0% found this document useful (0 votes)
43 views9 pages

Supp Ex 1 Sol

This document contains solutions to supplementary exercises for a calculus course at The Chinese University of Hong Kong, focusing on trigonometry and identities. It includes conversions of angles from degrees to radians, calculations of trigonometric functions, and proofs of various trigonometric identities. The exercises cover a range of topics including product-to-sum formulas, double angle formulas, and triple angle formulas.

Uploaded by

Vanessa Wong
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
43 views9 pages

Supp Ex 1 Sol

This document contains solutions to supplementary exercises for a calculus course at The Chinese University of Hong Kong, focusing on trigonometry and identities. It includes conversions of angles from degrees to radians, calculations of trigonometric functions, and proofs of various trigonometric identities. The exercises cover a range of topics including product-to-sum formulas, double angle formulas, and triple angle formulas.

Uploaded by

Vanessa Wong
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MATHEMATICS
MATH1510 Calculus for Engineers (2020-2021)
Solution to Supplementary Exercise 1

Trigonometry

Change of Units

1. Fill in the blanks.


Ans:
π
15◦ = rad;
12
π
30◦ = rad;
6
π
45◦ = rad;
4
π
60◦ = rad;
3
π
90◦ = rad;
2

120◦ = rad;
3

150◦ = rad;
6
180◦ = π rad;

270◦ = rad;
2
360◦ = 2π rad .

Trigonometric Identities

2. Find tan 75◦ and express your answer in surd form.



tan 30◦ + tan 45◦ 3
+1 √
Ans: tan 75◦ = tan(30◦ + 45◦ ) = = 3
√ = 2+ 3.
1 − tan 30◦ tan 45◦ 1 − 33
3. Find cos 165◦ and sin 165◦ and express your answers in surd form.

1 + 3
Ans: cos 165◦ = cos(120◦ + 45◦ ) = cos 120◦ cos 45◦ − sin 120◦ sin 45◦ = − √ .
2 2

3−1
Similarly sin 165◦ = sin(120◦ + 45◦ ) = sin 120◦ cos 45◦ + cos 120◦ sin 45◦ = √ .
2 2
7π 7π
4. Find cos2 and sin2 and express your answers in surd form.
12 12
2

√ √
7π π π  π π π π 2− 6
Ans: cos = cos + = cos cos − sin sin =
12 3 4 3 4 3 4 4
√ √
7π 2− 3 7π 7π 2+ 3
⇒ cos2 = and sin2 = 1 − cos2 = .
12 4 12 12 4
5. By using the product to sum formula, express each of the following expressions as
a sum of trigonometric functions.
(a) cos 5x cos 3x;
1
Ans: cos 5x cos 3x = (cos 2x + cos 8x).
2
(b) sin 4x sin 2x;
1
Ans: sin 4x sin 2x = (cos 2x − cos 6x).
2
(c) sin 7x cos 3x.
1
Ans: sin 7x cos 3x = (sin 4x + sin 10x).
2
1
6. Show that sin 2x cos 3x cos 5x = (sin 4x − sin 6x + sin 10x).
4
Ans: By product-to-sum identities we have
1 1
sin 2x cos 3x cos 5x = sin 2x(cos 2x + cos 8x) = (sin 2x cos 2x + sin 2x cos 8x)
2 2
1
= (sin 4x − sin 6x + sin 10x).
4

1
7. Show that sin 3x sin 4x cos 5x = (− cos 2x + cos 4x + cos 6x − cos 12x).
4
Ans: By product-to-sum identities we have
1 1
sin 3x sin 4x cos 5x = (cos x − cos 7x) cos 5x = (cos x cos 5x − cos 7x cos 5x)
2 2 
1 cos 4x + cos 6x cos 2x + cos 12x
= −
2 2 2
1
= (− cos 2x + cos 4x + cos 6x − cos 12x).
4

cos(x + y) + cos(x − y)
8. Prove that = − cot y.
sin(x − y) − sin(x + y)
cos(x + y) + cos(x − y) 2 cos x cos y cos y
Ans: = =− = − cot y.
sin(x − y) − sin(x + y) −2 cos x sin y sin y
1 cos 2x cot 2y
9. Prove that = + .
tan(x + y) − tan(x − y) 2 sin 2y 2
Ans: Using product-to-sum and sum-to-product identities, we have
1 1
= sin(x+y) sin(x−y)
tan(x + y) − tan(x − y) −
cos(x+y) cos(x−y)
3

cos(x + y) cos(x − y)
=
sin(x + y) cos(x − y) − cos(x + y) sin(x − y)
1
{cos[(x + y) + (x − y)] + cos[(x + y) − (x − y)]}
= 2
sin[(x + y) − (x − y)]
cos 2x + cos 2y
=
2 sin 2y
cos 2x cot 2y
= +
2 sin 2y 2

x+y sin x + sin y


10. Prove that tan = .
2 cos x + cos y
sin x + sin y 2 sin x+y
2
cos x−y
2
sin x+y
2 x+y
Ans: = x+y x−y = x+y = tan .
cos x + cos y 2 cos 2 cos 2 cos 2 2
x
11. Let t = tan .
2
 x 2t
(a) By considering tan x = tan 2 · , show that tan x = .
2 1 − t2
 x 2 tan x2 2t
Ans: tan x = tan 2 · = 2 x
= .
2 1 − tan 2 1 − t2
(b) By using the result in (a), express sin x and cos x in terms of t.
x x x 2 x 2 tan x2 2t
Ans: sin x = 2 sin cos = 2 tan cos = 2 x
= , and cos x =
2 2 2 2 1 + tan 2 1 + t2
sin x 1 − t2
= .
tan x 1 + t2
(Remark: The result of this question will be useful for integration of trigonometric
function, called t-substitution.)
x 1 + cos x
12. Prove that cot = .
2 sin x
1 + cos x 2 cos2 x2 cos x2 x
Ans: = x x = x = cot .
sin x 2 sin 2 cos 2 sin 2 2
1 + cos x 1 + (1 − tan2 x2 )/(1 + tan2 x2 ) 2 x
Alternative method: = x 2 x
= x = cot .
sin x 2 tan 2 /(1 + tan 2 ) 2 tan 2 2
13. Prove the following identities:
3 − 4 cos 2x + cos 4x
(a) sin4 x = ;
8
Ans: Use double-angle formula twice and we have
2
1 − 2 cos 2x + cos2 2x

4 2 2 1 − cos 2x
sin x = (sin x) = =
2 4
1+cos 4x
1 − 2 cos 2x + 2
=
4
4

3 − 4 cos 2x + cos 4x
= .
8

10 sin x − 5 sin 3x + sin 5x


(b) sin5 x = ;
16
Ans: Make use of the identity in (a) and thus

16 sin5 x = 2 sin x · 8 sin4 x = 2 sin x(3 − 4 cos 2x + cos 4x)


= 6 sin x − 8 sin x cos 2x + 2 sin x cos 4x
= 6 sin x − 4(sin 3x − sin x) + (sin 5x − sin 3x)
= 10 sin x − 5 sin 3x + sin 5x.

10 sin x − 5 sin 3x + sin 5x


Therefore, sin5 x = .
16
3 + 4 cos 2x + cos 4x
(c) cos4 x = ;
8
Ans: Similar to (a),
2
1 + 2 cos 2x + cos2 2x

4 2 21 + cos 2x
cos x = (cos x) = =
2 4
1+cos 4x
1 + 2 cos 2x + 2
=
4
3 + 4 cos 2x + cos 4x
= .
8

10 cos x + 5 cos 3x + cos 5x


(d) cos5 x = ;
16
Ans: Similar to (b), we use the identity in (c) to derive that

16 cos5 x = 2 cos x · 8 cos4 x = 2 cos x(3 + 4 cos 2x + cos 4x)


= 6 cos x + 8 cos x cos 2x + 2 cos x cos 4x
= 6 cos x + 4(cos 3x + cos x) + (cos 5x + cos 3x)
= 10 cos x + 5 cos 3x + cos 5x.

10 cos x + 5 cos 3x + cos 5x


Therefore, cos5 x = .
16
3 − 4 cos 4x + cos 8x
(e) sin4 x cos4 x = ;
128  4
4 4 4 1 1
Ans: Since sin x cos x = (sin x cos x) = sin 2x = sin4 2x, we re-
2 16
place x by 2x in the identity of (a) to get
1 3 − 4 cos 4x + cos 8x 3 − 4 cos 4x + cos 8x
sin4 x cos4 x = · = .
16 8 128
5

10 sin 2x − 5 sin 6x + sin 10x


(f) sin5 x cos5 x = .
512
Ans: Using the same technique as in (e), we start from the identity in (b) to
obtain
1 1 10 sin 2x − 5 sin 6x + sin 10x
sin5 x cos5 x = sin5 2x = ·
32 32 16
10 sin 2x − 5 sin 6x + sin 10x
= .
512
1
14. Show that sin2 x cos4 x = (2 + cos 2x − 2 cos 4x − cos 6x).
32
Ans: Decomposition cos4 x into two parts equally and then we can compute that
 2
2 4 2 2 2 1
sin x cos x = sin x cos x · cos x = sin 2x cos2 x
2
1 cos 2x + 1 1 − cos 4x cos 2x + 1
= sin2 2x · = ·
4 2 8 2
1
= (cos 2x + 1 − cos 4x cos 2x − cos 4x)
16  
1 cos 6x + cos 2x
= cos 2x + 1 − − cos 4x
16 2
1
= (2 + cos 2x − 2 cos 4x − cos 6x).
32

15. Prove the following identites (called triple angle formula):


(a) sin 3x = 3 sin x − 4 sin3 x;
Ans:

sin 3x = sin(2x + x)
= sin 2x cos x + cos 2x sin x
= (2 sin x cos x) cos x + (1 − 2 sin2 x) sin x
= 2 sin x(1 − sin2 x) + (1 − 2 sin2 x) sin x
= 3 sin x − 4 sin3 x

(b) cos 3x = 4 cos3 x − 3 cos x;


Ans:

cos 3x = cos(2x + x)
= cos 2x cos x − sin 2x sin x
= (2 cos2 x − 1) cos x − (2 sin x cos x) sin x
= (2 cos2 x − 1) cos x − 2(1 − cos2 x) cos x
= 4 cos3 x − 3 cos x
6

3 tan x − tan3 x
(c) tan 3x = .
1 − 3 tan2 x
Ans:

tan 3x = tan(2x + x)
tan 2x + tan x
=
1 − tan 2x  tan x
2 tan x
1−tan2 x
+ tan x
= 2 tan x

1 − 1−tan2 x tan x
 3

3 tan x−tan x
1−tan2 x
=  
1−3 tan2 x
1−tan2 x

3 tan x − tan3 x
=
1 − 3 tan2 x

16. Given that A, B, C, D are four interior angles of a quadrilateral ABCD.


Prove that
A+B A+C A+D
cos A + cos B + cos C + cos D = −4 cos cos cos .
2 2 2
Ans: We have that D = 2π − (A + B + C) and thus

cos A + cos B + cos C + cos D


= cos A + cos B + cos C + cos(A + B + C)
A+B A−B A+B A + B + 2C
= 2 cos cos + 2 cos cos
2  2 2  2
A+B A−B A + B + 2C
= 2 cos cos + cos
2 2 2
A+B A+C B+C
= 4 cos cos cos
2 2  2 
A+B A+C A+D
= 4 cos cos cos π −
2 2 2
A+B A+C A+D
= −4 cos cos cos .
2 2 2

17. If A + B + C = π, show that

(a) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C;


Ans:

sin 2A + sin 2B + sin 2C = 2 sin(A + B) cos(A − B) + sin 2C


= 2 sin(π − C) cos(A − B) + sin 2C
= 2 sin C cos(A − B) + 2 sin C cos C
= 2 sin C[cos(A − B) + cos C]
7

A−B+C A−B−C
= 2 sin C · 2 cos cos
2 2
π − 2B 2A − π
= 4 sin C cos cos
2 2
= 4 sin A sin B sin C.

(b) tan A + tan B + tan C = tan A tan B tan C;


Ans:

tan A + tan B + tan C = tan A + tan B + tan(π − A − B)


= tan A + tan B − tan(A + B)
= (1 − tan A tan B) tan(A + B) − tan(A + B)
= − tan A tan B tan(A + B)
= tan A tan B tan C.

(c) cot A cot B + cot B cot C + cot C cot A = 1.


tan A + tan B
Ans: Recall that tan(A + B) = and we have
1 − tan A tan B
cot A cot B + cot B cot C + cot C cot A
1 1  1 1 
= − +
tan A tan B tan(A + B) tan B tan A
1 1 tan A + tan B
= −
tan A tan B tan(A + B) tan A tan B
 
1 tan A + tan B
= 1−
tan A tan B tan(A + B)
= 1.

18. Prove that for any x 6= 2mπ, m is an integer,


sin(n + 21 )x
1 + 2 cos x + 2 cos 2x + 2 cos 3x + · · · + 2 cos nx = .
sin x2

x (2k + 1)x (2k − 1)x


Ans: Note that 2 sin cos kx = sin − sin for all k ≥ 1.
2 2 2
Therefore,
x
sin (1 + 2 cos x + 2 cos 2x + 2 cos 3x + · · · + 2 cos nx)
2
n
x X x
= sin + 2 sin cos kx
2 k=1 2
n  
x X (2k + 1)x (2k − 1)x
= sin + sin − sin
2 k=1 2 2
8

 
(2n + 1)x 1
= sin = sin n + x.
2 2

sin(n + 12 )x
Hence 1 + 2 cos x + 2 cos 2x + 2 cos 3x + · · · + 2 cos nx = .
sin x2

General Solutions of Trigonometric Equations

19. (General Solutions of Trigonometric Equations)

• If sin x = p, then let α = sin−1 (p), then all solutions of the equation sin x = p
are in form of nπ + (−1)n α where n is an integer;
• If cos x = p, then let α = cos−1 (p), then all solutions of the equation cos x = p
are in form of 2nπ ± α where n is an integer;
• If tan x = p, then let α = tan−1 (p), then all solutions of the equation tan x = p
are in form of nπ + α where n is an integer.

By using the above, solve the following equations.


1
(a) sin x = ;
2
π
Ans: Note that α = satisfies the above equation. Thus,
6
nπ 6n + (−1)n
x = nπ + (−1) = π, where n is an integer.
6 6

3
(b) cos x = − ;
2

Ans: Note that α = satisfies the above equation. Thus,
6
5π 12n ± 5
x = 2nπ ± = π, where n is an integer.
6 6

(c) tan x = − 3.

Ans: Note that α = satisfies the above equation. Thus,
3
2π 3n + 2
x = nπ + = π, where n is an integer.
3 3
20. Solve the following equations.
1
(a) cos 5x = , where 0 ≤ x < 2π; (Hint: 0 ≤ 5x < 10π.)
2
Ans: From the previous question we have
π
5x = 2nπ ± , where n is an integer. Since 0 ≤ 5x < 10π,
3
π π
5x = 2nπ + for n = 0, 1, 2, 3, 4 or 5x = 2nπ − for n = 1, 2, 3, 4, 5.
3 3
π π 7π 11π 13π 17π 19π 23π 5π 29π
Hence, x = , , , , , , , , , .
15 3 15 15 15 15 15 15 3 15
9

(b) sin 4x = sin 24◦ , where 0◦ ≤ x < 180◦ ;


2
Ans: 4x = nπ + (−1)n π, where n is an integer.
15
Since 0 ≤ 4x < 4π, n = 0, 1, 2, 3.
π 13π 8π 43π
Hence, x = , , , or expressed in degree as x = 6◦ , 39◦ , 96◦ , 129◦ .
30 60 15 60
(c) tan 3x = 1, where π ≤ x < 2π.
π
Ans: 3x = nπ + ,where n is an integer.
4
Since 3π ≤ 3x < 6π, n = 3, 4, 5.
13π 17π 7π
Hence, x = , , .
12 12 4
21. Solve sin 7x − sin x = cos 4x for 0◦ ≤ x ≤ 180◦ .
Ans: Note that sin 7x − sin x = 2 sin 3x cos 4x and thus
1
2 sin 3x cos 4x = cos 4x =⇒ sin 3x = or cos 4x = 0.
2
π 5π 13π 17π π 3π 5π 7π
By solving the equations, we have x = , , , ; , , , .
18 18 18 18 8 8 8 8
In other words, x = 10◦ , 50◦ , 130◦ , 170◦ ; 22.5◦ , 67.5◦ , 112.5◦ , 157.5◦ .
π
22. Solve sin x sin 2x = cos 3x cos 4x for 0 ≤ x ≤ .
2
Ans: Note that 2 sin x sin 2x = cos x − cos 3x and 2 cos 3x cos 4x = cos 7x + cos x.
Therefore, we have

cos x − cos 3x = cos 7x + cos x


0 = cos 7x + cos 3x
0 = 2 cos 5x cos 2x

Then cos 5x = 0 or cos 2x = 0.


π π 3π π
By solving the equation, we have x = , , , .
10 4 10 2

You might also like