Problem 1
Determine the midspan deflection of the beam shown in Figure 1 if E = 10 GPa and I = 20 × 10 6 mm4.
2m 5 KN
3 KN.m
6m
From Case No. 7, midspan deflection is From Case No. 8, midspan deflection is
Pb 5 wo L
4
δ= ( 3 L2−4 b2 ) when a>b δ=
48 EI 384 EI
Midspan deflection of the given beam
EIδ = EIδ due to 5 kN concentrated load + EIδ due to 3 kN/m uniform loading
4
Pb ( 2 5 wo L
3 L −4 b ) +
2
δ=
48 EI 384 EI
4
5 (2) 5(2)6
EIδ= ( 3(6)2−4 (2)2 ) +
48 384
115 135
EIδ= +
6 4
635
EIδ=
12
635 4
(1000 )
12
δ= 6
10,000(20 X 10 )
δ=264.583 mm answer
Problem 2
Determine the midspan value of EIδ for the beam loaded as shown in Figure 2. Use the method of
superposition.
170 lb 100 lb
3 ft 6 ft 4 ft
From Case No. 7 of Summary of Beam Loadings, deflection at the center is
Pb
δ= ( 3 L2−4 b2 ) when a>b
48 EI
Thus,
EIδmidspan = EIδmidspan due to 170 lb force + EIδmidspan due to 100 lb force
Pb
EI δ midspan =∑ ( 3 L2−4 b2 )
48 EI
170(3) 100(4)
EI δ midspan = ( 3(a)2−4 (6)2 ) + ( 3(a)2−4 ( 4)2 )
48 48
EI δ midspan =6.9282+4.6188
3
EI δ midspan =11.5470lb . ft answer
Problem3
Find the value of EIδ midway between the supports for the beam shown in Fig. 3. (Hint: Combine Case
No. 11 and one half of Case No. 8.)
100 lb/ft 100 lb.ft
3 ft 3 ft 3 ft
The midspan deflection from Case No. 8 and Case No. 11 are respectively,
∑ MB=0 ∑ MA=0
R1 ( 6 )−100 ( 3 )( 4.5 ) +100 ( 3 ) (1.5 )=0 - R2 ( 6 ) +100 ( 3 ) ( 7.5 ) +100 ( 3 ) ( 1.5 )=0
R1=150 lb lb
R2=450
EIδ = ½ of EIδ due to uniform load over
the entire span - EIδ due to end moment
[] (
1 5 ( 100 ) ( 6 ) 450 (6 )
)
4 2
EI δ midspan = −
2 384 16
EI δ midspan =843.75−1012.5
EI δ midspan =−168.75
3
EI δ midspan =168.75 lb. ft upward answer
Problem 4
Determine the value of EIδ under each concentrated load in Figure below.
100 N 300 N
4m 4m 3m
From Case No. 7 of Summary of Beam Loadings, the deflection equations are
Pb
δ= ( 3 L2−4 b2 ) when a>b
48 EI
Pb
δ= ¿
6L
Deflection under the 100 N load EIδ = EIδ due to 100 N load + EIδ due to 300 N load
100 (4 )(7) 2 2 2 300 ( 3 ) ( 4 )
EIδ= ( 11 −4 −7 ) + (112−32−42 )
46(11) 6 (11 )
3
EIδ=7612.1212 N . m answer
Deflection under the 300 N load EIδ = EIδ due to 300 N load + EIδ due to 100 N load
100 (7)
EIδ=
6¿¿
3
EIδ=1745.4545 N .m answer
Problem 5
The beam shown in Figure below has a rectangular cross section 5 inches wide by 11 inches deep.
Compute the value of P that will limit the midspan deflection to 0.3 inch. Use E = 2 × 10 6 psi.
3000 lb/ft
3 ft 15ft 3 ft
The overhang is resolved into simple beam with Moment of inertia of beam section
end moments. The magnitude of end moment is,
3
M =3000 ( 3 ) ( 1.5 ) +2 P bd 3 5(9)
I= =
12 12
M =13500+2 P 1215 4
I= ¿
4
Type of loading
2 2
5 wo L
4 ML ML
δ= δ= δ=
384 EI 16 EI 16 EI
4 2
5 wo L ML
EI δ midspan = −2 [ ]
384 EI 16 EI
4 3 2
5(3000)(15 )(12 ) (3000+2 P)(15 )
0.3= −2[ ]
6 1215 6 1215
384 (2 ×10 )( ) 16 (2 ×10 )( )
4 4
45 3000+2 P
0.3= −
8 12500
P=31781.25 lb answer