0% found this document useful (0 votes)
37 views8 pages

Exercise 4

The document provides solutions to various triangle-related exercises, including formulas for calculating angles, sides, and areas using trigonometric identities and the sine rule. It covers multiple scenarios and relationships within triangles, such as the relationship between the circumradius and inradius. The document also includes specific examples and calculations to illustrate the application of these formulas.

Uploaded by

Aayush Rawat
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
37 views8 pages

Exercise 4

The document provides solutions to various triangle-related exercises, including formulas for calculating angles, sides, and areas using trigonometric identities and the sine rule. It covers multiple scenarios and relationships within triangles, such as the relationship between the circumradius and inradius. The document also includes specific examples and calculations to illustrate the application of these formulas.

Uploaded by

Aayush Rawat
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

Page # 20 SOLUTION OF TRIANGLES

EXERCISE – IV HINTS & SOLUTIONS

Sol.1 Rr (sinA + sin B + sin C) =  Aliter :

a b c  2 A B
L.H.S. = r     = rS =  L.H.S. = 1 +  cos  sin2  + cos2 C
2 2 2  2 2 2

C A B C
Sol.2 2R cosA = 2R + r – r1 = 1 + sin cos   + 1 – sin2
2  2  2
A sin B sin C  cos B cos C 
R.H.S. = 2R + 4R sin 
2  2 2 2 2  C cos A  B   sin C 
= 2 + sin  
2   2  2
A B  C 
= 2R – 4R sin cos  
2  2  C cos A  B   cos A  B 
= 2 + sin  
2   2   2 
A B  C 
= 2R – 4R sin cos  
2  2  C A B
= 2 + sin . 2 sin sin
2 2 2
 2 A
= 2R 1  2 sin  = 2RcosA = L.H.S. A r
 2 = 2 + 2sin =2+ = R.H.S.
2 2R

A B C s2 Sol.5
Sol.3 cot + cot + cot =
2 2 2 
A B C
tan tan tan
L.H.S.= 2 + 2 + 2
s(s  a) s(s  b) s(s  c) (s  b)(s  c) (s  a)(s  c) (s  a)(s  b)
L.H.S. = + +
  

s 3r 3rs
= (s – a + s – b + s – c) = =
 (s  a)(s  b)(s  c) s(s  a)(s  b)(s  c)

3 3
s s2 = =
= (3s – 2s) = 2

 

Sol.6 r1 = r + r2 + r3
A B C r
Sol.4 cos2 + cos2 + cos2 =2+    
2 2 2 2R  = + +
sa s sb sc
1  cos A 1  cos B 1  cos C
L.H.S. = + + 1 1 1 1
2 2 2  – = +
sa s sb sc
3 1
= + (cosA + cosB + cos C) a a
2 2  =
s(s  a) (s  b)(s  c)
3 1 A s2 – as = s2 – (b + c) s + bc
= + (1 + 4 sin )
2 2 2 bc = s (b + c – a)
2bc = (a + b + c) (b + c – a)
r
=2+ = R.H.S. 2bc = (b + c)2 – a2
2R

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
SOLUTION OF TRIANGLES Page # 21

2bc = b2 + c2 + 2bc – a2 Sol.9 B = 3C


a2 = b2 + c2  A + B + C = 180º
ABC is right angled triangle A + 3C + C = 180º{ C  first quadrant}
A + 4C = 180º
by sine rule
Sol.7 2(2R)2 = a2 + b2 + c2
8R2 = a2 + b2 + c2 a b

c
=
2 = sin2 A+ sin2B + sin2 C sin A sin3C sin C

2 = sin2A +1– cos2B + sin2C b sin C = c sin 3C


1 = sin2A – cos (B + C) cos (B – C) sin C [b – 3C – 4c sin2C] = 0
b – 3c + 4 c sin2C = 0 {sin C  0}
cos2A = cos A cos (B – C)
cosA [cos (B – C) – cos A] = 0 3c  b
sin2 C =
 cos A [cos (B – C) + cos (B + C)] = 0 4c
2 cos A cos B cos C = 0
3c  b cb
A = 90º or B = 90º or C = 90º  cos2 C = 1 – =
4c 4c

Sol.8  = ABD + ACD


bc
 cos C = {cos C > 0}
4c
A
A  A + 4C = 180°  = 90º – 2C
2
A
c b sin = cos 2C = 2cos2 C –1
2

b  c 
ra =2  –1= bc
ra  4 c  2c
B D C
a
3c
Sol.10 BD =
4
In BCD sine rule
1 1
 = c ra + b ra
2 2
b
A
ra 2 2
 = (b + c) ra =
2 bc D
b
2 2 c 2
rb = , rc =
ca ab

1 1 1 B a C
R.H.S. = r + r + r
a b c

(b  c)  (c  a)  (a  b) 2(a  b  c) b 3c
c 2b
= = 2 = 4  =
2 2 sinC 3
1 sinC

2s 2
= = c b
 r {ABC sine rule =
sin C sin B

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 22 SOLUTION OF TRIANGLES

0 = cot  – 3 cot 2


b 2b 3
=  sin B = cos  = 3 cot 2
sinB 3 2 tan 2 = 3 tan 
B = 60º or 120º
2 tan 
But B  60º  B = 120º { B > 90º}  = 3 tan 
1  tan2 

Sol.11 In ADB sine rule tan  [2 – 3 + 3 tan2] = 0


tan [3tan2 –1] = 0
D q
C
 1
 tan  0 or tan2 =
3
p
2

q
2
P 1
tan = ±   = 30º, 150º
3
180º(  ) 
A B 5 
{  = not possible}  =
6 6
AB p2  q2
=
sin  sin(180º  ) Sol.13 AC = d2, BD = d1
R2 = 25 R1 = 12.5
In ABC, sine rule
sin  p2  q2 sin  p2  q2
AB = =
sin(  ) sin  cos   cos  sin 

A
p2  q2 sin 
 q   p   
=   sin     cos 
 2 2 
p q   2 2 
  p q  90º
B O D

(p2  q2 ) sin 
=
p cos   q sin 

C
BD 1
Sol.12 =
CD 3
Use M–N theorem d1
= 2.(12.5)
sin 2
d1 = 25 sin2
A
& In ACD, by sine rule

   d2
= 2.(25)
sin(180  2)
d2 = 50 sin2
d2 = 2d1
90º 90º2 Sine Rule, in AOB
B 9 D 9 9 C
4 4 2  d1   d2 
   
2   2  d1 d2
=  =
sin  sin(90º) sin  cos 
(1 + 3) cot 90º = 1.cot – 3 cot 2

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
SOLUTION OF TRIANGLES Page # 23

d1 1 sin2 A  sin2 B  sin2 C


tan = d  tan = =
2 2 2 sin2 C

1 101 sin2 C  sin2 C


2  =
2 2 sin2 C
 sin2 = 2
1
1  101  1 100
2 = = = 50
2 2

4
sin2 = B  C 
5 A
Sol.15 BIC = 180º –   = 90º +
 2  2
4
d1 = 25 × A
5
d1 = 20 & d2 = 40 A A
1 1 2 2
Area of ABCD = d . d2 = 20 . 40
2 1 2
= 400 sq. unit I
180º
Sol.14 a2 + b2 = 101 c2
B/2 C/2
or sin2A + sin2B = 101 sin2C
B a C
Now

cos C B
cot C sinC BI = r cosec
= cos A cosB 2
cot A  cot B 
sin A sinB C
CI = r cosec
2
cos C sin A sinB In BIC, Sine Rule

sinC sinC(A  B)
C B
a r cos ec r cos ec
cos C(2 sin A sin B) = 2 = 2 = 2x
=  A B C
2 sin2 C sin 90º  sin sin
 2 2 2
cos C[cos(A  B)  cos(A  B)]
=
2 sin2 C a r r
 = = = 2x
A B C B C
cos sin sin sin sin
cos C[cos(A  B)  cos C] 2 2 2 2 2
=
2 sin2 C
2a r
 =
 cos(A  B) cos(A  B)  cos2 C A A A B C
= 2 sin cos sin sin sin
2 sin2 C 2 2 2 2 2

2a
 (cos2 A  sin2 B)  1  sin2 C  = 4R  a = 2R sinA
= sin A
2 sin2 C
a 2R sin A
sin2 B  (1  cos2 A)  sin2 C) 2x =  2x =
A A
= cos cos
2 sin2 C 2 2

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 24 SOLUTION OF TRIANGLES

A a b
 x = 2R sin Sol.17 (i) =
2 cos A cos B

B C
III'y y = 2R sin & z = 2R sin sin A sin B
2 2  =
cos A cos B
L.H.S. = 4R3 – R(x2 + y2 + z2) – xyz
 tanA = tan B  A=B
A B C
= 4R3 – 4R3 (sin2 + sin2 + sin2 ) now 2 sinA cos B = 2 sinB cos A
2 2 2
= sin (A + B) – sin (A – B)
A B C  2 sinA cos B = sin C A=B
– 8R3 sin sin sin
2 2 2 (ii) 2 sinA cosB = sinC
sin (A + B) + sin (A – B) = sinC
A B C
= 4R3 [cos2 – sin2 – sin2 ] sin (A – B) = 0  A = B
2 2 2
A B
A B C  tan tan =1
– 8R3 sin sin sin 2 2
2 2 2

 A B A B A A A C C A
2 C  tan2 + tan tan + tan tan = 1
= 4R3 cos  2  cos  2   sin 2  2 sin 2  2 2 2 2 2
     

A A C
 C A B  A  B  A  tan2 + 2 tan tan –1=0
2 2 2
=4R3 sin 2 cos  2   cos  2    2 sin 2 
      
A A C
(iii) tan2 + 2 tan tan –1=0
 A B C A 2 2 2
= 4R3 2 sin sin sin  2 sin  = 0= RHS
 2 2 2 2
2
 A C C
  tan  tan  – tan2 –1=0
 2 2  2
cos A  2 cos C sin B
Sol.16 =
cos A  2 cos B sin C
 sinC cos A + 2 sinC cos C
A C
= sin B cos A + 2 sin B cos B sin2  
  2  = sec2 C
 cosA (sin B – sin C) + sin2B – sin 2C = 0 A C 2
cos2 cos2
2 2
B  C  B  C 
 cosA 2cos   sin  
 2   2 

+ 2 cos (B + C) sin (B – C) = 0 B
cos2
 2 = 1  cos2 B = cos2 A
B  C   B  C   B  C  A 2 2
2cosA sin   cos   2 cos  = 0 cos2
 2    2   2  2

B  C   B = A
cos A = 0 or sin   =0
 2   tan B = tan A

 sin A sinB a b
 A  or B – C = 0  B = C  =  =
2 cos A cosB cos A cos B

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
SOLUTION OF TRIANGLES Page # 25

cos 3A + cos (B – C) = 0
1 1 a
Sol.18  = ap1 p = 3A + B – C = 180º
2 1 2 2A + (A + B) – C = 180º
2A + 180º – C – C = 180º
2A = 2C  A = C
A
ABC is isosceles

b
p2 Sol.20 Power of point
C CD × DE = AD × DB
p3
p1 AD  DB
DE =
B a C CD

1 b 1 c A
III'y p = , p =
2 2  3 2 
E b
D
1 1 1 a b c
L.H.S = p + p – p = + – C/2
1 2 3 2 2 2
C/2
B a C
abc (a  b  c)(a  b  c)
= =
2 2(a  b  c)

(a  b)2  c2 (a2  b2  c2 )  2ab


= =
2(a  b  c) 2(a  b  c)
Now

2ab cos C  2ab ab(1  cos C) CD CD (CD)2  AD b



= = = = =
2(a  b  c) (a  b  c) DE  AD  DB  AD  DB  DB a
 
 CD 
C
2ab cos2
= 2 = R.H.S.
(a  b  c) 2
 2ab  c
  cos2 4a2b2 cos2
c
ab 2 2
= =
Sol.19 loga2 = logb2 + logc2 – log (2bc cos A)  bc   ac  abc 2
  
loga2 = logb2c2 – log (b2 + c2 – a2) ab ab
 log a2 (b2 + c2 – a2) = log b2c2
 a2b2 + a2c2 – a4 = b2c2 4ab c
 b2 (a2 – c2) – a2 (a2 – c2) = 0 = 2 cos2
c 2
 (a2 – c2) (b2 – a2) = 0
a = c or b = a CE CD  DE CD
= = +1
ABC is isosceles DE DE DE
Aliter :
4ab C
= cos2 +1
bc c2 2
2a2 bc cos A = b2c2  cosA =
2a2
4ab s(s  c) 2s(2s  2c)
= +1= +1
sin B sin C c2
ab c2
 cos A =
2 sin2 A
 2 sin2A sinA = 2 sinB sin C (a  b)2  c2  c2 (a  b)2
= =
 cosA – cos3A = cos (B – C) – cos (B + C) c2 c2

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 26 SOLUTION OF TRIANGLES


Sol.21 OM = r cos (i) A2
2 = A1B1 is true
n
2 1 1
(ii) B = A + B is also True
rue
2 1 1

O
R 2
Sol.22 r = & A = 90º = B + C
  r 1 2 3
r
n n
A B
M r1 A B C 2 3
= 4 sin cos cos =
P N Q R 2 2 2 2


AB = 2r sin
n 1 B C 2 3
4 cos cos =
2 2 2 2
1   r cos  
A1 = n . . 2r sin  
2 n  n
B   B 
   2.2 cos cos    = 2 + 3 {B+ C = }
A1 = nr2 sin cos 2 4 2 2
n n

PN  
Now = tan    
ON n = 2 cos 4  cos B  4   = 2 + 3
  

PN = r tan
n
 
  2 + 2 cos  B   = 2 + 3
1   4 
B1 = n . . 2  r tan  . r
2  n

   3
B1 = nr2 tan cos  B   =
n  4 2
III'y
   
A2 = 2nr2 sin cos B– =
2n 2n 4 6

 5 
A2 = nr2 sin B= ,C=
n 12 12

B2 = 2nr2 tan
2n b
= tan B = 2 + 3
c

1 A
Sol.23 = sin
AP 2
O

r  r AP = cosec
A
2n 2
2n

A
AI = cosec +1+r
2

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
SOLUTION OF TRIANGLES Page # 27

A Sol.24 ABC = 18 , a=c


r1 = 1
BDF = 2
P
DF = 2 2

1
I  = 18 = ac sinB  a2 sin B = 36 ...(i)
2

R
Q 1
B r2 = 4 r2 = 9 C BDF = 2 = a cos B × c cos B sin B
2
A A a2 cos2 B sin B = 4
r cosec = cosec +1+r
2 2
4 1
cos2B = = ...(ii)
A r 1 36 9
cosec =
2 r 1
1
cos B = ±
B r4 C r9 3
III'y cosec = & cosec =
2 r4 2 r 9
1 8
sin2B = 1 – =
A A 9 9
cot2 = cosec2 – 1
2 2
2 2 sin B  0
sinB =  B  I & II quad.
2 2 4r 3 
(r  1)  (r  1)
= =
(r  1) 2 (r  1)2
BDF 2 1
 ABC = 18 = 9 then ratio between sides
A 2 r
cot =
2 (r  1)
DF 1
is =
AC 3
B 4 r C 6 r
III'y cot = , cot =
2 (r  4) 2 (r  9) 1
2 2
 =  b=6 2
b 3
A A
cot =  cot
2 2 b
by Sine Rule , = 2R
sin B
2 r 4 r 6 r 48r r
 + + =
(r  1) (r  4) (r  9) (r  1)(r  4)(r  9)
6 2
(r2 – 13r + 36) + 2(r2 – 10r + 9) b 2 2 
R = = 2 
+3 (r2 – 5r + 4) = 24r 2 sin B  3 
 
6r2 – 48r + 66 = 24r
 r2 – 8r + 11 = 4r
9
r2 – 12r + 11 = 0 R=
2
(r – 11) (r – 1) = 0
r = 11 or r = 1
r = 11 r  1

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com

You might also like