Exercise 4
Exercise 4
a b c 2 A B
L.H.S. = r = rS = L.H.S. = 1 + cos sin2 + cos2 C
2 2 2 2 2 2
C A B C
Sol.2 2R cosA = 2R + r – r1 = 1 + sin cos + 1 – sin2
2 2 2
A sin B sin C cos B cos C
R.H.S. = 2R + 4R sin
2 2 2 2 2 C cos A B sin C
= 2 + sin
2 2 2
A B C
= 2R – 4R sin cos
2 2 C cos A B cos A B
= 2 + sin
2 2 2
A B C
= 2R – 4R sin cos
2 2 C A B
= 2 + sin . 2 sin sin
2 2 2
2 A
= 2R 1 2 sin = 2RcosA = L.H.S. A r
2 = 2 + 2sin =2+ = R.H.S.
2 2R
A B C s2 Sol.5
Sol.3 cot + cot + cot =
2 2 2
A B C
tan tan tan
L.H.S.= 2 + 2 + 2
s(s a) s(s b) s(s c) (s b)(s c) (s a)(s c) (s a)(s b)
L.H.S. = + +
s 3r 3rs
= (s – a + s – b + s – c) = =
(s a)(s b)(s c) s(s a)(s b)(s c)
3 3
s s2 = =
= (3s – 2s) = 2
Sol.6 r1 = r + r2 + r3
A B C r
Sol.4 cos2 + cos2 + cos2 =2+
2 2 2 2R = + +
sa s sb sc
1 cos A 1 cos B 1 cos C
L.H.S. = + + 1 1 1 1
2 2 2 – = +
sa s sb sc
3 1
= + (cosA + cosB + cos C) a a
2 2 =
s(s a) (s b)(s c)
3 1 A s2 – as = s2 – (b + c) s + bc
= + (1 + 4 sin )
2 2 2 bc = s (b + c – a)
2bc = (a + b + c) (b + c – a)
r
=2+ = R.H.S. 2bc = (b + c)2 – a2
2R
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
SOLUTION OF TRIANGLES Page # 21
b c
ra =2 –1= bc
ra 4 c 2c
B D C
a
3c
Sol.10 BD =
4
In BCD sine rule
1 1
= c ra + b ra
2 2
b
A
ra 2 2
= (b + c) ra =
2 bc D
b
2 2 c 2
rb = , rc =
ca ab
1 1 1 B a C
R.H.S. = r + r + r
a b c
(b c) (c a) (a b) 2(a b c) b 3c
c 2b
= = 2 = 4 =
2 2 sinC 3
1 sinC
2s 2
= = c b
r {ABC sine rule =
sin C sin B
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 22 SOLUTION OF TRIANGLES
A
p2 q2 sin
q p
= sin cos
2 2
p q 2 2
p q 90º
B O D
(p2 q2 ) sin
=
p cos q sin
C
BD 1
Sol.12 =
CD 3
Use M–N theorem d1
= 2.(12.5)
sin 2
d1 = 25 sin2
A
& In ACD, by sine rule
d2
= 2.(25)
sin(180 2)
d2 = 50 sin2
d2 = 2d1
90º 90º2 Sine Rule, in AOB
B 9 D 9 9 C
4 4 2 d1 d2
2 2 d1 d2
= =
sin sin(90º) sin cos
(1 + 3) cot 90º = 1.cot – 3 cot 2
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
SOLUTION OF TRIANGLES Page # 23
4
sin2 = B C
5 A
Sol.15 BIC = 180º – = 90º +
2 2
4
d1 = 25 × A
5
d1 = 20 & d2 = 40 A A
1 1 2 2
Area of ABCD = d . d2 = 20 . 40
2 1 2
= 400 sq. unit I
180º
Sol.14 a2 + b2 = 101 c2
B/2 C/2
or sin2A + sin2B = 101 sin2C
B a C
Now
cos C B
cot C sinC BI = r cosec
= cos A cosB 2
cot A cot B
sin A sinB C
CI = r cosec
2
cos C sin A sinB In BIC, Sine Rule
sinC sinC(A B)
C B
a r cos ec r cos ec
cos C(2 sin A sin B) = 2 = 2 = 2x
= A B C
2 sin2 C sin 90º sin sin
2 2 2
cos C[cos(A B) cos(A B)]
=
2 sin2 C a r r
= = = 2x
A B C B C
cos sin sin sin sin
cos C[cos(A B) cos C] 2 2 2 2 2
=
2 sin2 C
2a r
=
cos(A B) cos(A B) cos2 C A A A B C
= 2 sin cos sin sin sin
2 sin2 C 2 2 2 2 2
2a
(cos2 A sin2 B) 1 sin2 C = 4R a = 2R sinA
= sin A
2 sin2 C
a 2R sin A
sin2 B (1 cos2 A) sin2 C) 2x = 2x =
A A
= cos cos
2 sin2 C 2 2
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 24 SOLUTION OF TRIANGLES
A a b
x = 2R sin Sol.17 (i) =
2 cos A cos B
B C
III'y y = 2R sin & z = 2R sin sin A sin B
2 2 =
cos A cos B
L.H.S. = 4R3 – R(x2 + y2 + z2) – xyz
tanA = tan B A=B
A B C
= 4R3 – 4R3 (sin2 + sin2 + sin2 ) now 2 sinA cos B = 2 sinB cos A
2 2 2
= sin (A + B) – sin (A – B)
A B C 2 sinA cos B = sin C A=B
– 8R3 sin sin sin
2 2 2 (ii) 2 sinA cosB = sinC
sin (A + B) + sin (A – B) = sinC
A B C
= 4R3 [cos2 – sin2 – sin2 ] sin (A – B) = 0 A = B
2 2 2
A B
A B C tan tan =1
– 8R3 sin sin sin 2 2
2 2 2
A B A B A A A C C A
2 C tan2 + tan tan + tan tan = 1
= 4R3 cos 2 cos 2 sin 2 2 sin 2 2 2 2 2 2
A A C
C A B A B A tan2 + 2 tan tan –1=0
2 2 2
=4R3 sin 2 cos 2 cos 2 2 sin 2
A A C
(iii) tan2 + 2 tan tan –1=0
A B C A 2 2 2
= 4R3 2 sin sin sin 2 sin = 0= RHS
2 2 2 2
2
A C C
tan tan – tan2 –1=0
2 2 2
cos A 2 cos C sin B
Sol.16 =
cos A 2 cos B sin C
sinC cos A + 2 sinC cos C
A C
= sin B cos A + 2 sin B cos B sin2
2 = sec2 C
cosA (sin B – sin C) + sin2B – sin 2C = 0 A C 2
cos2 cos2
2 2
B C B C
cosA 2cos sin
2 2
+ 2 cos (B + C) sin (B – C) = 0 B
cos2
2 = 1 cos2 B = cos2 A
B C B C B C A 2 2
2cosA sin cos 2 cos = 0 cos2
2 2 2 2
B C B = A
cos A = 0 or sin =0
2 tan B = tan A
sin A sinB a b
A or B – C = 0 B = C = =
2 cos A cosB cos A cos B
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
SOLUTION OF TRIANGLES Page # 25
cos 3A + cos (B – C) = 0
1 1 a
Sol.18 = ap1 p = 3A + B – C = 180º
2 1 2 2A + (A + B) – C = 180º
2A + 180º – C – C = 180º
2A = 2C A = C
A
ABC is isosceles
b
p2 Sol.20 Power of point
C CD × DE = AD × DB
p3
p1 AD DB
DE =
B a C CD
1 b 1 c A
III'y p = , p =
2 2 3 2
E b
D
1 1 1 a b c
L.H.S = p + p – p = + – C/2
1 2 3 2 2 2
C/2
B a C
abc (a b c)(a b c)
= =
2 2(a b c)
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 26 SOLUTION OF TRIANGLES
Sol.21 OM = r cos (i) A2
2 = A1B1 is true
n
2 1 1
(ii) B = A + B is also True
rue
2 1 1
O
R 2
Sol.22 r = & A = 90º = B + C
r 1 2 3
r
n n
A B
M r1 A B C 2 3
= 4 sin cos cos =
P N Q R 2 2 2 2
AB = 2r sin
n 1 B C 2 3
4 cos cos =
2 2 2 2
1 r cos
A1 = n . . 2r sin
2 n n
B B
2.2 cos cos = 2 + 3 {B+ C = }
A1 = nr2 sin cos 2 4 2 2
n n
PN
Now = tan
ON n = 2 cos 4 cos B 4 = 2 + 3
PN = r tan
n
2 + 2 cos B = 2 + 3
1 4
B1 = n . . 2 r tan . r
2 n
3
B1 = nr2 tan cos B =
n 4 2
III'y
A2 = 2nr2 sin cos B– =
2n 2n 4 6
5
A2 = nr2 sin B= ,C=
n 12 12
B2 = 2nr2 tan
2n b
= tan B = 2 + 3
c
1 A
Sol.23 = sin
AP 2
O
r r AP = cosec
A
2n 2
2n
A
AI = cosec +1+r
2
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
SOLUTION OF TRIANGLES Page # 27
1
I = 18 = ac sinB a2 sin B = 36 ...(i)
2
R
Q 1
B r2 = 4 r2 = 9 C BDF = 2 = a cos B × c cos B sin B
2
A A a2 cos2 B sin B = 4
r cosec = cosec +1+r
2 2
4 1
cos2B = = ...(ii)
A r 1 36 9
cosec =
2 r 1
1
cos B = ±
B r4 C r9 3
III'y cosec = & cosec =
2 r4 2 r 9
1 8
sin2B = 1 – =
A A 9 9
cot2 = cosec2 – 1
2 2
2 2 sin B 0
sinB = B I & II quad.
2 2 4r 3
(r 1) (r 1)
= =
(r 1) 2 (r 1)2
BDF 2 1
ABC = 18 = 9 then ratio between sides
A 2 r
cot =
2 (r 1)
DF 1
is =
AC 3
B 4 r C 6 r
III'y cot = , cot =
2 (r 4) 2 (r 9) 1
2 2
= b=6 2
b 3
A A
cot = cot
2 2 b
by Sine Rule , = 2R
sin B
2 r 4 r 6 r 48r r
+ + =
(r 1) (r 4) (r 9) (r 1)(r 4)(r 9)
6 2
(r2 – 13r + 36) + 2(r2 – 10r + 9) b 2 2
R = = 2
+3 (r2 – 5r + 4) = 24r 2 sin B 3
6r2 – 48r + 66 = 24r
r2 – 8r + 11 = 4r
9
r2 – 12r + 11 = 0 R=
2
(r – 11) (r – 1) = 0
r = 11 or r = 1
r = 11 r 1
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com