbjcDgU6uS/YhgGDx48YMuWLZQvXx54vo6wn58fS5Ys4e7du5w4cYI7d+44j+nQoQNr1qzh888/Z/
HixWRlZbmqfHnN5Xw2evbsSUhICGvXrmXZsmXcuHGD4OBgIiMj2bFjBy1btiQ+Pp6+ffuyaNEibDYbb731l
ourFxFXyjeTJ0RepZwJEtnZ2Xh4eHDo0CEyMjJo3bo1ZrOZZcuWMXjwYCZMmEBERESu1SN27txJhQoVdKNY
eaGNGzcSExNDw4YNOXbsGD/+
+CMjRowgJiaG4sWLk5qayrRp03j06BEFChRg9uzZBAYGurpsEXExDVeJvKSc70I5bfysrCxGjRrlvJC9Vat
WDBw4kKysLIYNGwbAyJEjKVq0KABt2rRxVemSR5w5c4aIiAimTp1K79698fT0ZOHChcTExGAYBuPGjaNJky
Y0adKErKwssrKyKFiwoKvLFpHXgIKdyH8oZ5Tu3r17FC1aFIvFwv79+yldujTbtm2jS5cuTJ8+HYfDQevWr
RkyZAgAERERPHz4kNjYWOetK0RyLFy4EJvNRpcuXZz77HY7VquVoKAg50oTw4YNwzAMRowYgZeXF71796ZG
jRpYLBZdUiIiTvnyGjuR/
4bJZOL27dsEBQWxZs0avv32W5o2bcqlS5coXbo0W7Zs4enTp8THx7Nr1y4cDgdDhgwhISGBpUuXaqai/
MHt27dJTk7+Qwv18ePHZGZm8vjxY+c2PJ9QUaFCBebPn8/
GjRv1mRKRP9A1diIvIT09nSVLljBz5kzsdjvr16+nc+fOPH36FKvVys2bN+nYsSNWq5Xo6GhatWqF2Wzm7t
27zlasyG/
XA378+DFeXl4cPnyYixcv8vHHHwMQEhJCamoqx44do2TJkgBkZmYyYsQIKlSoQM+ePalUqZLLzkFEXk8avx
d5CTabjfr165OZmYmnpycPHjwAwGq1YrfbnW3Zrl27Mm7cODw8PGjZsqVasOLkcDgwm83cunULi8VCsWLFe
PDgAePHj+f+/fuYTCZ69OhBQkICoaGhBAYGsnz5cgoWLMju3bs5dOgQ8+bNo3Dhwq4+FRF5DakVK/
Ifys7OBiAgIICtW7cSFxdHeHg4iYmJAHh6ejrD3ZYtWyhXrhwBAQGAbkQs/2Y2mzl//
jz16tUjOjqaW7duUahQIebMmUOJEiVYsmQJmzdvpnz58mzYsIHg4GD69u1L//792bBhA2vXrlWoE5G/
pFasyP8jp2327Nkz581gAa5cucLSpUuZP38+s2bNYtCgQQCsX7+e2rVrU7lyZQU6+QOHw8GkSZOYPHkyzZo
1o3r16kRHR1OmTBlOnz5NZGQkT58+ZdiwYXTr1g2AtLQ0vL298fHxoXTp0i4+AxF5nSnYibxATqjbs2cPa9
aswW634+vry2effQbAtWvXSExMZO7cuURERJCdnc38+fNJS0ujYsWKLq5eXlfHjx8nODiY999/
Hw8PD6pWrcqnn36KzWZzhju73c7gwYPp0aOHq8sVkTxErViRFzCZTCQlJdG5c2cKFCiAr68vGzdupGPHjmR
nZ+Pr68vw4cOZPHkymzdvZv/+/
aSkpCjUidNvvzsbhkF2djZBQUGMGDGCwMBA6taty4EDB4iPjyc9PZ2qVasyZ84cvL29mTlzJklJSS6sXkTy
Go3YibzAyZMn6d69O6NGjWLo0KFcvnyZhg0bkp6eTqNGjdi7d6/zHmIPHjwgOztbs1/
FKWeiREZGBllZWZQqVco5Crx8+XKWLl1KcnIyy5cvZ+3atTRu3JioqChsNhunTp1i4sSJzJo1Cz8/
P1efiojkERqxE3mB69ev89FHHzF06FCuXbtG8+bNadeuHcnJyRw/
fpyQkBDsdjsAhQoVUqiTXMxmM+fOnaNu3bo0a9aM7du3c/
bsWQAGDBiAt7c3kydPZuTIkXTs2JGDBw8yc+ZMbty4QY0aNVi3bp1CnYi8FN3uROQF2rRpQ9myZTEMg4iIC
Bo0aEBiYiKPHj2iatWqbN26lQ4dOrBr1y5XlyqvIYfDwcqVK0lPT6dQoUJMnDiRSpUqUaJECeLj4wkNDeXA
gQPY7Xbi4uIwmUysXr0aT09PJk+erBUlROSl6a+G5Gs5rbI/
285pmQUGBpKRkcHVq1cZP348JpMJi8VCUFAQkyZ
Nolq1aq4qX15zZrOZ8PBwHj58yJUrV3jzzTfp2bMn0dHRhIaG8vDhQ/
bs2cMHH3xAv379iI2NxWq10q1bNzw8PFxdvojkQWrFSr5mNpu5evUq8+fPd247HA4g973nvLy8uHv3LuvWr
ePy5cvExcWxb98+ateujb+/v0tql7yhTJkyjBs3jnLlynH69GnOnz/
PkSNHCAsLIygoCHjexs8xZswY3n77bdcUKyJ5niZPSL6WnZ1NbGwsSUlJDBw4kLFjxwK5R+5yft62bRthYW
FYLBbndq1atVxZvuQhP//8M9OmTePgwYOEhoYyatQoAC5evEiFChVcW5yIuA0FO8n3rl+/
TkJCAocOHaJz585ERUUBf2zTZmdnc/
v2bW7cuEGZMmWw2WyuKlnyqPT0dKZOncrhw4fp2LEjMTExwPPPllqvIvIqKNiJ8O9/
uEeOHPnTcGe325kxYwZly5alf//
+Lq5W8rKcz9qxY8do3rw5kyZNcnVJIuJGdI2dCGCz2YiNjaVOnTokJSU5V5Ywm808fvyYyMhI/vWvf1G/
fn0XVyp5Xc5nLSAggNTUVO7cuePqkkTEjWjETuQ3fj9yN3bsWMaMGcOSJUuckyVEXoWbN28CaO1XEXmlFOx
Eficn3B09epT79+9z4cIFDhw4oFAnIiKvPbViRX4np1VWpUoVnj59ysGDBxXqREQkT9CInchfuHXrFg6HQ6
0yERHJMxTsRERERNyEWrEiIiIibkLBTkRERMRNKNiJiIiIuAkFOxERERE3oWAnIiIi4iYU7ERERETchIKdi
IiIiJtQsBMReYVWrlxJ0aJFXV2GiORTCnYikm/
07dsXk8mEyWSiQIEC+Pv7M27cOJ48efLK3qNHjx6cPXv2lb2eiMjLsLi6ABGRf1Lr1q1ZsWIFz54944cffq
BPnz6YTCbi4+Nfyet7eXnh5eX1Sl5LRORlacRORPIVq9WKzWbD19eXTp060aJFC3bv3g2Aw+Fg+vTp+Pv74
+XlRWBgIJs2bcp1/Pbt2wkICKBgwYIEBwezatUqTCYTd+/
eBf68Fbto0SIqVqyIp6cnVapUYc2aNbkeN5lMLFu2jM6dO+Pt7U1AQADbt2//234HIuK+FOxEJN9KS0sjNT
UVT09PAKZPn87q1atZvHgxp06dIjIyktDQUL7//
nsALl26RLdu3ejUqRMnTpwgLCyM2NjYF75HUlISI0eOZPTo0aSlpREWFka/
fv3Yu3dvrudNmjSJkJAQTp48Sdu2benVqxcZGRl/
z4mLiPsyRETyiT59+hgeHh6Gj4+PYbVaDcAwm83Gpk2bjCdPnhje3t5GampqrmMGDBhg9OzZ0zAMw4iKijJ
q1qyZ6/
HY2FgDMH799VfDMAxjxYoVRpEiRZyPN2zY0Bg0aFCuY7p37260bdvWuQ0YcXFxzu3MzEwDMHbu3PkqTltE8
hFdYyci+UpwcDCLFi3i4cOHzJkzB4vFQteuXTl16hSPHj2iZcuWuZ5vt9upVasWAGfOnKFOnTq5Hq9bt+4L
3++nn35i8ODBufY1atSIefPm5dr37rvvOn/28fGhcOHC/
PLLLy99fiKSvynYiUi+4uPjQ6VKlQD44osvCAwMZPny5dSsWROAr7/+mnLlyuU6xmq1/
u11FShQINe2yWTC4XD87e8rIu5FwU5E8i2z2UxMTAyffPIJZ8+exWq1cvXqVT788MM/
fX6VKlX45ptvcu07cuTIC9+jWrVqpKSk0KdPH+e+lJQUqlev/
r+fgIjI7yjYiUi+1r17d8aOHUtiYiJjxowhMjISh8NB48aNuXfvHikpKRQuXJg+ffoQFhbG7NmziYqKYsCA
ARw/fpyVK1cCz0fY/szYsWMJCQmhVq1atGjRgh07drBlyxaSk5P/
wbMUkfxCwU5E8jWLxUJ4eDgzZszg0qVLlCxZkunTp3Px4kWKFi1K7dq1iYmJAcDf359NmzYxevRo5s2bR4M
GDYiNjWXo0KF/2a7t1KkT8+bNY+bMmYwcORJ/f39WrFhB06ZN/
8GzFJH8wmQYhuHqIkRE8qqpU6eyePFirl275upSREQ0Yici8jIWLlxInTp1KF68OCkpKSQkJBAeHu7qskRE
AAU7EZGXcu7cOaZMmUJGRgZ+fn6MHj2a6OhoV5clIgKoFSsiIiLiNrSkmIiIiIibULATERERcRMKdiIiIiJ
uQsFORERExE0o2ImIiIi4CQU7ERERETehYCciIiLiJhTsRERERNyEgp2IiIiIm/g/
YSku0dlL3KsAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"gender_counts = df['Region'].value_counts()\n",
"bar_width = 0.9\n",
"x=range(len(gender_counts.index))\n",
"\n",
"\n",
"plt.bar(gender_counts.index,gender_counts.values)\n",
"plt.xlabel('Region')\n",
"plt.ylabel('Count')\n",
"plt.title('Distribution of Region')\n",
"\n",
"\n",
"plt.xticks(x,gender_counts.index,rotation=45)\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "68aa1d48-26a7-4dfd-af34-0cd29b32c24e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(265, 6)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.shape"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "359fa12e-468e-4d55-a9d5-ee392f204a28",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 265 entries, 0 to 264\n",
"Data columns (total 6 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Country Code 265 non-null object \n",
" 1 Region 217 non-null object \n",
" 2 IncomeGroup 216 non-null object \n",
" 3 SpecialNotes 127 non-null object \n",
" 4 TableName 265 non-null object \n",
" 5 Unnamed: 5 0 non-null float64\n",
"dtypes: float64(1), object(5)\n",
"memory usage: 12.6+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3b4b33d4-0a52-49cc-8735-1d348e7fb759",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 5</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Unnamed: 5\n",
"count 0.0\n",
"mean NaN\n",
"std NaN\n",
"min NaN\n",
"25% NaN\n",
"50% NaN\n",
"75% NaN\n",
"max NaN"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a4cbfe12-2089-4f1e-9a87-a461265c6c04",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Country Code 0\n",
"Region 48\n",
"IncomeGroup 49\n",
"SpecialNotes 138\n",
"TableName 0\n",
"Unnamed: 5 265\n",
"dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e40686e9-600f-4bdc-aab4-37a8ceddfe5d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 265 entries, 0 to 264\n",
"Data columns (total 6 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Country Code 265 non-null object \n",
" 1 Region 217 non-null object \n",
" 2 IncomeGroup 216 non-null object \n",
" 3 SpecialNotes 127 non-null object \n",
" 4 TableName 265 non-null object \n",
" 5 Unnamed: 5 0 non-null float64\n",
"dtypes: float64(1), object(5)\n",
"memory usage: 12.6+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3803af4-c637-403e-be8e-d5617a1adb5a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

You might also like