Tabela c3
Tabela c3
f (s) F(t)
33.5. f (s – a) eatF(t)
33.10. f ′ (s ) –tF(t)
f (s ) t
33.13.
s ∫ 0
F (u)du
f (s ) t t (t − u)n−1
t
33.14.
sn ∫ 0
∫ F (u)du n =
0 ∫0 (n − 1)! F (u)du
t
33.15. f (s)g(s) ∫ 0
F (u)G (t − u)du
182 LAPLACE TRANSFORMS
f (s) F(t)
∞ F (t )
33.16. ∫ s
f (u)du
t
1 T
33.17.
1 − e − sT ∫ 0
e − su F (u)du F(t) = F(t + T)
f ( s) 1 ∞
∫ e−u
2
/ 4t
33.18. F (u)du
s πt 0
33.19.
1 1
f
s s () ∫
∞
0
J 0 (2 ut )F (u)du
33.20.
s
1
n+1 f (1s) 0
∞
t n / 2 ∫ u − n / 2 J n (2 ut )F (u)du
f (s + 1/s) t
33.21.
s2 + 1 ∫ 0
J 0 (2 u(t − u)) F (u)du
1 ∞
∫ u −3 / 2 e − s
2
/ 4u
33.22. f (u)du F(t2)
2 π 0
f (ln s) ∞ t u F (u)
33.23.
s ln s ∫ 0 Γ (u + 1)
du
P (s ) n
P(α k ) α t
33.24. Q (s ) ∑ Q′(α
k =1 k)
e k
f (s) F(t)
1
33.25. 1
s
1
33.26. t
s2
1 t n−1
33.27. n = 1, 2, 3,… , 0! = 1
sn (n − 1)!
1 t n−1
33.28. n>0
sn Γ(n)
1
33.29. eat
s−a
1 t n−1e at
33.30. n = 1, 2, 3,… , 0! = 1
(s − a) n (n − 1)!
1 t n−1e at
33.31. n>0
(s − a) n Γ(n)
1 sin at
33.32.
s + a2
2
a
s
33.33. cos at
s2 + a2
1 e bt sin at
33.34.
(s − b) 2 + a 2 a
s−b
33.35. e bt cos at
(s − b) 2 + a 2
1 sinh at
33.36.
s2 − a2 a
s
33.37. cosh at
s2 − a2
1 e bt sinh at
33.38.
(s − b) 2 − a 2 a
184 LAPLACE TRANSFORMS
f (s) F(t)
s−b
33.39. e bt cosh at
(s − b) 2 − a 2
1
a≠b e bt − e at
33.40. (s − a)(s − b) b−a
s
a≠b be bt − ae at
33.41. (s − a)(s − b) b−a
1 sin at − at cos at
33.42. (s 2 + a 2 ) 2 2a 3
s t sin at
33.43. (s 2 + a 2 ) 2 2a
s2 sin at + at cos at
33.44.
(s + a 2 ) 2
2
2a
s3
33.45. cos at − 12 at sin at
(s + a 2 ) 2
2
s2 − a2
33.46. t cos at
(s 2 + a 2 ) 2
1 at cosh at − sinh at
33.47. (s 2 − a 2 ) 2 2a 3
s t sinh at
33.48. (s 2 − a 2 ) 2 2a
s2 sinh at + at cosh at
33.49.
(s 2 − a 2 ) 2 2a
s3
33.50. cosh at + 12 at sinh at
(s − a 2 ) 2
2
s2
33.51. t cosh at
(s − a 2 ) 3 / 2
2
f (s) F(t)
s 4 − 6a 2 s 2 + a 4
33.60. 1
t 3 cos at
(s 2 + a 2 ) 4 6
s3 − a2s t 3 sin at
33.61.
(s 2 + a 2 ) 4 24 a
1 (3 + a 2 t 2 ) sinh at − 3at cosh at
33.62. (s − a 2 ) 3
2
8a 5
s at 2 cosh at − t sinh at
33.63. (s − a 2 ) 3
2
8a 3
s2 at cosh at + (a 2 t 2 − 1) sinh at
33.64.
(s − a 2 ) 3
2
8a 3
s3 3t sinh at + at 2 cosh at
33.65.
(s − a 2 )3
2
8a
s4 (3 + a 2 t 2 ) sinh at + 5at cosh at
33.66.
(s − a 2 )3
2
8a
s5 (8 + a 2 t 2 ) cosh at + 7at sinh at
33.67.
(s − a 2 )3
2
8
3s 2 + a 2 t 2 sinh at
33.68.
(s 2 − a 2 )3 2a
s 3 + 3a 2 s
33.69. 1
t 2 cosh at
(s 2 − a 2 )3 2
s 4 + 6a 2 s 2 + a 4
33.70. 1
t 3 cosh at
(s 2 − a 2 ) 4 6
s3 + a2s t 3 sinh at
33.71.
(s 2 − a 2 ) 4 24 a
1 e at / 2 ⎧ 3at 3at ⎫
33.72. 2 ⎨ 3 sin − cos + e −3at / 2 ⎬
s + a3
3 3a ⎩ 2 2 ⎭
186 LAPLACE TRANSFORMS
f (s) F(t)
s e at / 2 ⎧ 3at 3at ⎫
+ 3 sin − e −3at / 2 ⎬
3a ⎨⎩
33.73. cos
s + a3
3 2 2 ⎭
s2 1 ⎛ − at 3at ⎞
e + 2e at / 2 cos
33.74.
s3 + a3 3 ⎜⎝ 2 ⎟⎠
s e − at / 2 ⎧ 3at 3at ⎫
− cos + e3at / 2 ⎬
3a ⎨⎩
33.76. 3 sin
s − a3
3 2 2 ⎭
s2 1 ⎛ at 3at ⎞
e + 2e − at / 2 cos
33.77.
s − a3
3 3 ⎜⎝ 2 ⎟⎠
1 1
33.78. (sin at cosh at − cos at sinh at )
s 4 + 4a 4 4a3
s sin at sinh at
33.79.
s 4 + 4a 4 2a 2
s2 1
33.80. (sin at cosh at + cos at sinh at )
s + 4a 4
4
2a
s3
33.81. cos at cosh at
s + 4a 4
4
1 1
33.82. (sinh at − sin at )
s4 − a4 2a 3
s 1
33.83. (cosh at − cos at )
s − a4
4
2a 2
s2 1
33.84. (sinh at + sin at )
s − a4
4
2a
s3 1
(cosh at + cos at )
33.85.
s − a4
4 2
1 e − bt − e − at
33.86.
s+a + s+b 2(b − a) π t 3
1 erf at
33.87.
s s+a a
1 e at erf at
33.88.
s (s − a) a
1 ⎧ 1 ⎫
e at ⎨ − b e b t erfc(b t )⎬
2
33.89.
s−a +b ⎩ πt ⎭
LAPLACE TRANSFORMS 187
f (s) F(t)
1
33.90. J 0 (at )
s2 + a2
1
33.91. I 0 (at )
s2 − a2
( s 2 + a 2 − s) n
33.92. n > −1 a n J n (at )
s2 + a2
(s − s 2 − a 2 ) n
33.93. n > −1 a n I n (at )
s2 − a2
e b(s− s +a )
2 2
33.94. J 0 (a t (t + 2b))
s2 + a2
e− b s +a ⎧J 0 (a t 2 − b 2 ) t > b
2 2
33.95. ⎨
s2 + a2 ⎩0 t<b
1 tJ1 (at )
33.96. (s 2 + a 2 ) 3 / 2 a
s
33.97. tJ 0 (at )
(s 2 + a 2 )3 / 2
s2
33.98. J 0 (at ) − atJ1 (at )
(s + a 2 ) 3 / 2
2
1 tI1 (at )
33.99. (s − a 2 )3 / 2
2
a
s
33.100. tI 0 (at )
(s 2 − a 2 ) 3 / 2
s2
33.101. I 0 (at ) + atI1 (at )
(s − a 2 ) 3 / 2
2
1 e− s
= F (t ) = n, n t < n + 1, n = 0,1, 2,…
33.102. s(e − 1) s(1 − e − s )
s
f (s) F(t)
e − a /s sin 2 at
33.106.
s3/ 2 πa
n/2
e − a /s ⎛ t⎞
33.107. n > −1 J n (2 at )
s n+1 ⎝ a⎠
e− a s e− a / 4t
2
33.108.
s πt
a
e− a
2
/ 4t
33.109. e− a s
2 π t3
1 − e− a s
33.110. erf (a / 2 t )
s
e− a s
33.111. erfc(a / 2 t )
s
e− a s ⎛ a ⎞
e b ( bt + a ) erfc ⎜ b t +
2 t ⎟⎠
33.112.
s ( s + b) ⎝
e− a / s 1 ∞
∫ une−u
2
/ 4 a2t
33.113. n > −1 J 2 n (2 u )du
s n+1 π ta 2 n+1 0
⎛ s + a⎞ e − bt − e − at
33.114. ln
⎝ s + b⎠ t
ln[(s 2 + a 2 ) /a 2 ] Ci(at )
33.115.
2s
ln[(s + a) /a]
33.116. Ei(at )
s
(γ + ln s)
−
33.117. s ln t
γ = Euler’s constant = .5772156 …
⎛ s2 + a2 ⎞ 2(cos at − cos bt )
ln ⎜ 2
⎝ s + b 2 ⎟⎠
33.118.
t
π 2 (γ + ln s)2
+ ln 2 t
33.119. 6s s
γ = Euler’s constant = .5772156 …
ln s −(ln t + γ )
33.120.
s γ = Euler’s constant = .5772156 …
ln 2 s (ln t + γ )2 − 16 π 2
33.121.
s γ = Euler’s constant = .5772156 …
LAPLACE TRANSFORMS 189
f (s) F(t)
Γ ′(n + 1) − Γ (n + 1) ln s
33.122. n > −1 t n ln t
s n+1
sin at
33.123. tan −1 (a /s)
t
e a /s e −2 at
33.125. erfc( a /s)
s πt
2
/ 4 a2
2a − a t 2 2
e as erfc as 1
33.128.
s π (t + a)
1
33.129. e as Ei(as)
t+a
33.130.
1⎡
a ⎢⎣
cos as
π
2 { ⎤
− Si(as) − sin as Ci(as)⎥
⎦
} 1
t 2 + a2
33.131. sin as {
π
2
− Si(as) + cos as Ci(as) } t
t 2 + a2
33.132.
cos as { π
2 }
− Si(as) − sin as Ci(as) tan −1 (t /a)
s
33.133.
sin as {
π
2
− Si(as) − cos as Ci(as) } 1 ⎛ t 2 + a2 ⎞
2 ⎜⎝ a 2 ⎟⎠
ln
s
⎡π − Si(as)⎤ + Ci 2 (as)
2
1 ⎛ t 2 + a2 ⎞
t ⎜⎝ a 2 ⎟⎠
33.134. ln
⎢⎣ 2 ⎥⎦
33.137. e − as δ (t − a)
e − as
33.138. s (t − a)
See also entry 33.163.
190 LAPLACE TRANSFORMS
f (s) F(t)
x 2 ∞ (−1)n nπ x nπ t
a π∑
sinh sx + sin cos
33.139. n a a
s sinh sa n =1
t 2 ∞ (−1)n nπ x nπ t
a π∑
cosh sx + cos sin
33.141. n a a
s sinh as n =1
sinh sx xt 2a ∞ (−1)n nπ x nπ t
a π2 ∑
33.143. + 2 sin sin
2
s sinh sa n =1
n a a
cosh sx t 2 2a ∞ (−1)n nπ x ⎛ nπ t ⎞
2a π 2 ∑
33.145. + cos 1 − cos
s 2 sinh sa n =1
n 2
a ⎝ a ⎠
cosh sx 1 2 16a 2 ∞
(−1)n (2n − 1)π x (2n − 1)π t
33.147.
s 3 cosh sa 2
(t + x 2 − a 2 ) − 3
π ∑ (2n − 1)
n=1
3 cos
2a
cos
2a
sinh x s 2π ∞
nπ x
∑ (−1) ne − n π t /a sin
2 2 2
n
33.148. a2 a
sinh a s n =1
cosh x s π ∞
(2n − 1)π x
∑ (−1) n −1
(2n − 1)e − ( 2 n−1) π t / 4 a cos
2 2 2
33.149. a2 2a
cosh a s n =1
33.150. 2a
s cosh a s n =1
cosh x s 1 2 ∞ nπ x
a a∑
+ (−1)n e − n π t /a cos
2 2 2
33.151. a
s sinh a s n =1
sinh x s x 2 ∞ (−1)n − n π t /a nπ x
+ ∑
2 2 2
33.152. e sin
s sinh a s a π n=1 n a
sinh x s xt 2a 2 ∞
(−1)n nπ x
+ ∑ (1 − e − n π t /a ) sin
2 2 2
33.154. a π3 3
a
2
s sinh a s n =1
n
cosh x s 1 2 16a 2 ∞
(−1)n (2n − 1)π x
(x − a2 ) + t − 3 ∑ (2n − 1) e − ( 2 n−1) π t / 4 a cos
2 2 2
33.155. 2
s cosh a s 2 π n =1
3
2a
Tabela 3.1 Transformada de Laplace para Varios Dominios em Função do
Tempo
f(t) F(s)
Tabela 3.1 Transformada de Laplace para Varios Dominios em Função do
Tempo
f(t) F(s)
Tabela 3.1 Transformada de Laplace para Varios Dominios em Função do
Tempo
f(t) F(s)