Do An Mong
Do An Mong
1
TABLE CONTENT
V. Check of deformation 11
2
PART 1: DESIGN A STRIP FOUNDATION
A: STATISTIC OF SOIL PROPERTIES 1A
Based on results survey at two bore hole (HK1, HK2), each bore hole has depth 30m,
including 4 soil layers:
• Water table has depth 1.2m
• Soil layer A
Concrete floor, debris, sand, soil, we do not take this layer to survey.
o Dry unit weight : γ = 22 kN/m3
• Soil layer B
clay, ash-gray, plastic state, we do not take this layer to survey.
• Soil layer 1
clay mixed with gravel gravel laterite, gray white - sepia – yellow brown, hard
plasticity:
Bore hole Depth, m Thickness, m SPT, Hammer
HK1 1.9 0.9 12-14
HK2 1.7 1.3 13-15
o Moisture content W : W = 23.035%
o Bulk unit weight : γI = 19.6 ± 0.584 kN/m3
γII = 19.6 ± 0.268 kN/m3
o Internal friction angle : φII = 12.075 ± 1.0885
o Cohesion coefficient : cII = 25.525 ± 5.2066 kN/m2
• Soil layer 2
sand (y) clay, grey yellow – sepia, hard plasticity.
Bore hole Depth, m Thickness, m SPT, Hammer
HK1 2.8 8.9 5-11
HK2 3.0 5.4 6-13
3
HK1 11.7 13.6 6-11
HK2 8.4 18.5 5-13
Soil γII
W (%) e γtc (kPa) γI (kPa) Ctc (kPa) CI (kPa) CII (kPa) tanφtc tanφI tanφII
layer (kPa)
4
B: DESIGN A STRIP FOUNDATION
5
I. THE PRELIMINARY STRUCTURAL MODEL AND
CALCULATING DATA :
o Concrete C16/20
fck = 200 MPa
E = 2.1×107
6
o Steel CB200
γaverage = 22 kN/m3
Df = 2 m
o The extra span for both side of strip foundation
1 1 1 1
c1 = ( ÷ ) 𝑎1 = ( ÷ ) 4000 = (2000 ÷ 1000)
2 4 2 4
Choose c1 = 2 m
1 1 1 1
c2 = ( ÷ ) 𝑎3 = ( ÷ ) 5000 = (2500 ÷ 1250)
2 4 2 4
Choose c2 = 2 m
o Preliminary height hs
1 1 1 1
hs = ( ÷ )amax = ( ÷ )×6000 = (1000÷600)
6 10 6 10
amax: maximum span
Choose hs = 0.75 m
o The preliminary width of the foundation
b = 1.5 m
o Total length of the foundation
L = c1 + a1 + a 2+ a3 + c2 = 2 + 5 + 5 + 4 + 2 = 18 m
7
IV. CHECK GROUND SATBILITY
Ntt = 𝑁𝐵𝑡𝑡 + 𝑁𝐶𝑡𝑡 + 𝑁𝐷𝑡𝑡 + 𝑁𝐸𝑡𝑡 = 430 + 506 + 506 + 455 = 1897 kN
Htt = 𝐻𝐵𝑡𝑡 + 𝐻𝐶𝑡𝑡 + 𝐻𝐷𝑡𝑡 − 𝐻𝐸𝑡𝑡 = 44 + 55 − 55 − 39 = 5 kN
Mtt = ∑ 𝑀𝑖𝑡𝑡 + ∑ 𝑁𝑖𝑡𝑡 × 𝑥𝑖 + ∑ 𝐻𝑖𝑡𝑡 × ℎ𝑠 =(37 + 31 − 31 − 31) +
(−430 × 7 − 506 × 2 + 506 × 3 + 455 × 7) + 5 × 0.6 = 690 kN/m
𝑁𝑡𝑡
Ntc = = 1897 kN/m2
𝑛
o The primary capacity of shallow foundation (TCVN) :
𝑚1 𝑚2
RII = (𝐴𝑏𝛾𝐼𝐼 + 𝐵𝐷𝑓 𝛾𝐼𝐼′ + 𝐷𝑐𝐼𝐼 )
𝑘𝑡𝑐
Where:
▪ m1, m2 are coefficients of working condition of soil and
construction
(Section 4.6.10 TCVN 9362:2012)
Choose m1 = m2 = 1
▪ A, B, D are valuable coefficients bearing force depending on
internal friction angle φII
(Table 14 TCVN 9362:2012)
Because Df = 2 m, bottom of foundation places at soil layer 1
𝐴 = 0.2369
φII = 0.2107 ➔ : {𝐵 = 1.9477
𝐷 = 4.4305
▪ ktc – coefficient of reliability is chosen as follows:
8
ktc = 1.2 when calculations are taken directly from
experiments
Choose ktc = 1.2
1×1
RII = × (0.2369 × 1.6 × 19.7971 + 1.9477 × 2 × 22 + 4.4305 × 24.2838)
1
= 196.0477 kN/m2
10.849
▪ 𝑏𝑚𝑖𝑛 = = 0.6027 𝑚
18
9
Figure 3.1: Coefficients of affective angle friction
i , iq , ic = 1
10
In which :
𝑀𝑥𝑡𝑡 0
𝑒𝑏 = 𝑡𝑡 = =0𝑚
𝑁 1897
𝑀𝑦𝑡𝑡 690
𝑒𝑙 = 𝑡𝑡 = = 0.4183 𝑚
𝑁 1897
𝑏̅ = 𝑏 − 2𝑒𝑏 = 1.2 m
𝑙 ̅ = 𝑙 − 2𝑒𝑙 = 18 - 2×0.4183 = 17.1634 m
𝑙̅
𝑛= = 14.3028 m
𝑏̅
0.25
𝑛𝛾 = 1 + = 1.0175
𝑛
1.5
𝑛𝑞 = 1 + = 1.1049
𝑛
0.3
𝑛𝑐 = 1 + = 1.021
𝑛
11
V. Check of deformation
o Condition of the elastic ground
𝑡𝑐
𝑝𝑚𝑎𝑥 ≤ 1.2𝑅𝐼𝐼
𝑡𝑐
{ 𝑝𝑚𝑖𝑛 ≥ 0
𝑡𝑐
𝑝𝑡𝑏 ≤ 𝑅𝐼𝐼
𝑡𝑐 +𝑝𝑡𝑐
𝑝𝑚𝑎𝑥 131.0169+109.7206
𝑡𝑐 𝑚𝑖𝑛
𝑝𝑡𝑏 = = = 120.3688 kN/m2
2 2
12
o Calculate void ratio of each layer :
Soil layer 1 :
P (kN/m2) 0 100 200 400 800
HK 1-1 0.650 0.603 0.571 0.534 0.5103
HK 2-1 0.750 0.695 0.665 0.642 0.613
Average 0.700 0.649 0.618 0.588 0.588
Soil layer 2 :
13
m = L/B = 18/1.2 = 15
n = z/b = 2z/B
From m and n we can find I4 due to table 10.9 :
Table 5.1:
Pressure at
element soil
layer i
before and
14
after construction
𝜸
Soil hi
Sublayer z (kN/m3) 𝐦𝟏 𝐧𝟏 I4 𝝈′𝒛 ∆𝝈𝒛 ∆𝝈𝒛 ,ave P1 P2 e1 e2 Si (m)
layer (m)
0 9.6 0 1 19.2 84.3688 0.6496 0.0139
1 1 0.6 76.6912 22.08 98.7712 0.6887
0.6 9.6 1 0.818 24.96 69.0136
0.6 9.6 1 0.818 24.96 69.0136 0.6101 0.01
2 0.6 57.666 27.8525 75.5186 0.6375
1.2 9.6209 2 0.549 30.745 46.3184
1.2 9.9286 2 0.549 31.1143 46.3184 0.6156 0.0069
3 0.6 39.8221 34.0929 73.9149 0.6346
1.8 9.9286 3 0.395 37.0714 33.3257
18 9.9286 3 0.395 37.0714 33.3257 0.6177 0.0051
4 0.6 29.447 40.05 69.4947 0.6317
2.4 9.9286 4 0.303 43.0286 25.5637
15
2.4 9.9286 4 0.303 43.0286 25.5637 0.6179 0.004
2 5 0.6 23.0749 46.0071 69.082 0.6289
3.0 9.9286 5 0.244 48.9857 20.586
3.0 9.9286 5 0.244 48.9857 20.586 0.6171 0.0033
6 0.6 18.8142 51.9463 70.7785 0.6261
3.6 9.9286 6 0.202 54.9429 17.0425
3.6 9.9286 6 0.202 54.9426 17.0425 0.6158 0.0028
7 0.6 15.7348 57.9214 73.6562 0.6232
4.2 9.9286 7 0.171 60.9 14.4271
4.2 9.9286 7 0.171 60.9 14.4271 0.6140 0.0024
8 0.6 13.4146 63.8786 77.2932 0.6204
4.8 9.9286 8 0.147 66.8571 12.4022
Settlement is satisfi
15
VI. THE PRELIMINARY SIZE OF FOOTING :
𝑡𝑡
𝑁𝑚𝑎𝑥 506
𝐹𝑐 = = = 0.0253 𝑚2 = 25300 𝑚𝑚2
𝑓𝑐𝑘 20000
Choose bc × lc = 200mm × 200mm (Fc = 40000 mm2)
𝑏𝑠 ≥ 𝑏𝑐 + 100𝑚𝑚 ≥ 400 𝑚𝑚
Choose 𝑏𝑠 = 400 𝑚𝑚
1 1 1 1
ℎ=( ÷ ) . 𝑎𝑚𝑎𝑥 = ( ÷ ) . 5000 = (500 ÷ 833) = 600 𝑚m
10 6 10 6
𝑏 = 1.2 𝑚
ℎ𝑎 ≥ 200 𝑚𝑚
Choose ha = 200 mm
16
Figure 6.1: Strip footing size x – direction
o ETABS modeling :
𝑆𝐷 − 𝑆𝐶 26.297 − 23.888
= = 0.0004818 ≤ 0.002 𝑚𝑚
5000 5000
𝑆𝐷 − 𝑆𝐸 26.297 − 25.835
= = 0.0001155 ≤ 0.002 𝑚𝑚
4000 4000
17
Therefore, the differential settlements between every two columns
are satisfied condition
VIII. CHECK OF PUNCHING SHEAR :
o Punching shear :
1 𝑡𝑡
𝑝𝑥𝑡 = 𝑝 (𝑏 − 𝑏𝑠 − 2. ℎ0 )
2 𝑚𝑎𝑥
1
➔𝑝𝑥𝑡 = × 100.0694(1.2 − 0.4 − 2 × 0.43) = 7.0049 kN/m2
2
18
Figure 9.2: Shear diagram from ETABS
Take cut at each column and mid span between column respectively from A to F
we have
Table 9.1: Summary of moments from ETABS
Moments max
Cut
(kNm)
1-1 217.198
2-2 -102.831
3-3 219.7487
4-4 -104.3343
5-5 248.2028
6-6 245.8552
o Calculate steel:
o Concrete CB16/20 : 𝑅𝑘 = 1000 kN/m2
𝑓𝑐𝑘 = 200𝑀𝑃𝑎
o Steel CB300 : 𝑓𝑦𝑘 = 200𝑀𝑃𝑎
𝑀
Area of reinforcement is calculated by : 𝐹𝑎 =
0.9𝑅𝑎 ℎ0
19
❖ Design for negative moment section (1200x600) :
Cut 2-2 :
M = -102.831 kNm
𝑀 102.831
k= = |− | = 0.0153 < 0.196 => OK
𝑏.𝑑2 .𝑓𝑐𝑘 1200×6002 ×20000
0.0153
𝑧 = 0.5𝑑(1 + √1 − 3𝑘/𝑛) = 0.5 × 600 (1 + √1 − 3 × ) = 0.5239 𝑚
1
𝑀 102.831
𝐴𝑠 = = |− | = 752.455 (𝑚𝑚2 )
𝑧. 𝑓𝑦𝑑 0.5239 × 261 × 106
= 1140× 261 × 106 × (530 – 2(×1140× 261 × 106 )/(600× 1 × 200 × 106 ))
= 152.0898 kNm
Check M res =152.0898 > |M| = 102.831 => Adequate
Similar with other cuts, result in the table:
20
Cut M k z As,req Select As,prov M res Check
(<0.196) rebar
1-1 217.198 0.0967 0.04883 1705.0852 4d22+2d12 1747 0.7279 228.5606 Adequate
3-3 219.7487 0.0978 0.4878 1727.0052 4d22+2d12 1747 0.7279 228.5626 Adequate
5-5 248.2028 0.1104 0.4817 1975.2072 5d22+1d12 2014 0.8392 261.2051 Adequate
6-6 245.8552 0.0365 0.5151 1829.6916 5d22 1901 0.7921 247.4633 Adequate
❖ Stirrup :
Based in EN – 1992 – 1 – 1, section 6.2.3
The max shear force from ETABS Ved = 276.337 kN
Concrete C16/20 :
fck = 20 => fcd = fck/1.5 = 13.3333 MPa
Steel CB300 :
fyk = 300 => fyd = 300/1.12 = 261 MPa
h = 600 mm ; bw= 400 mm ; d = 530 mm
Asw, max = 2500 mm
Choose 𝜙 = 10 mm
200 200
𝑘1 = 1 + √ =1+√ = 1.6143
𝑑 530
Crd,c = 0.12
𝐴𝑠,𝑚𝑎𝑥
𝑝1 = .100% = 2500/(400*530) = 0.0118
𝑏.𝐿
𝑎𝑐𝑤 = 1
𝑧 = 0.9𝑑 = 0.9 x 530 = 477 mm
21
v1 = 0.6
𝑉𝑒𝑑 = 𝑉𝑅𝑑, 𝑚𝑎𝑥
𝑎𝑐𝑤.𝑏𝑤.𝑧.𝑣1.𝑓𝑐𝑑
=> 276.337 = 1 => cot 𝛳 = 7.12 > 2.5
𝑐𝑜𝑡𝛳+
𝑐𝑜𝑡𝛳
𝜃𝑏𝑎𝑟 2 102
Asw = 2𝜋. = 2𝜋. = 157.0796 mm2
4 4
𝑓𝑦𝑘
𝑓𝑦𝑤𝑑 = = 300/1.24 = 240 MPa
1.25
(𝑧.𝑐𝑜𝑡𝜃.𝐴𝑠𝑤.𝑓𝑦𝑤𝑑)
𝑠𝑚𝑎𝑥 = = (447 × 2.5 × 157.0796 × 10)/276.337
𝑉𝑒𝑑
= 162.6861 mm
𝑓𝑦𝑘 300
𝑠𝑚𝑎𝑥 = 𝐴𝑠𝑤. = 157.0796 ×
𝑏. 0.08. √𝑓𝑐𝑘 400 × 0.08 × √20
= 329.2882 mm
𝑠𝑚𝑎𝑥 = 0.75𝑑 = 0.75 x 430 = 397.5 mm
o Design spacing of stirrup
Provide s ≤ min (s1,s2,s3) = 162.6831 → Choose S = 150 mm
Spacing at mid-span ≤ Smax = S3 = 450 mm
Provide Smid-span = 200 mm
22
23
PART 2: DESIGN PILE FOUNDATION
24
PART 1: DETERMINE LOADS FOR PILE FOUNDATION
Check the data sheet, we have properties of load:
25
PART 4: DESIGN PILE FOUNDATION
4.1 Preliminary section:
+ For Cap, choose data:
- D = dept of cap = 3 m
- h = height of cap = 2 m
- a1 = excess pile head height = 0.1 m
- a2 = dept of pile in cap = 0.6 m
For Pile:
- d = dept of pile = 55 m
- L = effective length = d – dcap + a1 + a2 = 58.7 m
- dnom = 1.2 m
- d = dnom – 0.05 = 1.15 m
- Ac = d = m
- As,min = mm
− Rcd = (fyd*As,min/10^6 +Ac*(1-0.0025)*fcd)*1000 = 14021 kN
26
+ For column of cap:
- Choose h = 0.8 m
- Choose b = 0.8 m
27
10.3*3.9 + 10.2*10.2 + 9.7*3.6 + 10.6*14.1 + 10.3*(55-51.4) = 550.85 (kN)
- N*q = 13.914 kN
- qbk = q*N*q ≤ 50*N*q*tan(φ)
= 550.85 *13.914 = 7665 kN > 50*13.914*tan(21.067) = 268 kN
=> qbk = 268 kN
- Rbk = 268**1.42/4/1.25 = 242 kN
- Rbd = 242/1.5 = 162 kN
Similar with Approach 1-Combination 2, Approach 2, and Approach 3, get the
result in the table below:
𝐜𝐮
𝐩𝐚
≤ 0.1 1.00
0.2 0.92
0.3 0.82
28
0.4 0.74
0.6 0.62
0.8 0.54
1.0 0.48
1.2 0.42
1.4 0.40
1.6 0.38
1.8 0.36
2.0 0.35
2.4 0.34
2.8 0.34
29
- For bored piles, group piles of close spacing:
ks,I = 1 – sinφi = 0.64
- 'v,i = 152.27 kN
- fs,i = 24.4
- Rsk,i = 377.1 kN
Similar with other layer and other Approach, result in table below:
30
31
32
Shaft resistance of pile Rsk = ∑Rsk,i :
+ Approach 1 - Combination 1: Rsk = 54774 kN
+ Approach 1 - Combination 2: Rsk = 5474 kN
+ Approach 2: Rsk = 5474 kN
+ Approach 3: Rsk = 5225 kN
4.2.3 Design compressive resistance:
- Rsd = design shaft resistance of pile = Rsk/s
+ Approach 1 - Combination 1: Rsd = 3650 kN
+ Approach 1 - Combination 2: Rsd = 2807 kN
+ Approach 2: Rsd = 3318 kN
+ Approach 3: Rsd = 3483 kN
- Rcd = design resistance = Rsd + Rbd
+ Approach 1 - Combination 1: Rcd = 3811 kN
+ Approach 1 - Combination 2: Rsd = 2969 kN
+ Approach 2: Rsd = 3479 kN
+ Approach 3: Rsd = 3610 kN
33
Table of result:
34
4.6 Determine load on piles:
- Calculate moment of piles: ∑M = G*(MGk+HGk*Hcap)+Q*(MQk + HQk*Hcap)
- Determine x = coordinate of pile in x axis (take neutral axis at central of
foundation)
∑𝑁𝑡𝑡 ∑𝑀𝑡𝑡𝑦∗𝑥𝑖
- Calculate Pmax/min = ±
𝑛 ∑𝑥𝑖 2
- Check if Pmin > 0; Pmax < Rcd so design is acceptable.
Example for Approach 1 - Combination 1:
- M = 2111 kNm
- x = ±1.8
- Pmax = 2994 kN
- Pmin = 2323 kN
35
+ Approach 1 - Combination 2: Total Rsd = 13557 kN, check acceptable
+ Approach 2: Total Rsd = 15888 kN, check acceptable
+ Approach 3: Total Rsd = 16486 kN, check acceptable
36
Number of SPT corrected:
Ncorrect = 1.25 Ntb = 1.25*19.25 = 24.062
Consolidation settlement:
The settlement of pile groups in granular soils can be calculated in a manner
similar to that employed for pile groups in clay. In this case a virtual raft is
assumed at the base of the pile. The settlement is calculated using the results of
Dutch cone or Standard penetration tests.
37
𝐻
is the depth of the middle of layer 𝑖𝑡ℎ from the bottom of
2
equivalent foundation
Step 4: Calculate the consolidation settlement of each layer caused by
the increased stress:
∆𝑒(𝑖)
∆𝑆𝑐(𝑖) = [ ]𝐻
1+𝑒0(𝑖)
Where: ∆𝑆𝑐(𝑖) is the consolidation settlement of layer 𝑖𝑡ℎ
∆𝑒(𝑖) is the change of void ratio caused by the increase in stress
in layer 𝑖𝑡ℎ
𝑒0(𝑖) is the initial void ratio of layer 𝑖𝑡ℎ (before the
construction)
𝐻 is the thickness of layer 𝑖𝑡ℎ
According to Braja M. Das (2014), the change of void ratio in normal
consolidation soil will be determined by the relationship:
𝜎0′ +∆𝜎𝑖′
∆𝑒(𝑖) = 𝐶𝑐(𝑖) 𝑙𝑜𝑔 [ ]
𝜎0′
Where: 𝜎0′ is the average initial effective vertical stress of layer 𝑖𝑡ℎ
𝐶𝑐(𝑖) is the compressive index of layer 𝑖𝑡ℎ
Step 5: The total consolidation settlement of the group piles is:
∆𝑆𝑐(𝑔) = ∑ ∆𝑆𝑐(𝑖)
At section 1-1:
P = Pmax = 1680kN
M = Pmax*(x-bcolumn/2) = 1680*(1.8-0.8/2) = 4703 kNm
38
Calculate k
- k = 𝑀/(𝑏 ∗ 𝑑 2 ∗ 𝑓𝑐𝑘)
=> k = 4703*106/(1000*1752*20) = 0.146
Calculate z
1
-z= 𝑑(1 + √1 − 3𝑘)
2
𝑘
26
=> z = (𝐵 ∗ 1000 − 50 − ) ∗ (0.5 + √0.25 − 1.134 ) = 965 mm
2
39
Similar with section 2-2, we have:
40
Shear force along critical section:
𝑉𝑒𝑑 = ∑(𝑝𝑖 𝑜𝑓 𝑝𝑖𝑙𝑒𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)
Shear enhancement may be considered such that the shear force, 𝑉𝑒𝑑 , may be
𝑎
decreased by 𝑣
2𝑑
Where: 𝑉𝑅𝑑,𝑐 = the design shear resistance of the section without s hear
reinforcement
200
𝑘 = (1 + √ ) ≤ 2 with 𝑑 expressed in mm
𝑑
𝐴𝑠
𝜌= ≤ 0.02
𝑏𝑑
200
𝑘 = (1 + √ ) = 1.2303
𝑑.ℎ
1
𝑉𝑅𝑑,𝑐 = [0.12 × 1.2303(100 × 0.01 × 25)3 ] 5600 × 1885 × 10−3
41
= 21140 𝑘𝑁
𝑉𝑅𝑑,𝑐,𝑚𝑖𝑛 > 𝑉𝑒𝑑 (𝑂𝐾)
42
4.13 Modeling Pile in Etabs :
43
44
45