Study Material Unit-1
Study Material Unit-1
UNIT-1
Ordinary Differential Equations of Higher Order
C121.1 Remember the concept of differentiation to evaluate LDE of nth order with
constant coefficient and LDE with variable coefficient of 2nd order.
TOPICS COVERED
1.1 Definition
ANSWER KEY
1.1 Definition
Order is the highest derivative present in the differential equation and degree is the exponent of
the highest derivative.
d 2 y dy
2
f ( D) y Q (2)
Case A f ( D) y 0
f (m) 0 (3)
Step2. Solve (3) for m , so following cases arise
(i) If values of m are real and distinct e.g. (m m1, m2 ,m3 ........mn ) then solution will
be y c1em1 x c2em 2 x
(ii) If values of m are real and repeated e.g. (m m1 m2 m3 ........mn ) then solution
will be y c1 c 2 x c 3 x 2 ..........cn xn emx
(iii) If values of m are Imaginary and distinct e.g. (m (1 i1, 2 i 2 ............))
then solution will be
y e1 x c1 cos 1 x c2 sin 1 x e 2 x c3 cos 2 x c4 sin 2 x ..........
(iv) If values of m are Imaginary and repeated e.g. (m (1 i1 2 i2 ............))
then solution will be
y e1x (c1 c 2 x c3 x 2 .......) cos 1 x (d1 d 2 x d 3 x 2 ......) sin 1 x
(v) If values of m are surds and distinct e.g. (m (1 1 , 2 2 ............)) then
solution will be
y e1 x c1 cosh 1 x c2 sinh 1 x e 2 x c3 cosh 2 x c4 sinh 2 x ..........
OR
( 2 2 ) x
y c1e(1 1 ) x c2 e
(vi) If values of m are surds and repeated e.g. (m (1 1 , 2 2 ............)) then
solution will be
y e1x (c1 c 2 x c3 x 2 .......) cosh 1 x (d1 d 2 x d 3 x 2 ......) sinh 1 x
OR
y c1 c2 x c3 x 2 ..........cn x n e ( 1 1 ) x
Questions Based on C.F
Solve the following Differential equations
Ques1. ( D 4 10D3 35D 2 50D 24) y 0 SOLVED
Ques2. ( D 2D D) y 0
3 2
SOLVED
Ques3. ( D 4 2D 2 1) y 0 SOLVED
Ques4. ( D3 2D 4) y 0 SOLVED
Case B f ( D) y Q Q0
y C.F P.I
Example
1
Find P.I. of eax
( D a) 2
x
Solution P.I . eax f (a) 0
2( D a)
x 2 ax
Again P.I . e
2
Remarks:
This case can also be applied on following functions
If Q cons tan t so we can write it Q e 0 x
If Q a x so we can write as Q e x log a .
e x e x
If Q cosh x so we can write as Q
2 .
e x e x
If Q sinh x so we can write as Q
2 .
Ques6. ( D 2 D 2) y e x SOLVED
Ques7.
( D3 1) y e x 1 2
Ques9. ( D D 2) y sin x
2
Ques14. ( D 6 D 9) y 1 x x
2 2
SOLVED
Ques15. ( D 2 2) y x 2e x SOLVED
Ques16.
( D 2 2D 1) y e x sin x
Ques17.
( D 2 4) y x sinh x
Ques20.
( D 4 6D3 11D 2 6D) y 20e 2 x sin x
Ques21.
( D 2 2D 2) y e x sec3 x
( D2 3D 2) y ee
x
Ques22. SOLVED
Ques23. ( D 4) y tan 2 x
2
Some special type of homogenous and non homogeneous linear differential equations with
variable coefficients after suitable substitutions can be reduced to linear differential equations
with constant coefficients.
d3y 2
2 d y dy
Ques26. x 3
3x
3
2
x 8 y 13 log x x0 SOLVED
dx dx dx
d2y dy
Ques27. x 2 2
2 x 4 y x 2 2 log x x0
dx dx
d2y
Ques28. 3x 2 33x 2 36 y 3x 2 4 x 1
2 dy
2 SOLVED
dx dx
d2y
Ques29. x 1 2 x 1 dy y 2 sin(log( x 1)), x 1
2
dx dx
2
d2y dy
Ques31. x 2
x y x 3e x
2
dx dx
d
f1 ( D) x f 2 ( D) y F (t ) g1 ( D) x g 2 ( D) y G (t ) D
dt
Given system can be solved as follows:
1. Eliminate y from the given system of equations resulting a differential equation
exclusively in x .
2. Solve the differential equation in x by usual methods to obtain x as a function of t
3. Substitute value of x and its derivatives in one of the simultaneous equations to get an
equation in y .
4. Solve for y by usual methods to obtain its value as a function of t
Question Based on Simultaneous Differential Equations
dx dy
Ques32. 7 x y 0, 2x 5 y 0
dt dt
dx dy
Ques33. y et , x e t SOLVED
dt dt
d 2x d2y
Ques34. 3x 4 y 0, x y 0 SOLVED
dt 2 dt 2
d 2x dx d2y dy
Ques35. 4 4 x y, 4 4 y 25 x 16et
dt 2 dt dt 2
dt
d 2x d2y
Ques36. 2
4x 5 y t 2 , 5x 4 y t 1
dt dt 2
d2y dy
2
P Qy R( x) (1)
dx dx
1. Find complimentary function given as: C.F. c1 y1 c2 y2 where y1 and y2 are two linearly
independent solutions of (1).
y y2
2. Calculate 1' , W is called Wronskian of y1 and y2.
y1 y2'
y 2 R( x ) y R( x)
3. Compute A dx and B 1 dx
W W
4. Find Solution by P.I Ay1 By2
5. Complete solution is given by: C.F. + P.I
Note: Method is commonly used to solve 2nd order differential but it can be extended to solve
differential equations of higher orders.
Question Based on Method of Variation of Parameters
Ques37. Solve the differential equation by using the method of variation of parameter
d2y dy
2
3 2 y sin( e x )
dx dx
Ques38. Solve the differential equation by using the method of variation of parameter
d2y dy
2
2 2 y e x tan x
dx dx
Ques39. Solve the differential equation by using the method of variation of parameter
d2y dy e3 x
6 9y 2 SOLVED
dx 2 dx x
Ques40. Solve the differential equation by using the method of variation of parameter
d2y 2
y
dx 2
1 ex
Ques41. Solve the differential equation by using the method of variation of parameter
d2y
y sec x tan x SOLVED
dx 2
1.7.2 Changing the Independent Variable
Let the linear differential equation of second order be 𝑦"+𝑃𝑦′+𝑄𝑦=𝑅 (1) where P, Q and R are
functions of x.
Procedure to solve equation (1)
Step 1: If the independent variable x is changed to z (z being a function of x) then (1)
d2y dy
becomes 2
P1 Q1 y R1
dz dz
d2y dy
P
Step 2: Here P1 dz
2
dz Q Q , R R
2 1 2 1 2
dz , dz dz
dx dx dx
dz
Step 3: To compute , Q1 is equated to a constant.
dx
dz
Step 4: To find z integrate and substitute in R1 .
dx
Step 5: Solve equation (2) by finding 𝑦=𝐶.𝐹.+𝑃.𝐼.
Step 6: Replace the value of z by a function of x.
Normal Form or Changing the dependent Variable(Content Beyond Syllabus)
d 2q 1
Electrical Circuits 2
2q 0 2
dt LC
Solution of the Systems is
q Acos(t B)
x e pt c1 c2t p
x e pt c1 cos w2 p 2 t c1 sin w2 p 2 t p
2
d q dq 1
Electrical Circuits 2
2p 2q 0 2
dt dt LC
q e pt c1e p c2 e p t p
2 2 2 2
t
q e c1 c2t
pt
p
q e pt c1 cos w 2 p 2 t c1 sin w 2 p 2 t p
c) Forced Oscillations
d 2x k
Mechanical Systems 2
2 x E cos nt 2
dt m
Solution of the Systems is
E
x Acos(t B) 2 cos nt n
n2
d 2q 1
Electrical Circuits 2
2 q E cos nt 2
dt LC
Solution of the Systems is
E
q Acos(t B) 2 cos nt n
n2
d 2q dq 1
Electrical Circuits 2
2p 2q E cos nt 2
dt dt LC
2 pn
E cos nt tan 1 2
2
n
q e pt c1e p 2 2 t
c2e p 2 2 t
2 n2 2 4 p 2n2
B) Applications of Second Order Differential Equations in SHM
B) d 2x
The equation of SHM is 2
2 x
dt
Question Based on Application of Ordinary Differential Equation
Ques50. A mass M suspended from the end of a helical spring is subjected to a periodic
force f F cos t in the direction of its length. The force f is measured
positive vertically downwards and at zero time M is at rest. If the spring stiffness
is k , prove that the displacement M at a time t from the commencement of
motion is given by x
F
cos t cos pt where p 2 k and
M(p w )
2 2
M
damping effects are neglecting.
Ques51. A particle moving in a straight line with SHM has velocities 1 and 2 when its
distances from the centre are x1 and x2 . Show that the period of motion is
x12 x22
2
22 12
ANSWER KEY
Ans1. y c1e x c2 e 2 x c 3 e3 x c 3 e 4 x
Ans2. y c1 c2 c 3 x e x
y (c1 c2 x)e x (c3 c4 x)e x
Ans3.
R
i c1 c 2 t e
t
2L
Ans5.
2 x xex
Ans6. y c1e c2e x
x
3 3 2 1
Ans7. y e c1 cos2
x c2 sin x e x c3 x e 2 x 1
2 2 3 7
x 2 x 4x 5
Ans8. y c1e c2 e cosh( 2 x 1)
2x
4 (log 4) 4 4
2
x 1
Ans12. y c1 cos 3x c2 sin 3x cos 3x sin x
12 16
Ans15.
y c1 cos 2 x c2 sin 2 x
e3 x 50 12 x
11 121 11
x2
Ans17. x
2
y c1e 2 x c2 e 2 x sinh x cosh x
3 9
Ans18. x
2
y c1e 2 x c2 e 2 x sinh x cosh x
3 9
Ans20.
y c1 c2e x c3e 2 x c4 e 3 x 2e 2 x (sin x 2 cos x)
sin x tan x x
Ans21. y c1 cos x c2 sin x e
2
e x x 3 x 2 3x
Ans22.
y c1e c2ex x
x sin x cos x
1
2 23 2 2
Ans23.
y c1e x c2e2 x e2 x ee
x
Ans24.
y c1 c2 x e2 x e2 x 2 x 2 sin 2 x 4 x cos 2 x 3 sin 2 x
Ans25.
y e x c1 cos 3x c2 sin 3x e x cos x 1
2
cos 2 x
8
1
104
2 cos 4 x 3 sin 4 x
Ans26. y
c1
x 2
5
x c2 cos( 3 log x) c3 sin( 3 log x) 8 cos(log x) sin(log x)
1
c1 x2 1 3
Ans27. y c2 x log x
x 6 2 4
Ans28. y
c1
3x 22
c2 3x 2
2 1
108
3x 22 log( 3x 2) 1
Ans29. y c1 coslog x 1 c2 sin log x 1 log x 1coslog x 1
1 x2 1 3
Ans31. y c1x c2 x 3 e x
x 6 2 x
Ans32. x e6t c1 cos t c2 sin t y e6t c1 c2 cos t c1 c2 sin t
Ans35. x c1e3t c2e 3t c3 cos t c4 sin t 8et , y c1e3t 25c2e 3t 3c3 4c4 cos t 4c3 3c4 sin t 8et
8 1 44
Ans36. x c1et c2e t 9c3 cos t 9c4 sin t , y c1et c2e t c3 cos t c4 sin t 5t 2 4t
9 9 9
Ans40.
y c1e x c1e x e x log 1 e x e x log 1 e x 1
Ans41. y c1 cos x c1 sin x x cos x sin x sin x log sec x
x x
Ans42. y c1 cos 2 log tan c2 sin 2 log tan
2 2
Ans43.
y c1 c2 x 2 e x
2 1
2
Ans45.
ex
Ans46. y sec x c1 cos 6 x c2 sin 6 x
7
Ans47. i=0.475A
E0C
t
i cos t RC sin t ae RC
Ans48. 1 C R
2 2 2
b k t B b ek
kt
Ans49.
kt
Case1 : x Ae cos
2 2
2 2 2
sin t
e kt t
x Ae kt
cos t B cos t
Case2: 2