0% found this document useful (0 votes)
76 views3 pages

GM GM WM G WJ U÷: Welqt Mwyz

The document states that the training data is current up to October 2023. It implies that any information or developments after this date may not be included. This sets a clear temporal boundary for the relevance of the content.

Uploaded by

prantod482
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
76 views3 pages

GM GM WM G WJ U÷: Welqt Mwyz

The document states that the training data is current up to October 2023. It implies that any information or developments after this date may not be included. This sets a clear temporal boundary for the relevance of the content.

Uploaded by

prantod482
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Aa¨vq wfwËK

Gm Gm wm g‡Wj †U÷
‡mUt ‡mvnvM welqt MwYZ Aa¨vqt 2.1
mgqt 40 wgwbU ‡kÖwY: c~Y©gvbt 40
wkÿv_©xi bvgt ............................................................... †ivj bs ...................
[we:`ª: mwVK Dˇii e„ËwU ej c‡q›U Kjg Øviv m¤ú~Y© fivU Ki| cÖwZwU cÖ‡kœi gvb-1]
1| A = {x : x c~Y© msL¨v Ges x2 17} †mUwU‡K ZvwjKv 10| A = {x  N : 2  x  7} n‡j, A †K ZvwjKv
c×wZ‡Z cÖKvk Ki‡j nq- c×wZ‡Z cÖKvk Ki‡j wb‡Pi †KvbwU mwVK?
(K) {1, 2, 3, 4} (L) {0, 1, 2, 3, 4} (K) {2, 3, 7} (L) {2, 3, 4, 5, 6, 7}
(M) {−4, −3, −2, −1, 0, 2, 3,4} (M) {3, 4, 5, 6} (N) { }
11| ¯^vfvweK msL¨vi †mU‡K Kx Øviv cÖKvk Kiv nq?
(N) {................ −4, −3, −2, −1, 0}
(K) R (L) N
2| ‡KvbwU Amxg †mU?
(M) Q (N) Z
(K) {x : x  Z Ges x  4} 12| {x  N : 7 x7} ‡mUwUi ZvwjKv iƒc †KvbwU?
(L) {y : y  Z Ges y2 100 y3} (K) {6} (L) {7}
p
(M) { : p I q mn‡gŠwjK Ges q 1} (M)  (N) {}
q 13| A = {x, y, z} n‡j, P (A) Gi Dcv`vb msL¨v KqwU?
(N) {y: y  Z Ges y  −10 y I  10} (K) 16 wU (L) 15 wU
3| A = {} n‡j, P (A) -Gi Dcv`vb msL¨v KqwU n‡e? (M) 3 wU (N) 8 wU
(K) 0 (L) 1wU 14| (3x + 2y, 6) = (4, 2x −2y) Dc‡ii µg‡Rvo w`‡q
MwVZ mgxKiY ‡Kvb¸‡jv?
(M) 2wU (N) 3wU
(K) 3x + 2y = 4, 2x−2y = 6
4| {x  N : 9 x10} ‡mUwUi ZvwjKv iƒc †KvbwU?
(L) 3x + 2x = 4, 2y−2x = 6
(K) {0} (L) {10}
(M) 3x + 2y = 6, 2x−2y = 4
(M) {9, 10} (N)  (N) 3x + 2y = 4, 3x−2y = 6
5| {a, b, c, d} Gi KqwU cÖK…Z Dc‡mU n‡e hvi cÖ‡Z‡Ki 15| {x  N : 6 x7} ‡mUwUi ZvwjKv iƒc †KvbwU?
wZbwU K‡i Dcv`vb i‡q‡Q? (K) {6} (L) {7}
(K) 2 wU (L) 3 wU (M)  (N) {}
(M) 4 wU (N) 6 wU 16| x 0 Ges x = 4x n‡j, x Gi gvb KZ n‡e?
2

6| {x N : 6  x  7} = KZ? (K) 4 (L) 3


(K) {6} (L)  (M) 2 (N) 5
(M) {7} (N) {6, 7} 17| {x  N : 5  x  6} Gi ZvwjKv iƒc †KvbwU?
7| A = {x : x  5} Ges B = {x : x  5} n‡j, AB (K)  (L) {5}
=? (M) {6} (N) {5, 6}
18| ¯^vfvweK msL¨v †m‡Ui ÿz`ªZg m`m¨ †KvbwU?
(K)  (L) { }
(K) 0 (L) 1
(M) {x : x  5} (N) {5}
(M) 9 (N) ‡bB
8| A = {1, 2, 3, 4} n‡j, A †m‡Ui cÖK…Z Dc‡mU KqwU?
19| 20− x− x Gi x Gi mnM KZ?
2 2
(K) 4 (L) 14 (K) −1 (L) 0
(M) 15 (N) 16 (M) 1 (N) 2
9| C = {3, 4, 5}, D = {4, 6, 8} n‡j, (CD) wb‡Pi 20| A = {3, 4, 5}, B ={4, 5, 6} n‡j, P(AB)=?
†KvbwU? (K) {{2, 4, 5}, {4}, {5}, }
(K) {5} (L) {4, 8} (L) {{4}, {5}, } (M) {{4, 5}, {4}}
(M) { } (N) {3, 4, 5, 6, 8} (N) {{4, 5}, {4} {5}}
21| A = {2, 3, 4}, B ={1, 2, 9}, C = {2, 4, 9} n‡j, wb‡Pi †KvbwU mwVK?
(AB)C ‡mU †KvbwU? (K) i I ii (L) i I iii
(K) {2} (L) {2, 4} (M) ii I iii (N) i, ii I iii
(M) {2, 3, 4, 9} (N) {1, 2, 3, 4,9} 33| A = {a, b, c}, B= {a, b, c, p, q} n‡j P(A/B)-
22| {x  N : x2  15} Ges x2  225 †mUwUi ZvwjKv i. GKwU duvKv †mU ii.Gi Dcv`vb msL¨v k~b¨
c×wZi †mU †KvbwU? iii.Gi Dcv`vb msL¨v 1
(K) {1, 2, 3} (L) {2, 3, 4} wb‡Pi †KvbwU mwVK?
(M) {4, 5, 6} (N) {5, 6, 7} (K) i I ii (L) i I iii
23| 2x + y = 8 Ges x−y = 1 n‡j (x, y) Gi gvb wb‡Pi (M) ii I iii (N) iii
†KvbwU? 34| B ‡m‡Ui cÖK…Z Dc‡mU A n‡j-
(K) (3, 2) (L) (2, 3) i. A  B = A ii. A  B = B
(M) (4, 3) (N) (3, 4) iii. A −B = 
24| p, q, r ‡gŠwjK msL¨v n‡j (j. mv. ¸., M. mv. ¸.) KZ? wb‡Pi †KvbwU mwVK?
(K) (p, q, r) (L) (pqr, 1) (K) i I ii (L) i I iii
(M) (1, pqr) (N) (pr, q) (M) ii I iii (N) i, ii I iii
25| A = {1, 2, 3, 4, 5, 6} Gi KqwU Dc‡mU Av‡Q?
35| AB = {1, 2, 3} n‡j-
(K) 32 wU (L) 36 wU
i. A = {1}, B = {2, 3}
(M) 64 wU (N) 48 wU
ii. A = {1, 2, 3}, B = {1, 3}
26| A = {4, 5, 6} Ges B= {5, 6, 7} n‡j, AB Gi
iii. A = {2, 3}, {1, 2, 3}
Dcv`vb msL¨v KqwU?
wb‡Pi †KvbwU mwVK?
(K) 3 wU (L) 6 wU
(K) i I ii (L) i I iii
(M) 12 wU (N) 9 wU
27| hw` A= {a, b, c}, B = {d, e, f} nq Z‡e P (A−B) (M) ii I iii (N) i, ii I iii
Gi m`m¨ msL¨v KZ? wb‡Pi Z‡_¨i Av‡jv‡K 36-38bs cÖ‡kœi DËi `vI:
(K) 9 (L) 8 A = {1, 2, 3} Ges B={2, 3, 4}
(M) 7 (N) 6 36| P(B) Gi m`m¨ msL¨v KZ?
28| A = {xN : 1  x  10}, ‡m‡Ui AšÍM©Z †gŠwjK (K) 3 (L) 6
msL¨v¸‡jvi †mU †KvbwU? (M) 7 (N) 8
(K) {1, 2, 5, 10} (L) {2, 4, 6, 8} 37| A ‡m‡Ui cÖK…Z Dc‡mU msL¨v KZ?
(M) {3, 5, 7, 9} (N) {2, 3, 5, 7} (K) 3 (L) 6
29| U = {3, 4, 5, 6}, C = {3, 4, 5, 6} n‡j wb‡Pi (M) 7 (N) 8
†KvbwU mwVK? 38| A−B wb‡Pi †KvbwU?
(K) C = {} (L) C= {3, 4} (K) {1} (L) {4}
(M) C  U (N) C = {4, 5} (M) {2, 3} (N) {1, 2, 3, 4}
30| C = {3, 5} Ges D = {2, 4} n‡j C D †m‡Ui wb‡Pi wP‡Îi Av‡jv‡K 39 I 40bs cÖ‡kœi DËi `vI:
KqwU Dcv`vb n‡e?
(K) 2 (L) 4
(M) 8 (N) 16
31| wbw`©ó †mU‡K Av‡jvPbvaxb mKj †m‡Ui Kx ejv nq?
(K) Dc‡mU (L) c~iK †mU 39| A−B ‡mU wb‡Pi †KvbwU?
(M) mvwe©K †mU (N) kw³ †mU (K) {1, 2, 3} (L) {2, 4, 7}
32| A = {p, q, r}, B = {r, s, t} Ges C = {a} n‡j, (M) {4, 7, 8} (N) {5, 6, 2}
i. (A−B)  C Gi Dcv`vb msL¨v 2wU 40| AB ‡mU wb‡Pi †KvbwU?
ii. (B−A)A = {p, q, r, s, t} (K) {1, 2, 3} (L) 
iii. P(A−B) = {{r},} (M) {4, 7, 8} (N) {5, 6}
Aa¨vq wfwËK
Gm Gm wm g‡Wj †U÷
‡kÖwY: welqt MwYZ Aa¨vqt 2.1
DËi cÎ
1-M 2-L 3-L 4-N 5-M 6-L 7-N 8-M 9-N 10-L
11-L 12-M 13-N 14-K 15-M 16-M 17-L 18-L 19-K 20-K
21-N 22-M 23-K 24-L 25-M 26-N 27-L 28-N 29-K 30-L
31-M 32-L 33-N 34-N 35-N 36-N 37-N 38-K 39-K 40-L

You might also like