5 Palestine
5 Palestine
MSC 2010 Classifications: Primary 11B37, 11B39; Secondary 11B83, 15A15, 05A10.
Keywords and phrases: Jacobsthal sequences, Jacobsthal-Like sequence, binomial form and matrix sequence.
Abstract In this note, we consider a complex sequence hUn in∈N which have a similar struc-
ture with Jacobsthal sequence and we nominate this sequence as a complex combined Jacobsthal-
Akin sequence or simply combined Jacobsthal-Akin sequence. After that we study a binomial
form hXn in∈N of hUn in∈N and we call hXn in∈N as binomial sequence. Finally we delineate a
matrix sequence hZn in∈N of the binomial sequence hXn in∈N .
1 Introduction
Many more authors worked on the generalizations of Fibonacci sequences [1] by various angles
or patterns. Especially some of them employed matrix methods as well as introduced complex
plane concept for the study of generalizations of Fibonacci numbers.
Horadam [2] in 1963 introduced the concept of complex Fibonacci numbers. Jordan [3] in
1965 considered a Gaussian Fibonacci sequence hGFn i and established some results between
Gaussian Fibonacci sequence and classical Fibonacci sequence. Gaussian Fibonacci numbers
are recursively defined by
Later on Berzsenyi [4], Harman [5] and Pethe [6] used different approaches of extensions of
Fibonacci numbers on the complex plane.
Now we give some literature where the authors studied the generalizations of Jacobsthal num-
bers and Jacobsthal-Lucas numbers (see [7]). Asci and Gurel [7] delineated and studied Gaussian
Jacobsthal and Gaussian Jacobsthal-Lucas numbers. These numbers are given, respectively, as
i
GJn+1 = GJn + 2GJn−1 , n ≥ 1 and GJ0 = , GJ1 = 1 (1.2)
2
i
Gjn+1 = Gjn + 2Gjn−1 , n ≥ 1 and Gj0 = 2 − , Gj1 = 1 + 2i. (1.3)
2
Again Asci ans Gurel [8] examined Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas poly-
nomials.
In [10] defined a sequence hbn in∈Z0 (Z0 is the set of non-negative numbers) as the binomial
transform of the sequence han in∈Z0 if
n
X
bn = ak (1.4)
k=0
and Wani et al. [11] obtained the binomial form of Fibonacci-Like sequence.. A trend has been
going on from several past years that many authors added parameters s and t in the classical
Fibonacci, Jacobsthal sequences etc in the recurrence relation system of these sequences and
then designate these sequences as (s, t)-type sequences. Uygun [9] presented (s, t)-Jacobsthal
sequence ĥn (s, t)i and (s, t)-Jacobsthal-Lucas sequence hĉn (s, t)i such that
̂n (s, t) = ŝn−1 (s, t) + 2t̂n−2 (s, t) , n ≥ 2 and ̂0 (s, t) = 0, ̂1 (s, t) = 1 (1.5)
MATRIX SEQUENCE OF THE BINOMIAL FORM 293
ĉn (s, t) = sĉn−1 (s, t) + 2tĉn−2 (s, t) , n ≥ 2 and ĉ0 (s, t) = 2, ĉ1 (s, t) = s (1.6)
where s > 0, t 6= 0 and s2 + 8t > 0.
Since 2008 several authors explored the recurrence relations of Fibonacci sequences, general-
ized Fibonacci sequences and other second order sequences into the sequences known as matrix
sequences that is, the sequences in which the terms of the sequences are in the form of matrices
and the elements of matrices are the terms of general sequences. In 2008 Civciv and and Turk-
men [12] presented (s, t)-Fibonacci sequence hFn (s, t)i and (s, t)-Fibonacci matrix sequence
hFn (s, t)i and obtained various properties for these sequences. These sequences hFn (s, t)i and
hFn (s, t)i are delineated by
Fn+1 (s, t) = sFn (s, t) + tFn−1 (s, t) n ≥ 1 and F0 (s, t) = 0, F1 (s, t) = 1 (1.7)
Theorem 2.3. For n ∈ Z0 , the nth term of the combined Jacobsthal-Akin sequence is delineated
as
θn+1 − ϑn+1
Un = s − t (θn + ϑn ) (2.7)
θ−ϑ
Proof. Its proof can be easily seen by using induction method.
Now let
n+1
bn = θ − ϑn+1
U (2.8)
θ−ϑ
is called Jacobsthal-Like sequence.
and
U n = θ n + ϑn (2.9)
n
!
X n
= U0 + U1 + Ul + iUl + 2Ul−1 By Eqn. (2.5)
l=1 l
n
!
X n h i
= U0 + U1 + (1 + i) Ul + 2Ul−1
l=1 l
n
! n
!
X n X n
= (1 + i) Ul + 2 Ul−1 + U0 + U1
l=1 l l=1 l
n
! n
!
X n X n
= (1 + i) Ul + (1 + i) U0 + 2 Ul−1 − (1 + i) U0 + U0
l=1 l l=1 l
+ U1
n
! n
!
X n X n
= (1 + i) Ul + 2 Ul−1 − iU0 + U1
l=0 l l=1 l
n
!
X n
= (1 + i) Xn + 2 Ul−1 − iU0 + U1 By Eqn. (3.1) (3.4)
l=1 l
By replacing n by n − 1, we get
!
X1
n−
n−1
Xn = (1 + i) Xn−1 + 2 Ul−1 − iU0 + U1
l=1 l
! !
X1
n−
n−1 X1
n−
n−1
= iXn−1 + Ul + 2 Ul−1 − iU0 + U1
l=0 l l=1 l
n
! " ! ! !
X n−1 n−1 n−1 n−1
= iXn−1 + Ul−1 + 2 U0 + U1 +
l=1 l−1 1 2 3
! ! #
n−1 n−1
U2 + · · · + Un−2 + Un−1 − iU0 + U1
n−1 n
!
n−1
After using the fact = 0, we have
n
n
! n
!
X n−1 X n−1
Xn = iXn−1 + Ul−1 + 2 Ul−1 − iU0 + U1
l=1 l−1 l=1 l
n
" ! !#
X n−1 n−1
Xn = iXn−1 + +2 Ul−1 − iU0 + U1
l=1 l−1 l
n
" ! ! ! !#
X n−1 n−1 n−1 n−1
= iXn−1 + +2 +2 −2 Ul−1
l=1 l−1 l l−1 l−1
− iU0 + U1
n
" ! !#
X n−1 n
= iXn−1 + (1 − 2) +2 Ul−1 − iU0 + U1
l=1 l−1 l
n
! n
!
X n−1 X n
= iXn−1 − Ul−1 + 2 Ul−1 − iU0 + U1
l=1 l−1 l=1 l
296 A. A. Wani, G. C. Morales and N. A. Malik
! !
X1
n−
n−1 n
X n
= iXn−1 − Ul + 2 Ul−1 − iU0 + U1
l=0 l l=1 l
n
!
X n
= iXn−1 − Xn−1 + 2 Ul−1 − iU0 + U1 By Eqn. (3.1)
l=1 l
n
!
X n
= (i − 1) Xn−1 + 2 Ul−1 − iU0 + U1
l=1 l
Thus
n
!
X n
Xn − (i − 1) Xn−1 = 2 Ul−1 − iU0 + U1
l=1 l
X − uI = 0
MATRIX SEQUENCE OF THE BINOMIAL FORM 297
2+i−u 1−i
=0
1 u
u2 − (2 + i) u − (1 − i) = 0
X n = V1 V2n V1−1
" #" n #" #
−1
γ δ γ 0 1 −γ
= (γ − δ )
1 1 0 δn −1 δ
" n+1
− δ n+1 −δγ n+1 + γδ n+1
#
−1
γ
= (γ − δ )
γ n − δn −δγ n + γδ n
" # " #
Xn+1 X1
Since = Xn , we have
Xn X0
Thus
X1 γ n − X1 δ n − X0 δγ n + X0 γδ n
Xn =
γ−δ
1 h i
X1 − δX0 γ n + γX0 − X1 δ n
=
γ−δ
Let
1
Xn = (V3 + V4 )
γ−δ
where
V3 = X1 − δX0 γ n
h i
= s (1 + i) − t (2 + i) − δ (s − 2t)
= is + s − it − 2t − δs + 2δt γ n
= isγ n + sγ n − 2sγ n − isγ n + sγ n+1 − itγ n − 2tγ n + 4tγ n + i2tγ n − 2tγ n+1
= −sγ n + sγ n+1 + itγ n + 2tγ n − 2tγ n+1
= sγ n+1 − sγ n + tγ n 2 + i − 2γ
= sγ n+1 − sγ n + tγ n γ + δ − 2γ
By Eqn. (3.7)
= sγ n+1 − sγ n − tγ n (γ − δ )
Similarly
V4 = −sδ n+1 + sδ n − tδ n (γ − δ )
Therefore
1 h n+1 i
Xn = sγ − sγ n − tγ n (γ − δ ) − sδ n+1 + sδ n − tδ n (γ − δ )
γ−δ
1 h n+1 i
= sγ − sδ n+1 − sγ n + sδ n − tγ n (γ − δ ) − tδ n (γ − δ )
γ−δ
!
γ n+1 − δ n+1 γ n − δn
=s − − t γ n + δn
γ−δ γ−δ
√
Definition 4.1. For i = −1 , the binomial matrix sequence hZn in∈N is defined by the follow-
ing equation:
Some few initial few terms of the the binomial matrix sequence hZn in∈N are given by
" # " # " #
4 + 3i 3 − i 8 + 9i 7−i 14 + 25i 17 + i
Z0 = , Z1 = , Z2 =
2+i 1−i 4 + 3i 3 − i 8 + 9i 7−i
" #
20 + 65i 39 + 11i
Z3 =
14 + 25i 17 + i
and so on.
As we know that the elements of the binomial matrix sequence hZn i are in the form of of matrices
and the entries of these matrices are the elements of binomial sequence hXn i. Now in the next
theorem we give the nth term of the binomial matrix sequence hZn i in terms of the binomial
sequence hXn i.
Theorem 4.2. For n ∈ Z0 , the nth term of the matrix sequence hZn i is given by
X0 Xn+4 − X1 Xn+3 1 − i X0 Xn+3 − X1 Xn+2
Zn = d−1
(4.2)
X0 Xn+3 − X1 Xn+2 1 − i X0 Xn+2 − X1 Xn+1
" #
2+i 1−i
Proof. Let Z = be a square matrix correspond to the binomial matrix sequence
1 0
" # " #
Zn+1 Z1
hZn i and assuredly = Zn . Then by similar manner from the proof of the Theorem
Zn Z0
(3.4), we write
Z1 γ n − Z1 δ n − Z0 δγ n + Z0 γδ n
Zn =
γ−δ
1 h i
Z1 − δZ0 γ n + γZ0 − Z1 δ n
=
γ−δ
" ! ! !
1 8 + 9i 7 − i n 4 + 3i 3 − i 4 + 3i 3 − i
= γ − δγ n + γδ n
γ−δ 4 + 3i 3 − i 2+i 1−i 2+i 1−i
! #
8 + 9i 7 − i n
− δ (4.3)
4 + 3i 3 − i
" ! ! !
AB γ − δ 8 + 9i 7 − i 4 + 3i 3 − i 4 + 3i 3 − i
= γn − δγ n + γδ n
d 4 + 3i 3 − i 2+i 1−i 2+i 1−i
! #
8 + 9i 7 − i n
− δ By Eqn. (3.10)
4 + 3i 3 − i
" #
AB γ − δ a1 a2
=
d a3 a4
300 A. A. Wani, G. C. Morales and N. A. Malik
Here
a1 = 8 + 9i γ n − 4 + 3i δγ n + 4 + 3i γδ n − 8 + 9i δ n
= 8γ n + 9γ n i − 4γ n 2 + i − γ − 3γ n i 2 + i − γ + 4δ n 2 + i − γ
+ 3δ n i 2 + i − γ − 8δ n − 9δ n i
Since
2 2
4 + 3i = 2 + i + 1 − i = γ + δ + γδ and
3 − i = 2 + i 1 − i = − γ + δ γδ
Hence, we get
h 2 i h 2 i
a1 = γ n γ + δ γ − γδ γ − γ + δ γδ − δ n γ + δ δ − γδ δ − γ + δ γδ
= γ n+3 − δ n+3
Therefore
AB γ − δ γ n+3 − AB γ − δ δ n+3
AB γ − δ
a1 =
d d
n+3
− B γX1 − δX0 δ n+3
A γX0 − X1 γ
= By Eqn. (3.10)
d
n+4 n+4
− X1 Aγ n+3 + Bδ n+3
X0 Aγ + Bδ
=
d
X0 Xn+4 − X1 Xn+3
=
d
Now
a2 = 7 − i γ n − 3 − i δγ n + 3 − i γδ n − 7 − i δ n
= 7γ n − iγ n − 3γ n 2 + i − γ + γ n i 2 + i − γ + 3δ n 2 + i − δ − δ n i 2 + i − δ
− 7δ n + δ n i
= γ n −2i + γ 3 − i + δ n 2i − δ 3 − i
Since
−2i = 1 − i 1 − i = γδ γδ and
3 − i = 2 + i 1 − i = − γ + δ γδ
This implies that
h i h i
a2 = 1 − i γ n −γδ + γ γ + δ + 1 − i δ n γδ − δ γ + δ
= 1 − i γ n+2 − δ n+2
Therefore
AB γ − δ γ n+2 − AB γ − δ δ n+2
AB γ − δ
a2 = 1 − i
d d
n+2
− B γX1 − δX0 δ n+2
A γX0 − X1 γ
= 1−i
d
MATRIX SEQUENCE OF THE BINOMIAL FORM 301
By Eqn. (3.10)
X0 Aγ n+3 + Bδ n+3
− X1 Aγ n+2 + Bδ n+2
= 1−i
d
X0 Xn+3 − X1 Xn+2
= 1−i
d
Similarly
AB γ − δ X0 Xn+3 − X1 Xn+2
a3 = and
d d
AB γ − δ X0 Xn+2 − X1 Xn+1
a4 = 1 − i
d d
Thus, we get
X0 Xn+4 − X1 Xn+3 1 − i X0 Xn+3 − X1 Xn+2
Zn = d−1
X0 Xn+3 − X1 Xn+2 1 − i X0 Xn+2 − X1 Xn+1
Proof. The proof of this theorem is clearly visible from the equations (4.2) and (4.4).
Theorem 4.5. For n ∈ Z0 , we have
−2 N0 Nn+4 − N1 Xn+3 1 − i N0 Nn+3 − N1 Nn+2
Zn = γ − δ
(4.6)
N0 Nn+3 − N1 Nn+2 1 − i N0 Nn+2 − N1 Nn+1
Proof. By using Equation (4.3) from the proof of Theorem (4.2), we have
" ! ! !
1 8 + 9i 7 − i n 4 + 3i 3 − i 4 + 3 i 3 − i
Zn = γ − δγ n + γδ n
γ−δ 4 + 3i 3 − i 2+i 1−i 2+i 1−i
! #
8 + 9i 7 − i n
− δ
4 + 3i 3 − i
" #
1 a1 a2
=
γ − δ a3 a4
Since
a1 = γ n+3 − δ n+3
We have
γ − δ γ n+3 − δ n+3
a1
= 2
γ−δ γ−δ
302 A. A. Wani, G. C. Morales and N. A. Malik
B1 B2 γ − δ γ n+3 − δ n+3
= 2 By Eqn. (3.12)
γ−δ
B1 B2 γ − δ γ n+3 − B1 B2 γ − δ δ n+3
= 2
γ−δ
B1 γN0 − N1 γ n+3 − B2 N1 − δN0 δ n+3
= 2 By Eqn. (3.12)
γ−δ
N0 B1 γ n+4 + B2 δ n+4 − N1 B1 γ n+3 + B2 δ n+3
= 2
γ−δ
N0 Nn+4 − N1 Nn+3
= 2
γ−δ
Again
γ − δ γ n+2 − δ n+2
a2
= 1−i 2
γ−δ γ−δ
B1 B2 γ − δ γ n+2 − δ n+2
= 1−i 2 By Eqn. (3.12)
γ−δ
B1 B2 γ − δ γ n+2 − B1 B2 γ − δ δ n+2
= 1−i 2
γ−δ
B1 γN0 − N1 γ n+2 − B2 N1 − δN0 δ n+2
= 1−i 2 By Eqn. (3.12)
γ−δ
n+3
N0 B 1 γ + B2 δ n+3 − N1 B1 γ n+2 + B2 δ n+2
= 1−i 2
γ−δ
N0 Nn+3 − N1 Nn+2
= 1−i 2
γ−δ
Equivalently
a3 N0 Nn+3 − N1 Nn+2
= 2 and
γ−δ γ−δ
a4 N0 Nn+2 − N1 Nn+1
= 1−i 2
γ−δ γ−δ
Hence, we achieve
−2 N0 Nn+4 − N1 Xn+3 1 − i N0 Nn+3 − N1 Nn+2
Zn = γ − δ
N0 Nn+3 − N1 Nn+2 1 − i N0 Nn+2 − N1 Nn+1
Proof. By equating corresponding terms of matrices from the Equations (4.2) and (4.5), we have
Conclusion
In this paper we studied the matrix sequence of the binomial form of second order Jacobsthal-
Like sequence. In addition to this we obtained some basic results about the said matrix sequence.
As an extension of this article, future work will examine the matrix sequence of the binomial
form of other second order sequences or higher order sequences.
References
[1] T. Koshy: Fibonacci and Lucas numbers with applications, John Wiley and Sons, 2011.
[2] A. F. Horadam: Complex Fibonacci numbers and Fibonacci quaternions, The American Mathematical
Monthly, 70 (3) (1963), 289-291.
[3] J. H. Jordan: Gaussian Fibonacci and Lucas numbers, Fibonacci Quarterly, 3 (4) (1965), 315-318.
[4] G. Berzsenyi: Gaussian Fibonacci numbers, Fibonacci Quarterly, 15 (3) (1977), 233-236.
[5] C. J. Harman: Complex Fibonacci numbers, Fibonacci Quarterly, 19 (1) (1981), 82-86.
[6] S. Pethe and A. F. Horadam: Generalised Gaussian Fibonacci numbers, Bulletin of the Australian Mathe-
matical Society, 33 (1) (1986), 37-48.
[7] M. Asci and E. Gurel: Gaussian Jacobsthal Lucas numbers, Ars Combinatoria , 111 (2013), 53-63.
[8] M. Asci and E. Gurel: Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials, Notes on Number
Theory and Discrete Mathematics, 19 (1) (2013), 25-36.
[9] S. Uygun: The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences,
9 (70) (2015), 3467-3476.
[10] K.W. Chen: Identities from the binomial transform, Journal of Number Theory, 124(1) (2007), 142-150.
[11] A. A. Wani, S. A. Bhat and G. P. S. Rathore: Fibonacci-Like sequence associated with k-Pell, k-Pell-
Lucas and Modified k-Pell sequences, Journal of Applied Mathematics and Computational Mechanics,
16 (2) (2017), 159-171.
[12] H. Civciv, and R. Turkmen: On the (s, t)-Fibonacci and matrix sequences, Ars Combinatoria , 87 (2008),
161-173.
[13] H. Civciv, and R. Turkmen: Notes on the (s, t)-Lucas and Lucas matrix sequences, Ars Combinatoria ,
89 (2008), 271-285.
304 A. A. Wani, G. C. Morales and N. A. Malik
Author information
A. A. Wani, University of Kashmir, J and K India.
E-mail: arfatmaths@gmail.com
G. C. Morales, Departamento de Matemticas,Universidad Tecnica Federico, Santa Mara, Valparaso, Chile.
E-mail: gamaliel.cerda.m@mail.pucv.cl
N. A. Malik, Cluster University of Jammu, J and K India.
E-mail: drnaseerulhassan@gmail.com