CHAPTER 1.
PROBABILITY
I. Solution Steps
+ Step 1: Define the events from the problem.
+ Step 2: Define the probabilities and conditional probabilities for the events defined in Step 1.
+ Step 3: Find the system of events which is both mutually exclusive and collectively exhaustive (compute the complement if needed).
+ Step 4: Apply the formula.
II. Probability rules
                           ( )
1. Complement rule: P A = 1 - P ( A) .
2. Addition rule: P ( A È B ) = P ( A) + P ( B ) - P ( A Ç B ) .
In particular, if A, B are mutually exclusive, then P ( A È B ) = P ( A) + P ( B ) .
                                            P ( A Ç B)
3. Conditional probability: P ( A | B ) =              .
                                              P ( B)
4. Multiplication rule: P ( A Ç B ) = P ( A) P ( B | A) = P ( B ) P ( A | B )
Events A, B are said to be statistically independent if and only if P ( A Ç B ) = P ( A) P ( B ) .
5. Total probability:
Given the system of events A1 , A2 ,..., An that are both mutually exclusive and collectively exhaustive, then
                                                   n
                                         P( B) = å P( Ai ) P( B Ai )
                                                  i =1
                                               = P ( A1 ) P ( B | A1 ) + P ( A2 ) P ( B | A2 ) + ... + P ( An ) P ( B | An )
                                                                                   ( ) (
                                          or P ( B ) = P ( A) P ( B | A) + P A P B | A             )
                                               CHAPTER 2. DISCRETE RANDOM VARIABLES
I. Distribution table
Given the distribution table:
                                                             X      x1   x2   ….   xn
                                                             P      p1   p2   ….   pn
Then
   ì0 £ pi £ 1
   ï
1. í n         .
   ïå pi = 1
   î i =1
2. P(a < X < b) =         å
                        a < xi <b
                                    pi .
                    n
3. µ = E ( X ) = å pi xi .
                   i =1
                     æ n        ö
4. s 2 = Var ( X ) = ç å xi2 pi ÷ - µ 2 .
                     è i =1     ø
In particular, if Y = aX + b then µY = aµ X + b; s Y2 = a 2s X2 .
II. Binomial Distribution
Suppose that
   • a random experiment can result in two possible outcomes, “success” and “failure,”
   • and that p is the probability of a success in a single trial.
Let X be the the number of resulting successes in n independent trials.
The probability distribution of X is called binomial distribution.
                                                           P( X = k ) = Cnk p k (1 - p)n-k
E ( X ) = np
Var ( X ) = np(1 - p)
III. Poisson Distribution
Let X be the number of occurrences in a given continuous interval (such as time, surface area, or length). Then the probability distribution
of X is called the Poisson distribution.
                                                                              e- l l k
                                                               P( X = k ) =            ,
                                                                                 k!
                                                                E ( X ) =V (X ) = l
                                                        CHAPTER 3. CONTINUOUS RANDOM VARIABLES
I. Density Function
Given the density function f ( x ) of a continuous random variable X . Then
   i)    f ( x ) ³ 0, "x Î R
         +¥
   ii)   ò f ( x ) dx = 1
         -¥
                                                                                 b
   iii) P ( a £ X < b ) = P ( a < X £ b ) = P ( a £ X £ b ) = P ( a < X < b ) = ò f ( x ) dx
                                                                                 a
                   x
   iv) F ( x ) =   ò f ( t ) dt
                   -¥
                   +¥
   v) E ( X ) =     ò x f ( x)dx
                   -¥
                   +¥
   vi) V ( X ) =    ò ( x - E ( X ))
                                       2
                                           f ( x)dx =   𝑥 ! . 𝑓 (𝑥 ) 𝑑𝑥 − 𝜇!
                   -¥
II. Normal Distribution
If X follows the normal distribution with the mean µ and variance s 2 , then
                                                                         æb-µ ö  æa-µ ö
                                                      P ( a < X < b) = F ç    ÷-Fç    ÷
                                                                         è s ø   è s ø
The values of F ( x ) can be found in Appendix Table 1 with the notices
i) F ( - x ) = 1 - F ( x ) .
ii) x > 4 : F ( x ) = 1
iii) x < -4 : F ( x ) = 0
                           (   )          (       )
Moreover, if X  N µ X , s X2 and Y  N µY , s Y2 , then aX + bY also follows the normal distribution
                                                 aX + bY  N ( a µ X + bµY ; a 2s X2 + b 2s Y2 )
                                                  CHAPTER 4. SAMPLING DISTRIBUTION
Let the random variables X1 , X 2 ,..., X n denote a random sample from a population.
I. Sample mean
                       X 1 + X 2 + ... + X n
- Sample mean: X =                           .
                                n
- If the parent population distribution is normal (or n ³ 25 ) then
                                                            æ s2 ö          X -µ
                                                      X  N ç µ;   ÷ or Z =        N ( 0; 1) .
                                                            è    n ø        s / n
II. Sample proportion
                          X
- Sample proportion: p =
                          n
        where n is the sample size and X is the number of objects having the characteristic of interest.
- When n is large ( nP (1 - P ) > 5 ), we have
                                                 p  N æ P; P (1 - P ) ö or Z =
                                                                                   p - P
                                                        ç               ÷                        N ( 0; 1)
                                                        è        n      ø          P (1 - P )
                                                                                       n
III. Sample variance
                           (X          ) +(X           )             (           )
                                       2                   2                         2
                                1- X           2 - X           + ... + X n - X
- Sample variance: S 2   =                                                               .
                                                 n -1
- If the parent population distribution is normal then
                                                                                 ( n - 1) S 2     c n2-1
                                                                                         s   2
                                            CHAPTER 5. CONFIDENCE INTERVAL ESTIMATION
I. Formulas
                       Confidence Interval Estimation with the sample n and the confidence level (1 - a )
               Population mean µ        Population mean µ        Population proportion P            Population variance s 2
                                                                                 Given
Estimation Given                  Given                                                                                         Given
    for              (      )                       (
           + X  N µ , s (or n is + X  N µ , s 2 (or n
                           2
                                                              )               is + n is large                                             (
                                                                                                                                + X  N µ ,s 2     )
           large)                 large)
           + s is known
               2
                                  + s 2 is unknown
Confidence         x ± za /2
                             s
                              n
                                           x ± tn-1, a /2
                                                          s
                                                           n                           p ± z         (
                                                                                                    p 1 - p
                                                                                                                    )                   æ ( n - 1) s 2 ( n - 1) s 2
                                                                                                                                        çç 2          ; 2
                                                                                                                                                                      ö
                                                                                                                                                                      ÷÷
 interval                                                                                    a /2
                                                                                                          n                              è n-1, a /2 c n-1,1-a /2
                                                                                                                                            c                          ø
Margin of         ME = za /2
                                s
                                    n
                                                ME = tn-1,a /2
                                                                    s
                                                                     n               ME = za /2
                                                                                                          (
                                                                                                     p 1 - p
                                                                                                                        )                         æ
                                                                                                                                ME = ( n - 1) s 2 ç 2
                                                                                                                                                         1
                                                                                                                                                                - 2
                                                                                                                                                                     1 ö
                                                                                                                                                  ç c n-1,1-a /2 c n-1, a /2 ÷÷
 error                                                                                                                                            è                           ø
                                                                                                               n
  Width
                  w = 2 za /2
                                s
                                n
                                                 w = 2 tn-1, a /2
                                                                    s
                                                                     n                w = 2 za /2
                                                                                                          (
                                                                                                     p 1 - p
                                                                                                                        )                          æ
                                                                                                                                w = 2 ( n - 1) s 2 ç 2
                                                                                                                                                          1
                                                                                                                                                                  - 2
                                                                                                                                                                      1 ö
                                                                                                                                                   ç c n-1,1-a /2 c n-1, a /2 ÷÷
                                                                                                               n                                   è                           ø
                                    s                                    s
                                                                                                                (           )                         ( n - 1) s 2
  Upper                                                                                                       p 1 - p
                UCL = x + za /2               UCL = x + tn-1,a /2                                                                          UCL = 2
confidence                              n                                 n        UCL = p + za /2                                                   c n-1,1-a /2
   limit                                                                                                            n
  Lower
confidence
                LCL = x - za /2
                                    s
                                        n
                                              LCL = x - tn-1, a /2
                                                                         s
                                                                          n        LCL = p - za /2
                                                                                                                (
                                                                                                              p 1 - p
                                                                                                                            )                 LCL =
                                                                                                                                                    ( n - 1) s 2
                                                                                                                                                        c n2-1,a /2
   limit                                                                                                            n
II. Critical values
1. Critical values for the standard normal distribution:
                                                         za is a value such that P(Z > za ) = a
Some critical values: z0,05 = 1,645; z0,025 = 1,96; z0,01 = 2,33; z0,005 = 2,58
Given the critical value za , we can determine the significant level a (or confidence level 1 - a ) by the following formula
                                                                      a = 1 - F ( za )
where F ( za ) can be found in Appendix Table 1.
2. Critical values for the Student’s t distribution
                                                      tn-1,a is a value such that P(Tn-1 > tn-1,a ) = a
The value tn-1, a can be found in Appendix Table 8.
3. Critical values for the Chi-squared distribution
                                                    cn2-1,a is a value such that P( cn2-1 > cn2-1,a ) = a
The value c n2-1,a can be found in Appendix Table 7a and 7b.
                                                           CHAPTER 6. HYPOTHESIS TESTS
I. Solution steps
      + Step 1: State the null and alternative hypotheses.
      + Step 2: Summarize all information.
      + Step 3: Decision rule: reject H 0 if …… (Formula)
      + Step 4: Random sample => conclusion
II. Decistion rule
                                                      ì H 0 : µ = µ0                                 ì H 0 : µ = µ0                            ì H 0 : µ = µ0
      For population mean                             í                                              í                                         í
                                                      î H1 : µ ¹ µ0                                  î H1 : µ > µ0                             î H1 : µ < µ0
                                                                                 s
                                           Reject H 0 if x < µ0 - za /2                                                    s                                         s
   X  N ( µ ,s   2
                      ) (or n is large)                                          n         Reject H 0 if x > µ0 + za                 Reject H 0 if x < µ0 - za
                                                                        s                                                  n                                         n
   s 2 is known                                  or x > µ0 + za /2
                                                                        n
                                                                                     s
                                          Reject H 0 if x < µ0 - tn-1, a /2
   X  N ( µ ,s       ) (or n is large)
                  2                                                                                                            s                                         s
                                                                                      n   Reject H 0 if x > µ0 + tn-1, a            Reject H 0 if x < µ0 - tn-1, a
                                                                            s                                                   n                                         n
   s 2 is unknown                              or x > µ0 + tn-1, a /2
                                                                             n
For population                           ì H 0 : P = P0                                         ì H 0 : P = P0                              ì H 0 : P = P0
                                         í                                                      í                                           í
  proportion                             î H1 : P ¹ P0                                          î H1 : P > P0                               î H1 : P < P0
                                                                      P0 (1 - P0 )              Reject H 0 if                             Reject H 0 if
                     Reject H 0 if p < P0 - za /2
 nP0 (1 - P0 ) ³ 5
                                                                           n                                   P0 (1 - P0 )                             P0 (1 - P0 )
                                                                                       p > P0 + za                                   p < P0 - za
                                                          P0 (1 - P0 )                                              n                                        n
                          or p > P0 + za /2
                                                               n
For population                    ïH0 : s = s 0
                                  ì       2     2
                                                                                         ìï H 0 : s 2 = s 02                             ìï H 0 : s 2 = s 02
                                  í                                                       í                                               í
   variance                       î H1 : s ¹ s 0
                                  ï
                                          2    2
                                                                                          ïî H1 : s > s 0
                                                                                                   2      2
                                                                                                                                          ïî H1 : s < s 0
                                                                                                                                                   2      2
                                         ( n - 1) s 2      > c n2-1, a /2
                     Reject H 0 if
                                                s   2                                           ( n - 1) s 2     > c n2-1, a
                                                                                                                                               ( n - 1) s 2 < c 2
 X  N ( µ ,s 2 )                                   0                           Reject H 0 if                                  Reject H 0 if                   n -1,1- a
                                                                                                    s 02                                           s02
                          or
                               ( n - 1) s   2
                                                <c      2
                                                        n -1,1-a /2
                                  s 02