Mensuration 3D
Mensuration 3D
quadrilateral ABCD, given that špkbZZ Kkr djksa\ , d fijkfeM dk vk/kj oxZ gS ftldh Hkqtk
AB = 9 cm, BC = 14 cm, CD = 13 (a) 33 (b) 32 (c) 11 (d) 22 8 l seh- gSA ;fn fijkfeM dh16
špkbZ
l seh-
cm, DA = 12 cm and DAB = 90°. 64. The base of a right pyramid is
(c) 3 3 a3 cm3 (d) 6a3 cm3 lseh-2 gS]rks csyu dh vkarfjd rFkk ckÞ;
f=kT;k (lseh- esa) D;k gS\
71. A regular pyramid has a square
(a) 4, 6 (b) 10, 12
base. The height of the pyra-
mid is 22 cm and side of its base (c) 8, 10 (d) 6, 8
is 14 cm. Volume of pyramid is
equal to the volume of a sphere.
What is the radius (in cm) of
the sphere?
,d le fijkfeM dk vk/kj ,d oXkZ gSA
fijkfeM dh mQ¡pkbZ 22 ls-eh- gSA rFkk mlds
vk/kj dh Hkqtk 14 ls-eh- gSA fijkfeM dk
vk;ru ,d xksys ds cjkcj gSA xksys dh
22 32 68 3cm
= 35 Volume of the cylinder = vol-
7 10000
ume of cube Volume of sphere
= Rs. 23.94 (approx) n=
r ²h = (side)³
20. (b) l = 2.5 km volume of cone
22
Area of base = π r² = 1.54 × r²× 14 = 11 × 11× 11
7 4
6 ³
1.54 7 11 11 11 121 3
r² = r² = = n= 1 = 24
22 22 2 4 3 ² 4
11 3
1.54 7 r= cm = 5.5 c
2 27. (c) Height of cylinder
r = = 0.7 km
22 24. (b) = Breadth of tin foil
l² = r² + h² 2pR=22 cm Circumference of the base of
22 cm cylinder= Length of the foil =
h² = l² – r ²
22 cm
12 cm 12 cm
= 2.5² – 0.7² 2r = 22
= 5.76 = 2.4 km 22 7 7
r= = cm
Cylinder is folded along the 22 2 2
diameter
21. (c) Radius = length of rectangle 22 7 7
2
2R = 22 Volume=r²h= × × × 16
7 2 2
19.2 =616cm³
= = 9.6 m 22 22 7 7
2 R= = = cm
2 2 22 2
1369 144
slant height= 5² 12² =13 cm
h² = – 245 = 34.(d)radius of cone
5 5 r = 16 metre (given) 1
Let slant height = l metre Volume(vk;ru ) r²h
12 3
h= Curved surface area = rl
5 1
3
= 427 m 2 (given) 12 ×12 × 9
1 7 3
Volume = r²h
3 22
16 l
2992 144 × 3 432
7 7
1 22 12 2992 38. (d) Ratio of volume of bigger cone
= × × 7 5 × 7 5 × l= 8.5 metre
3 7 5 22 16 and smaller cone = (Ratio of
35. (c) Let height of cone = h altitude) 3
= 6 1 6 5 cm³
Radius of cone = r = (1 : 2 : 3)3 = (1 : 8 : 27)
29. (b) In this case the breadth be- 1
π r² h
Ratio of parts
comes the circumference of Volume of cone =
3 = 1 : 8–1 : 27–8
the base of the cylinder Now height is doubled
2r = 44 = 1:7:19
Volume of new cone
44 7 1 1 39. (a)
r= = 7 cm = π r² (2h) = π r² h
22 2 3 3 r
New volume of cylinder = r²h Required ratio= 1 : 2
22 36. (a)
= × 7 × 7 × 100
7 Total surface area of sphere
= 15400 cm³
= 8 square unit
1
30. (c) r²H = r²h 4r² = 8
3
r² = 2
1
H= h r= 2 units
3
h = 3H = 3 × 6 = 18 cm 4
31. (d) Ratio of height Volume of sphere = r ³
3
= 3
Ratio of volume 105
radius of cone = m 4 8 2
2 = 3 2³ = units
h 1 3
= slant height of cone = 63 m
H 3 4 4
Curved surface area of cone 40. (c) R 3 64 r 3
3 units 30 3 3
= (rl)
2 units 20 4
R ³
The cut is made 20 cm 22 105 3
= × ×63 = 10395 m² = 64
above the base 7 2 4
r³
32. (d) 2rh = 1056 3
105
= Radius of cylinder = m 8 3
1056 7 21 2 = (4)³
r= = r
2 22 16 2 Height = 3 m (given)
= 2 cm
r
27 14 7 6 In Δ BCD
= 2 1 2 1 – 1 3 2 1 – 1 4 2 1 – 1 5 330 3
height = = 33 cm
30
= 2 1 8 7 6 = 21 × 4 = 84 cm² Area of base = 40 × 40
64. (d)
Area ABCD = 84 + 54 = 138 cm² = 1600 cm²
A
Height of prism = Let height of pyramid = h
10 3 1
volu m e 2070 10 3 o M M Volume = × h × area of base
= = 15 cm 3
A rea of base 138
(h)
slant height
1
Perimeter of base B E
10 3
C o E × h × 1600 = 8000
3
= 9 + 14 + 13 + 12 = 48 cm h = 15 cm
Base is equilateral triangle
Area of lateral surface = 67. (d)
In radius of equilateral
perimeter × height = 48 × 15 triangle
2
= 720 cm² 10 12
slant height
side of equilateral
= OE =
61. (a) Volume of Right Prism = 2 3 5
Area of the base × Height 10
= 2 3 = 5 cm
3 1
1 0 2 = 10 cm
Side of square =
2
3 3 2 Slant length, l = h ² O E ²
7200 P 100 3 Slant height = 5² 12² = 13 cm
2 = h ² 25
72×2 = 9P2 Total surface area = 270 3 Lateral surface area
P2 = 16 1 1
(Perimeter of base × slant = × perimeter of base ×
P = 4 2 2
62. (a) Total slant surface area height) + Base area = 270 3
Slant height
1 1 3
= 4
2
4 a 12
2
30 3 h ² 25
4 =
1
× 40 × 13 = 260 cm ²
2
(where a is the side of the 10 3 ² = 270 3
square base) 68. (a) slant height = 16² 4²
15 3 h ² 25 7 5 3
12 3
a = = cm = 272 4 17
8 2 = 270 3
= 13
h ² 25
Total surface Area of pyramid
9
area of base = cm ²
4 h² +25 = 169 1
h² +169 – 25 = 144 = 2 (Perimeter of base) (Slant height)
12
9 h = 1 4 4 = 12 cm
Required ratio = = 16 : 3 (Area of base)
4 65. (a)
63. (a) 1
6 cm 6 cm = 32 4 17 64
2
6 cm = 64 17 64 64 17 1
Volume of prism =area of
base × height 69. (a) Volume of Pyramid
Clearly the base triangle is 3 2
= 6 × height 1
the right triangle 4 = × Area of base × Height
3
Area of triangle ABC 3
× 6 × 6× height = 81 3
1 4 1
= 5 12 = 30 cm² = × 12 × 12 × 21 = 1008 cm²
2 81 3 4 3
Volume of the pyramid Height = = 9 cm
3 66 Side of square of upper
1 base
= base area × height
3 a1 7
= =
a3 21
1 112 XY = YZ = XZ = 8 2
= ×4×4×7= cm³ Slant edge of pyramid
3 3
5a
Side of upper & middle cm
2
Pyramid
a2 14 5a
= = 2
a3 21
a2 = 8
Volume of upper & middle
Pyramid
1 896 5a
= × 8 × 8 × 14 = Slant edge
3 3 2
18 112 4 1
= 672 r³ = ×14×14×22
3 3 3
2640×7
= R+r
44 30
R+r = 14 ......(ii)
By solving eq. (i) & (ii), we get
2R = 14+2
16
R= =8
2
2r = 14 – 2
12
r= =6
2