LT Grade Mathematics Practice
LT Grade Mathematics Practice
Øewefkeäšme yegkeâ
JÙeeKÙee meefnle nue
ØeOeeve mecheeokeâ
S. kesâ. cenepeve
mecheeove SJeb mebkeâueve
Sue.šer. hejer#ee efJeMes<e%e meefceefle
keâchÙetšj «eeefHeâkeäme
yeeueke=â<Ce, Ûejve efmebn
mebheeokeâerÙe keâeÙee&ueÙe
12, ÛeÛe& uesve, ØeÙeeiejepe-211002
9415650134
Email : yctap12@gmail.com
website : www.yctbooks.com/www.yctfastbook.com/www.yctbooksprime.com
© All rights reserved with Publisher
ØekeâeMeve Iees<eCee
ØeOeeve mecheeokeâ SJeb ØekeâeMekeâ Deevevo kegâceej cenepeve ves Printed by Digital mes cegefõle keâjJeekeâj,
JeeF&.meer.šer. heefyuekesâMevme Øee. efue., 12, ÛeÛe& uesve, ØeÙeeiejepe-211002 kesâ efueS ØekeâeefMele efkeâÙee~
Fme hegmlekeâ keâes ØekeâeefMele keâjves ceW mecheeokeâ SJeb ØekeâeMekeâ Éeje hetCe& meeJeOeeveer yejleer ieF& nw
efHeâj Yeer efkeâmeer $egefš kesâ efueS Deehekeâe megPeeJe SJeb menÙeesie meeoj Dehesef#ele nw~
` 595/-
efkeâmeer Yeer efJeJeeo keâer efmLeefle ceW vÙeeefÙekeâ #es$e ØeÙeeiejepe nesiee~
efJe<eÙe-metÛeer
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie Sue.šer. «es[-hejer#ee, 2018 ieefCele JÙeeKÙee meefnle nue ........................... 5-29
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-1 JÙeeKÙee meefnle nue .................... 30-55
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-2 JÙeeKÙee meefnle nue .................... 56-79
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-3 JÙeeKÙee meefnle nue .................. 80-103
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-4 JÙeeKÙee meefnle nue ................ 104-126
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-5 JÙeeKÙee meefnle nue ................ 127-150
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-6 JÙeeKÙee meefnle nue ................ 151-176
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-7 JÙeeKÙee meefnle nue ................ 177-200
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-8 JÙeeKÙee meefnle nue ................ 201-225
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-9 JÙeeKÙee meefnle nue ................ 226-248
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie (LT Grade) ieefCele Øewefkeäšme mesš-10 JÙeeKÙee meefnle nue .............. 249-272
efJe<eÙe–ieefCele
1- Algebra
Theory of equations, A.P., G.P. and H.P., sum of squares and cubes of natural numbers,
permutation and combination, binomial theorem, exponential and logarithmic series. Algebra of
sets, relation and function, types of relations, equivalence relation, types of functions, composition
of functions, inverse of a function, binary operations on a set, group, subgroup, normal subgroup,
quotient group, cyclic group, order of an element in a group, permutation group, even and odd
permutations, Lagrange's theorem and its consequences, group homomorphism. Determinants,
types of matrices, algebraic operations on matrices, symmetric and skew symmetric matrices,
Hermitian and skew Hermitian matrices, inverse of a matrix, rank of a matrix, application of
matrix in solving system of linear equations, eigen values, eigen vectors of a matrix, Cayley-
Hamilton's theorem and its applications.
2
yeerpeieefCele
meceerkeâjCe efmeæevle, meceevlej iegCeesòej SJeb njelcekeâ ßesefCeÙeeB, Øeeke=âeflekeâ mebKÙeeDeeW kesâ JeieeX SJeb IeveeW keâe Ùeesie,
keâceÛeÙe SJeb mebÛeÙe, efÉheo ØecesÙe, ÛejIeeleebkeâerÙe SJeb ueIegieCekeâerÙe ßesefCeÙeeB~
mecegÛÛeÙe keâe yeerpeieefCele mecyevOe SJeb heâueve, mebyebOeeW kesâ Øekeâej, leguÙelee mebyebOe, heâueveeW kesâ Øekeâej, heâueveeW keâe
mebÙeespeve, Øeefleueesce heâueve, mecegÛÛeÙe hej efÉDeeOeejer mebef›eâÙeeÙeW, mecetn, Ghemecetn, ØemeeceevÙe mecetn, DeebefMekeâ mecetn,
Ûe›eâerÙe mecetn, mecetn kesâ DeJeÙeJe keâer keâesefš, ›eâceÛeÙe mecetn, mece SJeb efJe<ece ›eâceÛeÙe, uee«eebpe ØecesÙe Deewj Fmekesâ
heefjCeece, mecetn meceekeâeefjlee~
meejefCekeâ mecetn kesâ Øekeâej, DeeJÙetneW hej yeerpeieefCeleerÙe mebef›eâÙeeÙeW, meceefcele SJeb efJe<ece meceefcele DeeJÙetn, nefce&šerÙe SJeb
efJe<ece nefce&šerÙe DeeJÙetn, DeeJÙetn keâe Øeefleueesce, DeeJÙetn keâer peeefle, DeeJÙetn keâe jsKeerÙe meceerkeâjCeeW kesâ efvekeâeÙe keâes
nue keâjves ceW DevegØeÙeesie, DeeJÙetn kesâ DeeF&iesveceeve SJeb DeeF&iesve meefoMe, kewâues nwefieušve ØecesÙe Deewj Fmekesâ DevegØeÙeesie~
2- Real Analysis
Sequence of real numbers, bounded and monotonic sequences, convergent sequences, convergence
of series of positive terms, comparison test Cauchy's nth root test, ratio test, Raabe's test,
logarithmic test, De Morgan and Bertrand test, alternating series and Leibnitz test.
JeemleefJekeâ efJeMues<eCe
JeemleefJekeâ mebKÙeeDeeW kesâ Deveg›eâce, heefjyeæ SJeb Skeâefo° Deveg›eâce, DeefYemeejer Deveg›eâce, Oeveelcekeâ heoeW keâer ßesefCeÙeeW
keâe DeefYemejCe, legueveelcekeâ hejer#eCe, keâeMeer keâe nJeeb cetue hejer#eCe, Devegheele hejer#eCe, jyes hejer#eCe, ueIegieCekeâerÙe
Deewj o ceeie&ve SJeb yešxC[ hejer#eCe, Skeâevlej ßesCeer SJeb uewyeefvešdpe hejer#eCe~
3- Vector Analysis
Operations with vectors, scalar and vector product of two and three vectors and its applications,
vector differentiation, gradient, divergence and curl.
meefoMe efJeMues<eCe
meefoMeeW hej mebef›eâÙeeÙeW, oes Deewj leerve meefoMeeW keâe DeefoMe SJeb meefoMe iegCeve Deewj Gvekesâ DevegØeÙeesie, meefoMe
DeJekeâueve, «esef[Ùevš, [eF&Jepexvme SJeb keâue&~
4- Complex Analysis
Complex numbers, functions of a complex, variable, De-Moivre's theorem and its applications, nth
roots of unity exponential, direct and inverse trigonometric, hyperbolic and logarithmic functions
of a complex Variable. Continuity and differentiability of complex functions, Cauchy-Riemann
equation, analytic functions, harmonic functions.
meefcceße efJeMues<eCe
meefcceße mebKÙeeÙeW, Skeâ meefcceße Ûej kesâ heâueve, o ceeÙeJej ØecesÙe Deewj Fmekesâ DevegØeÙeesie, F&keâeF& kesâ nJeW cetue, Skeâ
meefcceße heâueve kesâ Ûej Ieeleebkeâer, meerOes SJeb JÙegl›eâce ef$ekeâesCeefceleerÙe, neF&hejyeesefuekeâ SJeb ueIegkeâCekeâerÙe heâueve, meefcceße
heâueveeW keâer meeblÙelee SJeb DeJekeâueveerÙelee, keâeMeer jerceeve meceerkeâjCe, JewMuesefMekeâ heâueve, ØemebJeeoer heâueve~
3
5- Calculus
Limit of a function, continuity and differentiability, Rolle's theorem, Langrange's mean value
theorem, L'Hospital rule, successive differentiation, tangent and normal, maxima and minima
increasing and decreasing functions. Limit, continuity and differentiability of function of two
variables, partial differentiation. Methods of integration, definite integrals, application of
integration to find area bounded by curves, length of a curve, surface area and volumes of solids of
revolution.
Solutions of differential equations of first order and of first degree.
heâueve
heâueve keâer meercee, meeblelÙelee SJeb DeJekeâueveerÙelee jesue keâe ØecesÙe, uee«eevpe keâe ceOÙeceeve ØecesÙe, ueeefheleeue efveÙece,
Gòejesòej DeJekeâueve, mheMeea SJeb DeefYeuecye, GefÛÛe‰ SJeb efveefcve‰, JeOe&ceeve Je Üemeceeve heâueve, oes ÛejeW kesâ heâueve
keâer meercee, meeblelÙelee SJeb DeJekeâueveerÙelee, DeebefMekeâ DeJekeâueve, meceekeâueve keâer efJeefOeÙeeB, efveef§ele meceekeâue, Je›eâeW
Éeje heefjyeæ #es$eheâue, Je›eâ keâer uecyeeF&, IetCe&ve Éeje yeves "esmeeW keâe he=‰erÙe #es$eheâue SJeb DeeÙeleve keâes %eele keâjves ceW
meceekeâueve keâe DevegØeÙeesie~
6- Geometry
General equation of second degree and its classification as pair of straight lines, circle, parabola,
ellipse and hyperbola, Asymptotes of hyperbola, Transferring of origin and rotation of axis.
Direction cosines and direction ratio's of a line, Cartesian and Vector equation of a plane Cartesian
and vector equation of line, coplanar and skew lines, shortest distance between two lines, angle
between two planes, two lines, a line and a plane, distance of a point from a plane, sphere, cone
and cylinder.
pÙeeefceefle
efÉleerÙe Ieele kesâ JÙeehekeâ meceerkeâjCe leLee Fmekeâe jsKeeÙegice, Je=òe, hejJeueÙe, oerIe&Je=òe SJeb DeeflehejJeueÙe kesâ ™he ceW
JeieeakeâjCe, DeeflehejJeueÙe kesâ DevevlemheMeea, cetue efyevog keâe efJemLeeheve SJeb efveoxMeebkeâ De#eeW keâe IetCe&ve, jsKee keâer
efokedâkeâespÙeeÙeWb SJeb efokedâDeveghee, meceleue keâe keâeleeaÙe SJeb meefoMe meceerkeâjCe, jsKee keâe keâeleeaÙe SJeb meefoMe meceerkeâjCe,
meceleueerÙe SJeb DemeceleueerÙe jsKeeSb, oes jsKeeDeeW kesâ yeerÛe keâer vÙetvelece otjer, oes meceleueeW kesâ yeerÛe, oes jsKeeDeeW kesâ
yeerÛe, Skeâ jsKee SJeb Skeâ meceleue kesâ yeerÛe kesâ keâesCe, Skeâ efyevog keâer Skeâ meceleue mes otjer, ieesuee, Mebkegâ SJeb yesueve~
7- Statistics and Probability
Frequency distribution, Graphical representation of statistical data, Measures of central tendency –
Mean, median and mode of grouped and ungrouped data. Theorems on addition and Multiplication
of probability.
meebefKÙekeâer SJeb ØeeefÙekeâlee
yeejbyeejlee yebšve, meebefKÙekeâerÙe DeebkeâÌ[eW keâe DeeuesKeerÙe efve™heCe, kesâvõerÙe ØeJe=efòe keâer ceeheW, meecetefnkeâ leLee Demeecetefnkeâ
DeebkeâÌ[eW kesâ ceeOÙe, ceeefOÙekeâe SJeb yenguekeâ, ØeeefÙekeâlee kesâ Ùeesie SJeb iegCeve keâer ØecesÙe~
4
Gòej ØeosMe ueeskeâ mesJee DeeÙeesie Sue.šer. «es[ hejer#ee, 2018
ieefCele
JÙeeKÙee meefnle nue ØeMve-he$e
1. If the maximum and minimum values of 3. Given that the set Z of integers forms a group
( 5 + 6cos θ + 2cos 2θ ) satisfy the quadratic under the binary operation *, defined by
a*b = a + b + 1; a, b∈Z
equation x 2 − px + q = 2 , then p, q are The inverse of –2 in the group is
respectively efoÙee ieÙee nw efkeâ hetCeeËkeâ mebKÙeeDeeW keâe mecegÛÛeÙe Z,
Ùeefo ( 5 + 6cos θ + 2cos 2θ ) kesâ DeefOekeâlece Deewj efÉ-DeeOeejer mebef›eâÙee *, pees a*b = a + b + 1; a, b∈Z
vÙetvelece ceeve, efÉIeele meceerkeâjCe x 2 − px + q = 2 keâes Éeje heefjYeeef<ele nw, kesâ meehes#e Skeâ mecetn yeveelee nw~ Fme
mebleg° keâjles nQ, lees p, q nQ, ›eâceMe: mecetn ceW –2 keâe Øeefleueesce nw
(a) 13, 12 (b) 12, 13 (a) 2 (b) 4
(c) –2 (d) 0
(c) 14, 13 (d) 13, 14
Ans : (d) For the binary operation
Ans : (*) y = 5 + 6 cosθ + 2cos2θ
a*b = a + b + 1; a, b∈Z
= 5 + 6 cosθ + 2 (2 cos2θ –1) defined on Z let e ∈ Z be the identity element then
= 5 + 6 cosθ + 4 cos2θ – 2 aοe = a
= 4 cos2θ + 6 cosθ + 3 ⇒ a+e+1 = a
= (2 cosθ + 3/2)2 – 9/4 + 3 ⇒ e = –1
= (2 cosθ + 3/2)2 + ¾ Now if a–1 is the inverse of a then
Now maximum value of y aoa–1 = e
ymax = ( 2 + 3/2)2 + 3/4 = 13 ⇒ a + a–1 + 1= –1
and minimum value of y ⇒ a–1= –2–a
ymin = 3/4 and hence (–2)–1 = –2+2 = 0
Now if these satisfy x2 – px + q = 2 then 4. The sum of first ten terms of the series
132 – 13p + q = 2 …(i) 1 1 1
& (3/4)2 – 3/4p + q = 2 …(ii) + + + .... is
21 77 165
9 3p
⇒ 169 − − 13p + =0 1 1 1
16 4 ßesCeer + + + .... kesâ ØeLece ome heoeW keâe Ùeesie
21 77 165
49p 2695 nw
⇒ =
4 16 10 20
2695 55 47 (a) (b)
⇒ p= = and q = 129 129
49 × 4 4 4 30 40
(c) (d)
2. The sum of the series 72 + 70 + 68 + .... + 40 is 129 129
ßesCeer 72 + 70 + 68 + .... + 40 keâe Ùeesieheâue nw 1 1 1
(a) 950 (b) 952 Ans : (d) + + + ... +
21 77 165
(c) 954 (d) 956
1 1 1
Ans : (b) 72, 70, 68, ..., 40 is an arithmetic progression 3 × 7 + 7 × 11 + 11× 15 + ...
with first term a = 72, common difference d= –2, and
last term l = 40 then th 1
hence 10 term is
l = a + (n – 1)d 39 × 43
⇒ 40 = 72 + (n –1) (– 2) 1 1 1 1
Therefore, + + + ... +
⇒
−32
= n −1 3 × 7 7 × 11 11 × 15 39 × 43
−2 1 4 4 4 4 4
⇒ n = 17 = − + − + ... +
4 3 7 7 11 43
n
∴ Sn = 72 + 70 + 68 + ... + 40 = [ a + ℓ ] 1 4 4
2 = −
17 17 ×112 4 3 43
= [ 72 + 40] = 1 40 × 4 40
2 2 = × =
⇒ Sn = 952 4 129 129
log 2 ( x + 3 ) 8
7. The domain of the function f ( x ) =
x 2 + 3x + 2 9. The least order of non-Abelian group is
is Deve-Deeyesueer mecetn keâer vÙetvelece keâesefš nw
log ( x + 3 )
heâueve f ( x ) = 2 2 keâe Øeevle nw (a) 4 (b) 5
x + 3x + 2 (c) 6 (d) 8
(a) R – {–1,–2} (b) (–2, ∞) Ans : (c) Group of order 1 is the trivial group and
(c) R–{–1,–2,–3} (d) (–3,∞)–{–1,–2} hence is Abelian. Groups of order 2, 3 and 5 are of
log 2 ( x + 3) prime order and hence are Abelian.
Ans : (d) For f ( x ) = 2 we must have
x + 3x + 2 Group of order 4 are of the form p2, hence abelian.
x + 3> 0 Group of order 6 is non-Abelian. Hence, minimum
x > −3 ⇒ x ∈ (−3, ∞) order of a non-Abelian group is 6.
1 1 1 2
f ( − x ) = cos − x = cos x = f ( x )
⇒ f x − = x − x − + 3
x x x
& g ( − x ) = sin − x = sin x = g ( x )
Therefore, f(1) = (1) (3+1) = 4 hence f and g both are even functions.
15. For the equation |x2|+|x|–6=0 1 x x2
meceerkeâjCe |x2|+|x|–6=0 kesâ efueS
(a) there is only one root /kesâJeue Skeâ cetue nw
18. If f ( x ) = x x2 1 then the value of f ( 3)3
x2 1 x
(b) the sum of roots is –1/cetueeW keâeÙeesie –1 nw
is
(c) the product of roots is –4
1 x x2
cetueeW keâe iegCeveheâue –4 nw
(d) there are four roots /Ûeej cetue nQ Ùeefo f ( x ) = x x 2 1 lees f ( 3 3 ) keâe ceeve nw
2 x2 1 x
Ans : (c) x + x − 6 = 0
(a) –6 (b) 6
2
x +3 x −2 x −6 = 0 (c) 4 (d) –4
x { x + 3} − 2{ x + 3} = 0 Ans : (d)
1 x x2
{ x + 3}{ x − 2} = 0 f (x) = x x2 1
|x| = –3 (mecYeJe veneR) x 2
1 x
|x| = 2
lees x= ±2 = 1( x 3 − 1) − x ( x 2 − x 2 ) + x 2 ( x − x 4 )
Dele: cetueeW keâe iegCveheâue –4 nesiee~ ⇒ f ( x ) = x3 − 1 + x3 − x6
( 3 ) = ( 3)
1 1 1
16. If the roots of the equation
− 1 + ( 3) 3 − ( 3) 3
×3 ×3 ×6
⇒f 3 3
( a − b ) x 2 + ( c − a ) x + (b − c) = 0 are equal then
= 3–1+3–9
a, b, c are in
= –4
Ùeefo meceerkeâjCe ( a − b ) x + ( c − a ) x + (b − c) = 0 19. Let R be a relation on a set A and Let I denote
2
A
kesâ cetue yejeyej neW, lees a, b, c nQ the identity relation on A. Then R is
(a) arithmetic progression /meceevlej ßesÌ{er ceW antisymmetric, if and only if
(b) geometric progression /iegCeesòej ßesÌ{er ceW ceeve ueerefpeS efkeâ efkeâmeer mecegÛÛeÙe A hej R Skeâ mebyebOe
(c) harmonic progression /njelcekeâ ßesÌ{er ceW nw leLee ceeve ueerefpeS efkeâ IA, A hej lelmecekeâ mebyebOe keâes
(d) None of the above /GheÙeg&òeâ ceW mes keâesF& veneR oMee&lee nw~ leye R Øeeflemeceefcele nw, Ùeefo Deewj kesâJeue Ùeefo
(a) R=R–1
Ans : (a) Since, roots of the equation
(b) R∪R–1⊆IA
( a − b ) x 2 + ( c − a ) x + ( b − c ) = 0 are equal (c) R∩R–1⊆IA
∴ Discriminant, 2
B – 4AC = 0 (d) None of the above /GheÙeg&òeâ ceW mes keâesF& veneR
⇒ (c–a)2 –4(a–b) (b–c) = 0 Ans : (a) A relation R is antisymmetric iff whenever (x,
⇒ a2 + 4b2 + c2 + 2ac – 4ab – 4bc = 0 y) ∈ R, (y, x) ∉ R or iff whenever (x, y) and (y, x) are
⇒ (a + c – 2b)2 = 0 in R we must have x = y.
⇒ a + c = 2b Now if R= R–1 then we get x = y and hence R is
Hence, a, b, c are in A.P. antisymmetric.
( a.c ) b − ( a.b ) c = +
b c
ˆi ˆj Now,
kˆ 2 2
∂ ∂ ∂ 1 1 π
curl 3 =
r̂
⇒ a.c = ⇒ a c cos θ = ⇒θ =
r ∂x ∂y ∂z 2 2 4
x y z 1 1 3π
x 2 + y2 + z2 x 2 + y2 + z2 x 2 + y2 + z2
and a.b = − ⇒ a b cos θ = −
⇒ θ=
2 2 4
∂ z ∂ y 3π
= î 2 2
− 2 2 Thus the angle between a and b is .
∂y x + y + z ∂z x + y + z
2 2
4
∂ z ∂ x 35. If V1, V2, V3 are three non-zero vectors such that
− ĵ 2 2
− 2 2
∂x x + y + z ∂z x + y + z
2 2
V1 × V2 = V3 ,V2 × V3 = V1 then
∂ y ∂ x Ùeefo V1, V2, V3 leerve Ssmes DeMetvÙe meefoMe neW efkeâ
+ k̂ 2 2
− 2
∂x x + y + z ∂y x + y + z
2 2 2
V1 × V2 = V3 ,V2 × V3 = V1 lees
=0
r̂ (a) V1 = V2 (b) V2 = V3
therefore 3 is irrotational.
r (c) V1 = V3 (d) V2 = V1 × V3
( )
2 n →∞ n →∞
then, V3 . V1 × V2 = V3 .V3 = V3 1
2 iπ 2
⇒ V3 , V1 , V2 = V3
1
1−
2
=e 2
= eiπ = −1
or V1 , V2 , V3 = V3 u ( x,y ) + iv ( x,y ) , for z ≠ 0
38. If f ( z ) =
and similarly V2 × V3 = V1 gives 0 , for z = 0
2
V1 , V2 , V3 = V1 x3 − y 3 x3 + y 3
where u ( x, y ) = , v ( x, y ) =
2 2 x2 + y2 x2 + y 2
so, V1 = V3
f ( z ) − f (0)
⇒ V1 = V3 then the value of lim
z →0 z−0
along y=x,
will be
z−3
36. The equation = 2 represents u ( x,y ) + iv ( x, y ) , z≠0 hej
z+3 Ùeefo f ( z ) = peneB
0 , z=0 hej
Z−3
meceerkeâjCe = 2 JÙeòeâ keâjlee nw x − y3
3
x3 + y 3
z+3 u ( x, y ) = , u ( x, y ) = 2 ,
(a) a parabola /Skeâ hejJeueÙe x +y
2 2
x + y2
(b) a hyperbola /Skeâ DeeflehejJeueÙe f ( z ) − f (0)
(c) a circle /Skeâ Je=òe lees lim keâe ceeve, y=x kesâ efueS nesiee
z →0 z−0
(d) an ellipse /Skeâ oerIe&Je=òe 1− i
(a) 1-i (b)
z−3 2
Ans : (c) We have = 2 ; z = x + iy.
z+3 1+ i
(c) 1+i (d)
x + iy − 3 2
⇒ =2
x + iy + 3 u ( x, y ) + iv ( x, y ) , for z ≠ 0
Ans : (d) If f ( z ) =
( x − 3) + y 2
2
0 , for z = 0
⇒ =4
( x + 3) + y 2 x 3 − y3 x 3 + y3
2
where u ( x, y ) = , v ( x, y ) = then
⇒ x 2 + 9 − 6x + y 2 = 4x 2 + 36 + 24x + 4y 2 x 2 + y2 x 2 + y2
⇒ x 2 + y 2 + 10x + 9 = 0 f (z) − f (0)
lim
which represents a circle.
z →0 z−0
x − y + ix + iy3
3 3 3
π π = lim
37. If xn = cos n + i sin 2n ,n ∈ N, then z →0 x 2 + y2
2 ( x + iy )
lim ( x1 .x 2 .x 3 ...xn ) is
n →∞ and if y = x
π π x 3 − x 3 + ix 3 + ix 3
Ùeefo x n = cos n + i sin n ,n ∈ N, lees = lim
2 2 x →0
(x 2
+ x 2 ) ( x + ix )
lim ( x1 .x 2 .x 3 ...xn ) nw
n →∞ 2ix 3
= lim
(a) 0 (b) –1 x → 0 2x 3 (1 + i )
(c) 1 (d) 2
π π i i +1
Ans : (b) If x n = cos n + i sin n , n ∈ N then = lim =
2 2
x →0 (1 + i ) 2
we have 4π 4π
π 39. If a = cos + i sin , then the value of
π π i 3 3
x1 = cos + i sin = e 2
2 2 1+a
3n
π π i
π 2 is
x 2 = cos + i sin = e 4
4 4 4π 4π 1+a
3n
π π
π
i 2n
Ùeefo a = cos + i sin , nes, leye keâe
x n = cos n + i sin n =e
3 3 2
2 2 ceeve nw
UP LT Grade Maths 2018 12 YCT
1 z−3
( −1)
n
(a) (b) 42. If z= x+iy, where i = −1, then =2
23n z+3
( −1)
n
represents a circle, whose centre and radius,
( −1)
n
(c) (d) +1
23n respectively, are
4π 4π
3n
z−3
1 + cos 3 + i sin 3
Ùeefo z= x+iy peneB i = −1, lees = 2 Skeâ Je=òe
1+ a
3n
z+3
Ans : (c) =
2 2 efve®efhele keâjlee nw, efpemekeâe kesâvõ Deewj efpemekeâer ef$epÙee
nQ, ›eâceMe:
π π
3n (a) (5, 0), 5 (b) (–5, 0), 2
1 + cos π + + i sin π + (c) (–5, 0), 3 (d) (–5, 0), 4
3 3
= z −3
2 Ans : (d) z= x+iy then = 2 gives
z+3
3n x − 3 + iy
π π
3n
1 3 =2
1 − cos 3 − isin 3 1 − − i x + 3 + iy
= = 2 2
⇒ x 2 + 9 − 6x + y 2 = 4x 2 + 36 + 24x + 4y 2
2 2
⇒ 3x 2 + 3y 2 + 30x + 27 = 0
3n
1 3 ⇒ x 2 + y 2 + 10x + 9 = 0
−i 1 π π
3n
2 2
Ùeefo ω( ≠ 1) FkeâeF& keâe Ievecetue nes, lees
( −1)
n
= 3n
2 {(1 − ω + ω ) + (1 + ω − ω ) − 32} keâe ceeve nw
2 5 2 5
40. If ω ( ≠ 1) is cube root of unity, then the value of (a) 0 (b) –32
(c) 32 (d) –64
(1 + ω + 2 ω ) − ( 1 + ω + 2ω )
2 3n 2 3n
is
lees Ans : (a) (1 − ω + ω ) + (1 + ω − ω ) − 32
2 5 2 5
(c) ω (d) ω2
= −32ω2 − 32ω − 32
Ans : (a) (1 + ω2 + 2ω) − (1 + ω + 2ω2 )
3n 3n
= −32 ( ω + ω2 ) − 32
= ( −ω + 2ω) − ( −ω + 2ω )
2 3n
3n 2 2
{∵ 1+ω+ω =0}
= 32–32 = 0
= ( ω) − ( ω 2 3n
)
3n
44. The value of 3 − 4i is
= (ω 3 n
) − (ω ) 3 2n 3 − 4i keâe ceeve nw
= 1 –1 n 2n (a) 2+i (b) 1+i
=0 (c) 1–i (d) 2–i
41. If θ is real, then /Ùeefo θ JeemleefJekeâ nw, lees Ans : (d) We have z = x + iy and if z = 3 – 4i then
(a) cos(iθ)= i cosh θ (b) sin(iθ)= i sinh θ z 2 = 3 – 4i ⇒ x 2 – y 2 = 3 & 2xy= – 4
(c) tan(iθ)= i tanh θ (d) cot(iθ)= i coth θ
4 2
Ans : (b,c,d) cosh θ = cos (iθ) ⇒ x2 – 2
= 3 ( because y = – )
sinh θ = – i sin (iθ) ⇒ sin (iθ) = i sinh θ x x
tanh θ = –i tan (iθ) ⇒ tan (iθ) = i tanh θ ⇒ either x = ±2 and either y = ∓ 1
⇒ cot (iθ) = i coth θ ⇒z=2–i
Then,
1 1
( −8i ) 3 = −2 × ( i ) 3 Yeer JewMuesef<ekeâ veneR nw
1 (b) f ( z ) = z 2 is analytic everywhere.
π π
f ( z ) = z 2 meJe&$e JewMuesef<ekeâ nw
3
= −2 × cos + isin
2 2
(c) f ( z ) = z is analytic at z=0
2
1
π π 3
= −2 × cos + 2nπ + isin + 2nπ f ( z ) = z , z=0 hej JewMuesef<ekeâ nw
2
2 2
(d) f ( z ) = e z is analytic everywhere.
π 2nπ π 2nπ
= −2 × cos + + i sin +
6 3 6 3 f ( z ) = e z meJe&$e JewMuesef<ekeâ
for n = 0, 1, 2 Ans : (c) Let z = x + iy ∈ C and x, y, ∈ R and
f ( z ) = u ( x, y ) + iv ( x, y ) .
1
( −8i ) 3 = 2i, − 3 − i, 3 − i
(a) Now if f(z) = z = x – iy then
z −1
47. If Im = −4 then the locus of z is u (x, y) = x and v(x, y) = –y
2z + 1
⇒ u x = 1 ≠ v y = – 1and v x = 0 = −u y
z −1
Ùeefo Im = −4 nes, lees z keâe efyevogheLe nw hence all the partial derivatives exist and are continuous
2z + 1 in R but Cauchy-Riemann equations are not satisfied.
(a) an ellipse /Skeâ oerIe&Je=òe Therefore, f(z) is nowhere analytic function.
(b) a parabola /Skeâ hejJeueÙe (b) f(z) = z2 = (x + iy)2 = x2 – y2 + i2xy
(c) a straight line /Skeâ mejue jsKee ⇒ u (x, y) = x2 – y2 and v (x, y) = 2xy
(d) a circle /Skeâ Je=òe ⇒ ux = 2x = vy and vx = 2y = –(–2y) = –uy
⇒ x 2 + ( y + 1) > x 2 + ( y − 1)
2 2 Required area = ∫
0
( cos x − sin x ) dx
= [sin x + cos x ]0
π/ 4
⇒ y 2 + 1 + 2y > y 2 + 1 − 2y
⇒ 4y > 0 = 2 −1
⇒ y>0
Thus we must have Im z > 0. ax + b − 3 1
53. If lim = , then the value of a, b
3 x2
x→2 x−2 2
51. The value of ∫ −3 1 + 3 x
dx is will be
2 ax + b − 3 1
3 x Ùeefo lim = nes, lees a, b keâe ceeve nesiee
∫−3 1 + 3x dx keâe ceeve nw x→2 x−2 2
1 1 (a) a=b=3 (b) a≠b
(a) (b) (c) a=0, b=4 (d) a=2, b=1
3 9
(c) 3 (d) 9 ax + b – 3 1
2
Ans : (a) lim =
3 x x →2 x–2 2
Ans : (d) Let I=∫ dx
−3 1 + 3x Since denominator tends to 0 as x→2, numerator must
Putting x = –x tend to 0 as well because limit is finite and thus
3 ( −x )
2
2a + b – 3 = 0 ⇒ 2a + b = 3
I=∫ dx Now Using L’Hospital’s rule we get
1 + 3− x
−3
2 x
3 x 3 ax + b – 3 a 1
=∫ dx lim = lim. =
−3 1 + 3x x →2 x–2 x → 2
2 ax + b 2
Then a
⇒ = 1 ⇒ a = 2a + b = 3
x 2 (1 + 3x )
3 2a + b
2I = ∫ dx
−3 1 + 3x and hence b = 3.
= − ( x 2 + y2 + z2 ) .( x 2 + y2 + z2 )
−3 / 2
= − ( x 2 + y2 + z2 )
−1/ 2
= −u
56. The differential equation of the straight lines at
We have for f(x) = x that a fixed distance p from the origin is
f (x) – f (0) x cetueefyevog mes efveÙele otjer p hej mejue jsKeeDeeW keâe
lim = lim− – = −1 DeJekeâue meceerkeâjCe nw
x → 0− x x →0 x
( xy '− y ) = p 2 (1 + y '2 )
2
f (x) – f (0) x (a)
and lim+ = lim+ = 1
= p 2 (1 + y '2 )
x →0 x x →0 x
( xy '+ y )
2
(b)
and thus f(x) is not differentiable at x=0
( x − yy') = p 2 (1 + y'2 )
2
(II) If y = x|x| then (c)
x2 , x ≥ 0
( x + yy ') = p 2 (1 + y '2 )
2
y= 2 (d)
−x , x < 0
Ans : (a) If the straight line is at a fixed distance p then
x cos α + y sin α = p ...(i)
which on differentiating w.r.t. x gives
dy
cos α + sin α =0
dx
1 dy
⇒ tan α = − ∵ = y '
Now f is clearly differentiable at every non-zero x.
y' dx
1 −y '
At x = 0 we have ∴ sin α = , cos α = ...(ii)
f (x) – f (0) 1 + y'2
1 + y '2
lim– = lim– – x = 0
x →0 x x →0 From equation (i) and (ii), we get
f (x) – f (0) − xy ' y
and lim = lim+ x = 0 + =p
x → 0+ x x →0
1+ y ' 2
1 + y '2
therefore f(x) is differentiable at x = 0.
⇒ ( y − xy ') = p 2 (1 + y '2 )
2
1 ∂u ∂u ∂u
55. If = x 2 + y 2 + z 2 , then x +y +z is
u ∂x ∂y ∂z ⇒ ( xy '− y ) = p 2 (1 + y '2 )
2
equal to
1 ∂u ∂u ∂u 57. The solution of the differential equation
Ùeefo = x 2 + y 2 + z 2 , lees x +y +z dy dy
u ∂x ∂y ∂z y−x = a y2 + is
yejeyej nw dx dx