0% found this document useful (0 votes)
33 views4 pages

Tpye A

The document is an examination paper for the course 'Elementary Mathematics I' at Lagos State University of Science and Technology for the 2022/2023 session. It contains various mathematical problems covering topics such as algebra, geometry, logarithms, and complex numbers, with instructions to answer all questions within a 2-hour timeframe. The exam is designed for first-year students in the College of Basic Sciences and includes multiple-choice questions and problem-solving tasks.

Uploaded by

ppnd9j6mpd
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
33 views4 pages

Tpye A

The document is an examination paper for the course 'Elementary Mathematics I' at Lagos State University of Science and Technology for the 2022/2023 session. It contains various mathematical problems covering topics such as algebra, geometry, logarithms, and complex numbers, with instructions to answer all questions within a 2-hour timeframe. The exam is designed for first-year students in the College of Basic Sciences and includes multiple-choice questions and problem-solving tasks.

Uploaded by

ppnd9j6mpd
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Lagos State University of Science and Technology, Ikorodu

College of Basic Sciences


Department of Mathematical Sciences
First Semester Examination 2022/2023 Session.

COURSE TITLE: Elementary Mathematics I


COURSE CODE: MTH 101
CLASS: 100L CBS, COA, COE, CET
TIME ALLOWED: 2 hrs
INSTRUCTION: Answer ALL Questions. TYPE A


1. Find the value of x if 2 5x−1 =8 10. 4, 16, 256, x. Find x
A. 5 B. 3 C. 2 D. 4 A. 65536 B. 1536 C. 2304 D. 60416

2. Given the expansion (1 + kx)n = 1 + 12x + 60n2 Sum of 3 consecutive terms of an A.P. is 6 and
Find the values of k and n their product is -90. Use the given information to
A. 3,4 B. 2,6 C. 3,5 D. 4,5 answer questions 11 − 12.

If Z1 and Z2 are complex numbers represented by 11. Find the first term.
x1 + iy1 and x2 + iy2 respectively. Use the given A. 2 B. -2 C. -7 D. 7
information to answer question 3 − 8
12. Find the common difference
3. Evaluate |Z1 + Z2 |2 A. ±2 B. ±3 C. ±8 D. ±7
A. x21 + x1 x2 + x22 + y12 + y1 y2 + y22 ( √ √ )
13. The conjugate of 1 − 2 7 + 3 is
B. x21 + 2x1 x2 + x22 + y12 + 2y1 y2 + y22 √ √ √ √
C. x21 + 3x1 x2 + x22 + y12 + 3y1 y2 + y22 A. 1 − 2√ 7 + √ 3 B. 1 + 2√ 7 +√ 3
D. x21 + 4x1 x2 + x22 + y12 + 4y1 y2 + y22 C. 1 + 2 7 + 3 D. 1 − 7 − 3

14. Find the coefficient of x3 in the expansion of


4. Evaluate |Z1 − Z2 |2
(a + 4xy)6
A. x21 − x1 x2 + x22 + y12 − y1 y2 + y22
A. 280a3 y 3 B. 820a3 y 3 C. 1280a3 y 3 D. 1820a3 y 3
B. x21 − 3x1 x2 + x22 + y12 − 3y1 y2 + y22
C. x21 − 2x1 x2 + x22 + y12 − 2y1 y2 + y22
If A = {3, 5, 9, g, h}, B = {1, 2, 3, h, d, f }. Use
D. x21 − 4x1 x2 + x22 + y12 − 4y1 y2 + y22
the information to answer question 15 − 16.
5. Evaluate |Z1 + Z2 |2 + |Z1 − Z2 |2 above
15. Find (A − B) ∩ (B − A)
A. (x21 + x22 + y12 y2 + y22 )
A. {h} B. {1, 2, g} C. {2, 5, d, h} D. {5, d, h}
B. 2(x21 + x22 + y12 y2 + y22 )
C. 3(x21 + x22 + y12 y2 + y22 ) 16. Find A ∆ B
D. 4(x21 + x22 + y12 y2 + y22 ) A. {1, 2, 3, h, g} B. {1, 2, 3, 9, g, h}
C. {1, 2, 5, 9, d, g, f } D. {2, 5, g, h, f }
6. Find the value of |Z1 |2
A. x21 + y12 B. x21 − x22 C. x2 + y 2 D. x2 − y 2 17. Given that log 2 = c and log 3 = d, find log 24.
A. c + d B. 3c + d C. 3d + c D. c − d
7. Find the value of |Z2 |2
A. x21 + x22 B. x22 + y22 C. x2 + y 2 D. x2 − y 2 18. The sum of a series is 4n − 1 for all value of n. Find
the 1st three terms of the series.
8. Find the value of 2(|Z1 |2 + |Z2 |2 ) A. 2, 8, 32 B. 3, 12, 48 C. 3, 6, 32
A. 2(x21 + y12 + x22 + y22 ) D. 3, 12, 32
B. 2(x21 + y12 − x22 + y22 )
C. 2(x21 − y12 + x22 + y22 ) 2+i
If Z = −1+i use the given information to answer
D. 2(x21 − y12 + x22 − y22 ) question 19 − 21
√ √ √ √
9. ( 2√ + 5)( 2 − 5) is √ 19. Evaluate the value of Z
A. 3 3 B. −3 C. 3 D. 3 A. −1+i
2+i B.
−1−2i
2 C. −1−3i
2 D. 1+3i
2

1
20. Find the value if Z1 35. Find the value of ϕ
A. −1+i −1−3i
3+i B. 2+i C. −1−3i
2 D. 1+3i
2 A. 125◦ B. 135◦ C. 145◦ D. 155◦

21. Find the value if Z+ Z1 36. The√value of Z is given as


A. −7+i
3 B. −7+9i
10 C. −7−9i
3 D. −7−21i
10
A. √ 2(cos 125◦ + i sin 125◦ )
B. 2(cos 135◦ + i sin 135◦ )
22. If sin x = 0 then x = C. 2(cos 125◦ + i sin 125◦ )
A. nπ B. (2n+1)π
2 C. (n + 1)π D. nπ
2 D. 2(cos 135◦ + i sin 135◦ )
23. Which of the following is equal to log x? 37. 1 − cos2 x =
log x ln x ln 10 ln x
A. log 10 B. ln 10 C. ln x D. ln x A. sin x B. cos x C. sin 2x D. sin2 x

Use the given information to answer question Use the information to answer question 38&39.
24&25. Given that 9n − 1 is divisible by 8. As- Given that n3 − n is a multiple of 6. Assume that it
sume that it is true for n = 1, n = 2 and it is also is true for n = 1, n = 2 and it is also true for n = k.
true for n = k

24. Find the expression for n = k 38. Find the expression for when n = k
A. 9k − 1 = 8y + 1 B. 9k − 1 = 16y − 1 A. k 3 − k = 6y + 1 B. k 3 − k = 6y − 1
C. 9k − 1 = 8y D. 9k − 1 = 8y + 4 C. k 3 − k = 6y D. k 3 − k = 6y + 2
25. Find the expression for n = k + 1
A. 9k+1 = 8 (9y + 1) B. 9k+1 = 8 (9y − 1) ( 2 n = k + )1
39. Find the expression for when
3
A. (k + 1) − k − 1 = 6 k2 + k2 + y
C. 9k − 1 = 8y + 1 D. 9k − 1 = 8y + 4 ( 2 )
B. (k + 1)3 − k + 1 = 6 k3 + k + y
26. Find y if the equation (5y + 1) x2 − 8yx + 3y = 0 ( 2 )
has equal roots. C. (k + 1)3 − k + 1 = 6 k4 + k4 + y
( 2 )
A. y = 0 or y = 3 B. y = 0 or y = −3 D. (k + 1)3 − k + 1 = 6 k2 − k2 − y
C. y = −1 or y = 3 D. y = −1 or y = −3

27. Form an equation for which the sum of the roots is


40. If α, β are roots of the equation x2 −7x+2 = 0, find
5 and the sum of the square of the roots is 53.
without solving the equation, the value of α2 + β 2
A. x2 + 5x − 14 = 0 B. x2 − 5x − 14 = 0
A. -45 B. 43 C. 45 D. 44
C. x2 − 5x + 14 = 0 D. x2 + 5x + 14 = 0
41. log2 1 + log2 2 =
28. If cos x = 0 then x = 1
A. 1 B. 2 C. 3 D.
A. nπ B. (2n+1)π
2 C. (n + 1)π D. nπ
2
2

m+2x 3m−8x 42. sin(−45◦ ) =


29. Simplify y y5m−6x
y
A. 1 B. –1 C. √1 D. −1

2 2
A. y m B. y −x C. y −m D. y x
43. The equation 2(2x+3) + 1 = 9(2x ) is an example of
30. Simplify log2 3 log3 4 log4 5 log5 6 log6 7 log7 8
A. Linear equation
A. 2 B. 4 C. 8 D. 10
B. Quadratic equation
31. 1 − sin 245◦ = √
C. Exponential equation
A. 12 B. 1 C. 0 D. 3 D. Simultaneous equation.
2

44. cos(−60 ◦) =
32. Find the ranges of values of k which the equation √ √
x2 + (k − 3)x + k = 0 has real distinct roots A. 2−3 B. 12 C. 2
3
D. −1
2
A. k > 1, k > 9 B. k < 1, k > 9
C. k > −1, k > 9 D. k > 1, k > −9 45. 1◦ is
A. π B. 0.046 C. 0.1746 D. 0.01746
33. Given that 2(x/2) = 32, find x
A. 2 B. 3 C. 8 D. 7 Given that |Z − 1 + 2i| = 2 the locus of a circle.
Use the information to answer question 46 − 48
If Z = −1 + i = x + iy, where Z = r(cos ϕ +
i sin ϕ). Using this information answer questions 46. Find the equation of the circle
34 − 36. A. x2 − y 2 − 2x + 4y + 1 = 0
B. x2 + y 2 − 2x − 4y + 1 = 0
value of r
34. Find the √ C. x2 + y 2 − 2x + 4y − 1 = 0
A. 2 B. 2 C. 4 D. 5 D. x2 + y 2 − 2x + 4y + 1 = 0

2
47. Find the radius of the above circle 63. Find the missing number: 2, 5, 9, 14, −, 27.
A. 3 B. 1 C. 2 D. 4 A. 19 B. 20 C. 21 D. 22

48. Find the center of the circle 64. Which of the following is equal to x24 for all posi-
A. (1,2) B. (1,-2) C. (-1,2) D. (-1,-2) tive values of x?
A. x12 + x12 B. (−x12 )−2 C. (x6 )6
49. The nth roots of complex number is given by
1 θ 1 θ+2πk D. (x72 )1/3
A. zk = r n ei( n ) B. zk = r n ei( −n )
1 θ+2πk 1 θ−2πk
C. zk = r n ei( n ) D. zk = r n ei( n ) 65. For what value of x is 82x−4 = 16x ?
A. 2 B. 3 C. 4 D. 6
50. Evaluate log32 ( 12 )
A. −1
5 B. 15 C. 23 D. 1
2 66. 50100 = k(10050 ), what is the value of k?
A. 250 B. 2550 C. 5050 D. ( 12 )50
51. If an angle of an 60◦ and the length of arc is 20cm.
Find the radius of the circle from which arc is inter- 67. The remainder when 599 is divided by 13 is
cepted. A. 6 B. 8 C. 9 D. 10
A. 18.08cm B. 17.07cm C. 19.09cm D. 18cm
( ) c
68. If (7a )(7b ) = 77d , what is d in terms of a, b and c?
52. If γ, δ are roots of the equation log 3x2 + 2bx − 5 c
A. ab B. c − a − b C. a + b − c D. a+b c
= 1.The sum and product of the roots are
A. −2b −2b
3 , 3 B. 3 , −5 C. 3 , −3 D. 3 , 3
2b 2b
69. Which of the following is equal to (78 × 79 )10
53. If (0.25)y = 32, find the value of y. A. 49820 B. 782 C. 7170 D. 49170
A. y = −52 B. y = −3 2 C. y = 32 D. y = 5
2
70. For every natural number n, n(n + 1) is always
54. If we start to rotate and after completing one revo- A. Even B. Odd C. Multiple of 3
lution again initial side overlap with terminal side, D. Multiple of 4
then the angle formed is
A. 0◦ B. 180◦ C. 90◦ D. 360◦ 71. Find the value of log2 8 + log5 125.
A. 3 B. 2 C. 5 D. 6
55. Simplify: log 6 − 3 log 3 + 23 log 27.
A. 3log 2 B. log 2 C. log 3 D. 2log3 72. If 32a+b = 16a+2b , then a =
A. b B. 2b C. 3b D. b + 2
Given that Z = 1 + 2i, the square root Z is de-
termine. Use the information to answer 56 − 57. 73. 41, 40, 38, 35, 31, a. Find a
A. 24 B. 26 C. 28 D. 30
56. The√first root of Z is √ √
−θ
74. Find the value of i64 − 2i−64
θ θ θ
A. 6ei( 2 ) B. 5ei( 2 ) C. 6ei( 2 ) D. 5ei( 2 )
A. 1 B. -2 C. -1 D. 0
57. The magnitude
√ of
√ this complex number is ( )5
A. 5 B. 6 C. 5 D. -6 75. Find the fourth term of the expansion 1 + x12
A. 10x6 B. 10x5 C. 10x−6 D. 10x−5
58. If length of arc is 40 cm and radius of circle of arc
is 10 cm then find the angle made by the arc [ ]− 2
76. Simplify 278
3
= A. 49 B. 94 C. 23 D. 32
A. 720◦ B. 240◦ 51′ 53′′ C. 229◦ 10′ 59′′
D. 233◦ 11′ 48′′ 77. Given that log x = a and log y = b, find log xy n in
−2 3 −4 terms of a and b.
59. Simplify a b6 c × a3 b−3 9
c4 A. ab B. a + nb C. nab D. na + b
A. 23 a−5 b6 c−8 B. 23 a−5 b6 c−8 C. 23 a5 b6 c−8
D. 23 a−5 b−6 c−8 78. Which of the following is equal to log3 5?
log3 3 log5 3
60. (23 − 1)(23 + 1)(26 + 1)(212 + 1) = A. log 5 log 3
log 3 B. log 5 C. log 5 D. log 5
5 3

A. (224 − 1) B. (224 + 1) C. (248 − 1) ◦


D. (296 + 1) 79. Evaluate e−i90
A. 2 B. 0 C. i D. -i
(0.5)11
61. =
(0.5)9
A.0.0125 B. 0.025 C. 0.1 D. 0.25
80. The sum of an nth term of an A.P. is 2n + 3n2 . Find
62. If α, β are the roots of the equation 3x2 −4x+6 = 0. the common difference and the 3rd term of the se-
Find α3 β + αβ 3 quence.
A. -12.67 B. 12.67 C. -12 D. 12 A. 4,15 B. 6,15 C. 6,17 D. 5,15

3
81. If A, B, C are subsets of the same universal set then, ( )
A. A − (B − C) = (A − B) ∪ (A − C) 1 + 2n −4n
Given that An = ,
B. B − (A − C) = (B − A) ∪ (B − C) n 1 − 2n
C. (A − B) − C = ϕ
D. (B − C) ∩ A = ϕ 92. find(A3k−1 ) ( )
1 + 3k −12k 6k − 1 4 − 12k
A. B.
If S(x) = 12 (ex − e−x ) and 3k 1 − 6k 3k − 1 1 − 6k
( ) ( )
C(x) = 12 (ex + e−x ). Use the given information 6k − 1 4 + 12k 6n + 1 4 + 12k
C. D.
to answer questions 82 − 84 3k − 1 2 − 3k 3n + 1 1 − 6k
( √ )
82. Find S ln(1 + 2)
√ √ 93. Rewrite
{ explicitly the element of }
A. 1 B. 2 C. 2 D. 3 Y = x : x3 + x2 − 4x − 4 = 0 for all values of
( √ ) x
83. Find C ln(1 + 2)
√ √ A. {x = 0, 4, −4} B. {x = −2, −1, 2}
A. 1 B. 2 C. 2 D. 3
C. {x = 0, 2, −4} D. {x = −1, 0, 2}
( √ ) ( √ )
84. Find S ln(1 + 2) + C ln(1 + 2)
√ √ √ If the universal set µ, such that µ =
A. 1 B.1 + 2 C. 2 + 2 D. 3 + 3
{1, 2, 3, 4, · · · 9} and subsets A = {1, 2, 3, 5},
If m is a positive even integer whose sum (2m + B = {2, 4, 7, 8, 9} and C = {3, 4, 7, 8, 9}.
1) + (2m + 3) + (2m + 5) + . . . + (4m − 1) is
divisible by 12. Assume that it is true n = 1, n = 2
94. What
[{ 1 is 1the ] of R if N (R)
} cardinality =
A ∪ B ∩ {B ∪ C}
and it is true it is also true for n = k. Use the given A. 4 B. 5 C. 6 D. 7
information to answer question 85&86.

85. Which of the following is the k th term of the series?


A. 3k 2 B. 6k 2 C. 4k D. 12k 2

86. Find the (k + 1)term of the above series.


A. 3(k + 1)2 B. 12(k + 1)2 C. 4(k + 1)
D. 12(k − 1)2

If m is a positive even integer whose sum (2m +


1) + (2m + 3) + (2m + 5) + . . . + (4m − 1) is
divisible by 3. Assume that it is true n = 1, n = 2
Use the above venn diagram to answer questions
and it is true it is also true for n = k. Use the given
95 − 100.
information to answer question 87&88.
95. What is the set notation for 1?
87. Which of the following is the k th term of the series?
A. P ∩ Qc ∩ Rc B. Q ∩ P c ∩ Rc
A. 3k 2 B. 3(k − 1)2 C. 3k D. 12k 2
C. R ∩ P c ∩ Qc D. P ∩ Q ∩ R
88. Find the (k + 1)term of the above series.
96. What is the set notation for 2?
A. 3(k + 1)2 B. 12(k + 1)2 C. 4(k + 1)
A. P ∩ Q ∩ Rc B. Q ∩ P c ∩ Rc
D. 12(k − 1)2
C. R ∩ P c ∩ Qc D. P ∩ Q ∩ R
In a given quadratic equation ex2 + f x + g = 0. 97. What is the set notation for 3?
Use the given information to answer 89 − 91. A. P ∩ Qc ∩ Rc B. Q ∩ P c ∩ Rc
C. R ∩ P c ∩ Qc D. P ∩ Q ∩ R
89. The roots of the given equation will be distinct if
A. b2 − 4ac > 0 B. b2 − 4ac < 0 98. What is the set notation for 4?
C. f 2 − 4eg > 0 D. f 2 − 4eg < 0 A. P ∩ Qc ∩ Rc B. Q ∩ R ∩ P c
C. R ∩ P c ∩ Qc D. P ∩ Q ∩ R
90. The roots of the given equation will be equal roots
if 99. What is the set notation for 5?
A. f 2 − 4eg = 0 B. b2 + 4ac = 0 A. P ∩ Qc ∩ Rc B. Q ∩ P c ∩ Rc
C. b2 − 4ac = 0 D. f 2 + 4eg < 0 C. R ∩ P c ∩ Qc D. P ∩ Q ∩ R

91. The given equation will have no roots if 100. What is the set notation for 6?
A. b2 − 4ac > 0 B. b2 − 4ac < 0 A. P ∩ Qc ∩ Rc B. Q ∩ P c ∩ Rc
C. f 2 − 4eg > 0 D. f 2 − 4eg < 0 C. P ∩ R ∩ Qc D. P ∩ Q ∩ R

You might also like