0% found this document useful (0 votes)
19 views15 pages

Lec Ena05

The lecture discusses the Maximum Power Transfer Theorem, which states that maximum power is delivered from a source to a load when the load resistance equals the source resistance. It includes mathematical proofs, calculations for maximum power transfer, and numerical examples illustrating the application of the theorem. Key steps for determining load resistance for maximum power transfer are also outlined.

Uploaded by

3cy7ag90a0
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
19 views15 pages

Lec Ena05

The lecture discusses the Maximum Power Transfer Theorem, which states that maximum power is delivered from a source to a load when the load resistance equals the source resistance. It includes mathematical proofs, calculations for maximum power transfer, and numerical examples illustrating the application of the theorem. Key steps for determining load resistance for maximum power transfer are also outlined.

Uploaded by

3cy7ag90a0
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

Electrical Network Analysis

(EE-151)

Lecture-05
Network Theorems
(Maximum Power Transfer Theorem)

Dr. M. N. Alam, EED, NITW


Outlines
©2023 Dr. M. N. Alam

This Lecture covers:


• Maximum power transfer theorem
• Numerical examples

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 2


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam
• It states that “the maximum power is delivered from a source to a load when
the load resistance is equal to the source resistance.”
Proof:
• Current flowing in the circuit
𝑉
𝐼=
𝑅𝑆 + 𝑅𝐿
• Power delivered to the load 𝑅𝐿
𝑉2
𝑃= 𝐼 2 𝑅𝐿 = 2 𝑅𝐿
𝑅𝑆 + 𝑅𝐿
• To determine the value of 𝑅𝐿 for maximum power to be transferred to the load,
𝑑𝑃
=0
𝑑𝑅𝐿

𝑑𝑃 𝑑 𝑉2 𝑉 2 𝑅𝑆 + 𝑅𝐿 2
− 2𝑅𝐿 𝑅𝑆 + 𝑅𝐿
= 2 𝑅𝐿 =
=0
𝑑𝑅𝐿 𝑑𝑅𝐿 𝑅𝑆 + 𝑅𝐿 𝑅𝑆 + 𝑅𝐿 4

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 3


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam
𝑅𝑆 + 𝑅𝐿 2 − 2𝑅𝐿 𝑅𝑆 + 𝑅𝐿 = 0

𝑅𝑆2 + 𝑅𝐿2 + 2𝑅𝑆 𝑅𝐿 − 2𝑅𝐿 𝑅𝑆 − 2𝑅𝐿2 = 0

𝑅𝑆2 − 𝑅𝐿2 = 0

𝑅𝑆 = 𝑅𝐿
• Hence, the maximum power will be transferred to the load when load resistance is
equal to the source resistance.

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 4


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam

During maximum power transfer:


• Current flowing in the circuit
𝑉 𝑉
𝐼= =
𝑅𝑆 + 𝑅𝐿 2𝑅𝑆

• Power delivered to the load 𝑅𝐿


2
𝑉 𝑉2
𝑃𝐿,𝑚𝑎𝑥 = 𝐼2 𝑅𝐿 = 𝑅 =
2 𝑆
2𝑅𝑆 4𝑅𝑆
• Power supplied by the source
𝑉2 𝑉2
𝑃𝑇𝑜𝑡𝑎𝑙 = 𝐼2 𝑅𝐿 + 𝐼2 𝑅𝑆 = 2
(2𝑅𝑆 ) =
2𝑅𝑆 2𝑅𝑆
• Efficiency during maximum power transfer,
𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑 𝑉 2 /4𝑅𝑆 1
𝜂= = = = 0.5 (𝑜𝑟 50 %)
𝑃𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑉 2 /2𝑅𝑆 2
04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 5
Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam
Steps to be Followed in Maximum Power Transfer Theorem
1. Remove the variable load resistance 𝑅𝐿
2. Find open circuit voltage 𝑉𝑇ℎ across A and B
3. Find the resistance 𝑅𝑇ℎ as seen from points A and B
4. Find resistance 𝑅𝐿 for maximum power transfer
𝑅𝐿 = 𝑅𝑇ℎ
1. Find the maximum power,
𝑉𝑇ℎ 𝑉𝑇ℎ
𝐼𝐿 = =
𝑅𝑇ℎ + 𝑅𝐿 2𝑅𝑇ℎ

2 2
𝑉𝑇ℎ 𝑉𝑇ℎ
𝑃𝑚𝑎𝑥 = 𝐼𝐿2 𝑅𝐿 = 2 𝑅𝑇ℎ =
4𝑅𝑇ℎ 4𝑅𝑇ℎ

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 6


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam

Numerical Example-13:
• For the value of resistance 𝑅𝐿 for maximum power transfer and calculate the
maximum power.

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 7


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam

Solution:
Step I: Calculation of 𝑉𝑇ℎ ,
• By star-delta transformation;
100 100
𝐼= = = 2.08 𝐴
5 + 5 + 20 + 9 + 9 48

• Writing the 𝑉𝑇ℎ equation,


100 − 5𝐼 − 𝑉𝑇ℎ − 9𝐼 = 0
𝑉𝑇ℎ = 100 − 14𝐼
= 100 − 14 2.08
= 70.88 𝑉
04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 8
Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam
Step II: Calculation of 𝑅𝑇ℎ ,

𝑅𝑇ℎ = 23.92 Ω

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 9


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam
Step III: Calculation of 𝑅𝐿 ,
• For maximum power transfer,
𝑅𝐿 = 𝑅𝑇ℎ = 23.92 Ω

Step IV: Calculation of 𝑃𝑚𝑎𝑥 ,


• The maximum power transfer,
2
𝑉𝑇ℎ
𝑃𝑚𝑎𝑥 =
4𝑅𝑇ℎ
70.882
=
4 × 23.92
= 52.51 𝑊

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 10


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam

Numerical Example-14:
• For the value of resistance 𝑅𝐿 for maximum power transfer and calculate the
maximum power.

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 11


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam

Solution:
Step I: Calculation of 𝑉𝑇ℎ ,

• From the figure, we can write that;


𝐼𝑥 = 𝐼2 … . (𝑖)
𝐼1 = 10 𝐴 … . (𝑖𝑖)
• Applying KVL to Mesh 2,
2𝐼𝑥 − 6𝐼2 − 4 𝐼2 − 𝐼1 = 0
2𝐼2 − 6𝐼2 − 4 𝐼2 − 𝐼1 = 0
4𝐼1 − 8𝐼2 = 0 … . (𝑖𝑖𝑖)

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 12


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam
• Solving Eqs (ii) and (iii),
𝐼1 = 10 𝐴
𝐼2 = 5 𝐴
• Writing the 𝑉𝑇ℎ equation,
6𝐼2 − 0 − 𝑉𝑇ℎ = 0
𝑉𝑇ℎ = 6𝐼2
= 30 𝑉
Step II: Calculation of 𝐼𝑁 ,

• From the figure, we can write that;


𝐼𝑥 = 𝐼2 − 𝐼3 … . (𝑖𝑣)
𝐼1 = 10 𝐴 … . (𝑣)
04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 13
Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam
• Applying KVL to Mesh 2,
2𝐼𝑥 − 6 𝐼2 − 𝐼3 − 4 𝐼2 − 𝐼1 = 0
2 𝐼2 − 𝐼3 − 6 𝐼2 − 𝐼3 − 4 𝐼2 − 𝐼1 = 0
4𝐼1 − 8𝐼2 + 4𝐼3 = 0 … . (𝑣𝑖)
• Applying KVL to Mesh 3,
−3𝐼3 − 6 𝐼3 − 𝐼2 = 0
6𝐼2 − 9𝐼3 = 0 … . (𝑣𝑖𝑖)
• Solving Eqs (v), (vi) and (vii),
𝐼1 = 10 𝐴
𝐼2 = 7.5 𝐴
𝐼3 = 5 𝐴
𝐼𝑁 = 5 𝐴
Step III: Calculation of 𝑅𝑇ℎ ,
𝑉𝑇ℎ 30
𝑅𝑇ℎ = = =6Ω
𝐼𝑁 5

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 14


Maximum Power Transfer Theorem
©2023 Dr. M. N. Alam
Step IV: Calculation of 𝑅𝐿 ,
• For maximum power transfer,
𝑅𝐿 = 𝑅𝑇ℎ = 6 Ω

Step V: Calculation of 𝑃𝑚𝑎𝑥 ,


• The maximum power transfer,
2
𝑉𝑇ℎ
𝑃𝑚𝑎𝑥 =
4𝑅𝑇ℎ
302
=
4×6
= 37.5 𝑊

04-04-2023 EE151 - Dr. M. N. Alam, EED, NITW 15

You might also like