THE UNIVERSITY OF HONG KONG
DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE
           STAT1302/2602 Probability and Statistics II (1st semester, 2016-2017)
                                Suggested solutions for Assignment 3
Q1. Let X1 , X2 , . . . , Xn be an independent random sample from N (µ, σ 2 ) with known mean µ. Describe
how you would construct a confidence interval for the unknown variancePσ 2 .                      (5 marks)
                                                                                n           2      2
                                                                                  (X i − X̄)   nS
Solution: Method 1: To construct the confidence interval for σ 2 , we use i=1 2               = 2 ∼ χ2n−1
                                                                                   σ            σ
which is a pivotal quantity involving σ 2 . Let α be the significance level, then
                                                            nS 2
                                                                            
                                                2                    2
                             1 − α = P χ1−α/2,n−1 6 2 6 χα/2,n−1
                                                             σ
                                                                            !
                                                  nS 2     2        nS 2
                                     = P                6σ 6 2                ,
                                              χ2α/2,n−1          χ1−α/2,n−1
where χ2α,n satisfies P (T > χ2α,n ) = α for T ∼ χ2n . So, a 1 − α confidence interval of σ 2 is given by
                                                                    !
                                               nS 2         nS 2
                                                      ,               .
                                            χ2α/2,n−1   χ21−α/2,n−1
Method 2: Since                           Pn
                                             i=1 (Xi   − µ)2
                                                               ∼ χ2 (n),
                                                  σ2
a 1 − α confidence interval of σ 2 is given by
                                    Pn                       Pn                !
                                                   2                       2
                                       i=1 (Xi − µ)            i=1 (Xi − µ)
                                                     ,                             .
                                         χ2α/2,n                χ21−α/2,n
Q2. Let X̄ and S 2 be the mean and the variance of a random sample of size n = 17 from a distribution
N (µ, σ 2 ). Find the constant c such that
                                                        
                                            4(X̄ − µ)
                                     P −c <           < c = 0.95.
                                                S
                                                                                                   (5 marks)
Solution: We have
                                           X̄ − µ    4(X̄ − µ)
                                    T =     √      =           ∼ tn−1 ,
                                          S/ n − 1       S
                                                         1
and                                                                 
                                              4(X̄ − µ)
                             P −t0.025,17−1 <           < t0.025,17−1 = 0.95.
                                                  S
Thus
                                         c = t0.025,17−1 = 2.1199.
Q3. Let X1 , X2 , · · · , Xn be an independent random sample from N (µ, σ 2 ), where µ and σ 2 ae unknown.
Suppose that                                √     √ 
                                               nS   nS
                                      1−α=P  √ 6σ6 √   .
                                                b    a
      √   √ 
        nS  nS
Hence, √ , √   is the 1 − α confidence interval of σ, and it has the length
         b   a
                                        √        √
                                          nS       nS
                                   k= √ − √ .
                                           a        b
Show that the values of a and b for σ of minimum length satisfy the following equations:
                                       (i)   G(b) − G(a) = 1 − α;
                                       (ii) an/2 e−a/2 − bn/2 e−b/2 = 0,
where G(·) is the c.d.f. of χ2n−1 .                                                           (10 marks)
Solution: (i) First we have
                                                nS 2
                                                     ∼ χ2n−1 ,
                                                 σ2
then
                                              √             √ 
                                                   nS         nS
                                    1−α = P       √ 6σ6 √
                                                    b          a
                                                         2                                                           
                                                      nS
                                           = P a6 2 6b
                                                       σ
                                           = G(b) − G(a).
                                       √     √
                                         nS    nS √        1     1
(ii) The length of the interval is k = √ − √ = nS( √ − √ ), denote
                                          a     b           a     b
                                                         1  1
                                             f (a, b) = √ − √ .
                                                          a  b
We need to minimize f (a, b) with the constrain G(b) − G(a) = (1 − α). Set
                                          1  1
                            L(a, b, λ) = √ − √ − λ [G(b) − G(a) − (1 − α)] .
                                           a  b
                                                      2
Then we have
                                                         1 3
                                       L0a (a, b, λ) = − a− 2 + λg(a),
                                                         2
                                                       1    3
                                       L0b (a, b, λ) =   b− 2 − λg(b),
                                                       2
where g(·) is the p.d.f. of χ2n−1 . For X ∼ χ2k , the p.d.f is given by
                                                            1           k       x
                                            g(x) =      k       k
                                                                     x 2 −1 e− 2 .
                                                     2 Γ2
                                                                2
It follows that
                                         1    2g(a)    2g(b)
                                           = −3 = −3 .
                                         λ     a 2      b 2
Substitute g(a) and g(b) into the above equations, we have
                                            an/2 e−a/2 − bn/2 e−b/2 = 0.
Q4. Let X be N (µ, 100).
   (i) To test H0 : µ = 230 versus H1 : µ > 230, what is the rejection region specified by the generalized
likelihood ratio test?                                                                         (5 marks)
   (ii) Is this test uniformly most powerful?                                                  (5 marks)
   (iii) If a random sample of n = 16 yielded x̄ = 232.6, is H0 accepted at a significance level of
α = 0.10?                                                                                      (5 marks)
Solution: (i) First we have
                                              Ω = {µ: µ > 230} ,
                                             Ω0 = {µ: µ = 230} ,
                                             Ω1 = {µ: µ > 230} .
The likelihood function of the sample is
                                          n    "       n
                                                                     #
                                         1           1 X
                            L(µ) =       √    exp −         (Xi − µ)2 .
                                     10 2π          200 i=1
On Ω0 , the likelihood function is
                                                  n           "  n
                                                                                 #
                                             1                 1 X
                            L(Ω0 ) =         √          exp −         (Xi − 230)2 .
                                           10 2π              200 i=1
                                                            3
On Ω, the maximum value of L(µ) is L(µ̂), where
                                         
                                           X̄, if X̄ > 230,
                                   µ̃ =
                                           230, if X̄ < 230.
Therefore,                            n
                                    1
                                                1 Pn                   2
                                                                          
                                   √      exp   − 200   i=1 (X i − X̄)     , if X̄ > 230,
                       L(Ω) =    10 2π n
                                    1
                                                   1
                                                       P n                2
                                                                            
                                   √
                                  10 2π
                                           exp − 200     i=1 (Xi − 230) , if X̄ < 230.
Then                                1 Pn                    Pn               
                L(Ω0 )                                    2                  2
                                 exp − 200 i=1 (X i − 230)  −  i=1 (X i − X̄)     , if X̄ > 230,
             Λ=        =
                L(Ω)             1,                                                 if X̄ < 230.
The rejection region is {Λ 6 k} for some constant k ∈ (0, 1). Then {Λ 6 k} ⊆ X̄ > 230 is equivalent to
                                             n(X̄ − 230)2
                                                          
                                      exp −                  6 k,
                                                  200
or
                                                 X̄ − 230 > k 0 .
Let                                                           √                 √ 0
                                                 0
                                                                  n(X̄ − 230)    nk
                            α = P X̄ − 230 > k           =P                    >      ,
                                                                      10          10
                   √
                    nk0
so we should set    10
                          = zα . Hence, the generalized likelihood ratio test has the rejection region
                                            √                     
                                                n(X̄ − 230)
                                                              > zα
                                                    10
at the significance level α.
      (ii) The most powerful test for H0 : µ = 230 against H1 : µ = µ1 > 230 having significance level
α∗ 6 α is the one having the rejection region
                                        √                  
                                            n(X̄ − 230)
                                                        > zα .
                                               10
Since this rejection region does not depend on the value of µ1 , we know immediately that the uniformly
most powerful test with significance level for testing H0 : µ = 230 against H1 : µ > 230 has the same
                 n√               o
                    n(X̄−230)
rejection region       10
                              > zα . Thus, we can conclude that this test is most powerful test.
      (iii) Critical region method: When α = 0.10, the rejection region is
                               (√                             )
                                  16(X̄ − 230)                     
                           C=                  > z0.10 = 1.282 = X̄ > 233.203 .
                                      10
                                                          4
The observed x̄ = 232.6 ∈
                        / C, thus H0 cannot be rejected at α = 0.10.
   p-value method:
                        √               √                 !
                         16(X̄ − 230)     16(232.6 − 230)
        p − value = P                 >                     = P (Z > 1.04) = 0.14917 > 0.10,
                             10                10
thus, H0 cannot be rejected at α = 0.10.
Q5. To test H0 : µ = 335 versus H1 : µ < 335, under normal assumptions, a random sample of size 17
yielded x̄ = 324.8 and s = 40. Is H0 accepted at an α = 0.10 significance level?            (5 marks)
Solution: Critical region method: The rejection region is
                                                 X̄ − µ
                                    C = {X̄ :     √      < −tα,n−1 }.
                                                S/ n − 1
                              x̄ − µ      324.8 − 335
The realized test statistic = √        =     √         = −1.02 > −t0.10,16 = −1.337. Thus x̄ = 324.8 ∈
                                                                                                     /
                            s/ n − 1      40/ 17 − 1
C, we cannot reject H0 at α = 0.10 significance level.
Q6. Let X1 , · · · , Xn be an independent random sample from N (µ, σ 2 ) with unknown mean µ and
σ 2 . Show the details to find the generalized likelihood ratio test for hypotheses H0 : µ > µ0 versus
H1 : µ < µ0 .                                                                              (10 marks)
Solution: First, we have
                                Ω = {(µ, σ): − ∞ < µ < ∞, σ > 0} ,
                                Ω0 = {(µ, σ): µ > µ0 , σ > 0} ,
                                Ω1 = {(µ, σ): µ < µ0 , σ > 0} .
The likelihood function of the sample is
                                                  n           "n
                                                                             #
                                              1               1 X
                            L(µ, σ) =        √          exp − 2     (Xi − µ)2 .
                                            σ 2π             2σ i=1
On Ω, the maximum value of L(µ, σ) is L(µ̂, σ̂), where
                                                                    n
                                                      1X2
                                  µ̂ = X̄    and σ̂ =       (Xi − X̄)2 .
                                                      n i=1
Therefore,                                                         n
                                                               1             n
                                L(Ω) = L(µ̂, σ̂) =            √          exp −   .
                                                            σ̂ 2π              2
                                                            5
On Ω0 , the maximum value of L(µ, σ) is L(µ̃, σ̃), where
                                           
                                               X̄, if X̄ > µ0 ,
                                      µ̃ =
                                               µ0 , if X̄ < µ0 ,
        ∂`(µ, σ)                     ∂`(µ, σ)
since            > 0 when µ < X̄ and          < 0 when µ > X̄. And
          ∂µ                           ∂µ
                                                        n
                                                     1X
                                            σ̃ 2 =         (Xi − µ̃)2 .
                                                     n i=1
Therefore,                                                         n
                                                               1             n
                                 L(Ω0 ) = L(µ̃, σ̃) =         √          exp −   .
                                                            σ̃ 2π              2
Then the generalized likelihood ratio statistic is
                                               
                                  2 n/2  1,                                if X̄ > µ0 ,
                        L(Ω0 )     σ̂               Pn             2
                                                                       n/2
                  Λ=           =            =             (X − X̄)
                        L(Ω)       σ̃ 2         Pni=1 i             2
                                                                            , if X̄ < µ0 .
                                                      i=1 (Xi − µ0 )
The rejection region is {Λ > k} for some constant k ∈ (0, 1). Then {λ > k} ⊆ X̄ < µ0 } and Λ 6 k is
equivalent to
                Pn                       Pn
                     (Xi − X̄)2             i=1 (Xi − X̄)
                                                         2
                                                                                     1
                 i=1
                Pn             2
                                 = Pn                             =              n(X̄−µ0 )2
                                                                                                 6 k 2/n ,
                 i=1 (Xi − µ0 )
                                                  2             2
                                    i=1 (Xi − X̄) + n(X̄ − µ0 )     1+          Pn           2
                                                                                 i=1 (Xi −X̄)
that is
                                 (X̄ − µ0 )2    n(X̄ − µ0 )2
                                             = P n                > k −2/n − 1,
                                     S2          i=1 (X i − X̄) 2
or
                                                 X̄ − µ0
                                                  √      6 c,
                                                S/ n − 1
           p
where c = − (n − 1)(k −2/n − 1). To determine the value of c, set the significance level is α, we have
                                                     
                                          X̄ − µ0
                                     P     √       6 c = α,
                                         S/ n − 1
thus we should let c = −tα,n−1 . Hence, the generalized likelihood ratio test has the rejection region
                                                              
                                           X̄ − µ0
                                            √        6 −tα,n−1
                                          S/ n − 1
at the significance level α.