Steel Notebook
Steel Notebook
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿
– n.o. frames
4 ∶ 8 𝑚𝑚
A-EX-
Span = 60 m Lat S = 6 m
n.o.frames = 60 / 6 = 10
all frames = 11 frames
B-EX –
𝐵𝐵
2
-n.o.burlin =
1.5 ∶ 2 𝑚𝑚
EX -a
B = 30 m let( a ) spacing Between burlin = 1.50
N.o.burlin = 15/ 1.50 = 10 burlin
N.o.all Burlin = 10 + 1 = 11 burlin at one side
EX-B
B = 30 M let N.O. all Burlin = 9 at one side
N.o, burlin = 9-1 = 8
a= 15/8= 1.875 m
N.O.Burlin at one side
راﺳﻲ اﻓﻘﻲ
1 : 10
X : B/2
𝐵𝐵
∗1
= TO GET X 2
10
Ex -
B= 30 m Slop = 1:10
X= 1*15/10 = 1.5 m
AT TRUSS
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐵𝐵)
1-calculate H=
12:16
𝐵𝐵 1
2-calculate h = H- [
2
* ]
𝑧𝑧
h(min) 1.25 m
EX
B = 40 M SLOP = 1:10
40
= 1- H = (3.33 : 2.5 ) use 3 m
12:16
40 1
( – 2- h= 3 ∗ ) = 1 m use min = 1.25 m
2 10
/
-N.o.spacing = =6
N.o.burlins = 7 Burlin at one side
N.o.spacing = =4
.
N.o.burlis = 5 Burlin at one side
4-calculate x=
1:10 1:10
X:B/2 x: 12 x= 1.20 m
5- calculate ɸ
Tan ɸ = 1.20 /12 =0.1 ɸ=5.71
LOADS
2- Calculate loads
1) DEAD LOAD :-
AT FRAMES :-
𝑺
--D.L = (O.W.T) of steel X S + W cover X 𝑪𝑶𝑺 ɸ
1- o.w.t of steel …….. calculat by sap
Or……..let (20:40) kg/m-
5- ɸ = slop angel
AT TRUSS :-
𝑺𝑺𝑺𝑺𝑺𝑺
----D.L = (O.W.T) of steel X S X a + W cover X 𝑪𝑪𝑪𝑪𝑪𝑪 ɸ
1- o.w.t of steel …….. calculat by sap
Or……..let (20:40) kg/m- take W s= B
𝟒𝟒 − ɸ = slop angel
5 −a= spacing between burlin
2) LIVE LOAD :-
3) AT FRAMES :-
----Wl.l= L.L X S
----Wl.l= L.L X S X a
3)wind LOAD :-
AT FRAMES
𝑺𝑺
W wind load = ce x k x q x 𝑪𝑪𝑪𝑪𝑪𝑪 ɸ
AT TRUSS
𝑺𝑺𝑺𝑺 𝒂𝒂
W wind load = ce x k x q x 𝑪𝑪𝑪𝑪𝑪𝑪 ɸ
K= Height k
0 -- 10 1.00
10 -- 20 1.15
20 -- 30 1.40
30 -- 50 1.60
q=
place q kg/m2
cairo 68.0
alex 81.0
matroh 110.3
faium 56.3
suze 92.0
Ce=
ﺗﺗوﻗف ﻋﻠﻰ ظل زاوﯾﮫ اﻟﻣﯾلce ﻗﯾم ال
𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵
< 1.2 design by case A
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵
> 1.2 design by case B
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵
Case A = =( 0.833 * cases B )
1.20
ﺣﺎﻻت ﺗﺣﻣﯾل اﻟزﻻزل اﻟﻣوﺟوده ﻓﻰ اﻟﻛود ھﻲ ﺣﺎﻻت ULﻓﺑﺗﺎﻟﻲ ﯾﺗم ﺗﻘﺳﯾم اﻻﺣﻣﺎل
ﻋﻠﻲ 1.4ﻟﻛﻲ ﯾﺗم ﺗﺣوﯾﻠﮭﺎ workingوﯾﺗم ﻗﺳﻣﺗﮭﺎ 1.2ﻟﻛﻲ ﯾﺗم ﻧﺣوﯾﻠﮭﺎ اﻟﻲ case 1
وﻧﻘوم ﺑﺗﺻﻣﯾم ﻣﺑﺎﺷره .
Load combination
ﺣﺎﻻت اﻟﺗﺣﻣﯾل اﻟﻣﺻري ھﻲ ﺣﺎﻻت أﺟﺗﮭﺎدﯾﮫ ﻟﻠﺣﺻول ﻋﻠﻰ اﻗﺻﻲ straing
action
ASD
1- Dead load
2- Dead load+Live load
3- 0.833 dead load + 0.833 Live load +0.833wind load right
4- 0.833 dead load + 0.833 Live load +0.833wind load lift
5- 0.833 dead load+0.833wind load right
6- 0.833 dead load+0.833wind load lift
7- 0.833 dead load+0.56 earth quak+x
8- 0.833 dead load+0.56 earth quak-x
9- 0.833 dead load+0.56 earth quak-Y
10- 0.833 dead load+0.56 earth quak+Y
11- 0.833 dead load+0.833liveload+0.56 earth quak+x
12- 0.833 dead load+0.833liveload+0.56 earth quak-x
13- 0.833 dead load+0.833liveload+0.56 earth quak+y
14- 0.833 dead load+0.833liveload+0.56 earth quak+y
15- 0.833 dead load+0.833Cran
16- 0.833 dead load+0.833liveload+0.833 Cran
17- 0.833 D.L +0.833 W.L.L+0.833cran
18- 0.833 D.L +0.833W.L.R+0.833cran
19- 0.833 D.L + 0.833 L.L +0.833W.L.R+0.833cran
20- 0.833 D.L + 0.833 L.L +0.833W.L.L+0.833cran
21- 0.833 dead load+0.56 Earth quick+x +0.833Cran
22- 0.833 dead load+0.56 Earth quick-x + 0.833Cran
23- 0.833 dead load+0.56 Earth quick+y +0.833Cran
24- 0.833 dead load+0.56 Earth quick -y+ 0.833Cran
25- 0.833 dead load+0.56 Earth quick +0.833L.L+0.833Cran
Loads
Loads
Loads acting on truss:
1) Dead load:
Weight of corrugated and weight of steel structure
W c = (5 à8) kg / m2 for single layer (default)
= (12 à18) kg / m2 for double layer (if given)
W s = (20 à35) kg / m2/hz proj. We take W s= B
i.e. If the span of truss = 28 m take W s= 28 kg / m2
a
PD = Wc S + Ws aS
cos α
P P P
PDL/2 PDL PDL PDL DL DL DL PDL PDL PDL PDL/2
2) Live load:
W LL = 60 – 66.66 tan α inaccessible roof (default)
= 200 – 300 tan α accessible roof
In kg / m2 /hz proj.
i.e. If the slope 1 : 10
1
∴ W LL = 60 – 66.66 * = 60 – 6.7 = 53.3 kg / m2 /hz proj.
10
PLL = W LL a S
Loads
P P P
PLL/2 PLL PLL PLL LL LL LL PLL PLL PLL PLL/2
3) Wind load:
W w = C e k q kg / m2
a - K height factor k = 1.0 h 10 m
k = 1.1 10 < h 20
b – q = wind intensity in kg / m2
= 70 kg / m2 Cairo 80 kg / m 2 Alexandria
c – For C e: divide truss into 2 parts
Wind Pressure side Suction side Suction side Pressure side Wind
direction direction
0.8
0.05
0.2 0.4 0.8 tan
- 0.8
ie: For all trusses of slope 1:5 (0.2) to 1:20 (0.05), C e will be = -0.8 (suction)
although it lies in the pressure side.
Only fink truss can have slope more than 0.4
h a
P1 = 0.8 * 70 * 1 * * S P2 = −0.8 * 70 * 1 * *S
2 cos α
a h
P3 = −0.5 * 70 * 1 * *S P4 = −0.5 * 70 * 1 * * S
cos α 2
P3 /2
P2
P2 /2
P2 /2 P2 P2 P2 P3 P3 P3 P3 P3 /2
P1
P1
Solution:
Design considerations:
• Allowable strength:
= 0.58 ( )
= 1.40 / 37
= 2.10 / 52
( )
=
( )
Where,
= = × ( )=
= × − × ( + 0.20) ×
= ℎ
=
= ℎ
In this case, all possible failures shall be studied and in each failure case, the net area is calculated.
The minimum net area will be used in the design of the member.
= ℎ
3. Calculating of A net for a section composed of two angles connected by a gusset plate and
bolts:
= + 2.00
=2× ( )−2× ×
Where,
= ℎ
------------------------------------------------------------------------------------------------------------
4. Calculating of A net for a section composed of one angle connected by a gusset plate and
bolts:
3
= +
3 +
Where,
=
= − ×
2
=
2
------------------------------------------------------------------------------------------------------------
Example:
Determine the maximum tensile force (T) carried by 2 channels No. 260 as shown in the given
connection.
Given:
Steel used 52
tw = 1.00 cm
For M16… = + 2 = 16 + 2 = 18
=2× ( ℎ )−4× ×
×
= − ×( × )+
4×
7 ×1
= 2 × 48.30 − 6 × (1.80 × 1) + 4 × = 93.96
4×6
Finally, = 89.40 For St.52, = 2.10 /
L / d < 60
Where L: is the length of member and d = depth of member.
Where:
r = radius of gyration = √ (I / A)
For vertical and diagonal members, the buckling length in plane equals the length of the member
itself. The buckling length out of plane equals the length of the member itself in case of presence
of upper bracing (general case) and equals 1.2 x the length of the member in case of absence of
upper bracing (special case).
For example:
For the upper figure:
The buckling length for the upper chord members:
• In plane = b
• Out of plane = b
The buckling length for the lower chord members:
• In plane = a
• Out of plane = L1 for member 1 and L2 for member 2.
Calculation of (rx and ry) in case of two angles back to back:
The values (A, Ix, Iy, rx, ry and e) given in the tables are for one angle only. To calculate these
values for two angles:
Area (two angles) = 2 x Area (one angle)
× ( ) ( )
rx (two angles) = = = rx (one angle)
× ( ) ( )
.
ry (two angles) = ( ( )) +( + )
Design procedure of tension members (2 angles and Bolted
Connections):
1. Select member section.
×
• = = 300
Get a1 = … cm
×
• = = 300
Get a2 = … cm
• >3 +
Get a3 = … cm
( / )
Steel Grade
≤ 40 > 40
St. 37 1.40 1.30
St. 44 1.60 1.50
St. 52 2.10 2.00
2. Check Stresses:
• Calculate
• Calculate = …≤
3. Check minimum angle:
• >3 +
4. Check slenderness ratio:
• = ≤ 300
• = ≤ 300
5. Check length to depth ratio:
• ≤ 60
Design procedure of tension members (1 angle and Bolted
Connections):
1. Select member section.
×
• = = 300
Get a1 = … cm
×
• = = 300
Get a2 = … cm
• >3 +
Get a3 = … cm
2. Check Stresses:
• Calculate
• Calculate = …≤
3. Check minimum angle:
• >3 +
4. Check slenderness ratio:
• = ≤ 300
• = ≤ 300
5. Check length to depth ratio:
• ≤ 60
Design procedure of tension members (angles and Welded
Connections):
1. Select member section.
×
• = = 300
Get a1 = … cm
×
• = = 300
Get a2 = … cm
• >3 +
Get a3 = … cm
• . = … … … …. = 0.58
2. Check Stresses:
• Calculate
• Calculate = …≤
3. Check minimum angle:
• >3 +
• = ≤ 300
• = ≤ 300
5. Check length to depth ratio:
• ≤ 60
Design procedure of tension members (Star Shapes angles):
• Case of bolted connections:
Selection of section:
Assume:
=
0.85 ×
=
2
Choose an angle from the tables.
• Check minimum angle:
>3× +
• Check Stresses:
= ≤
ℎ : =2× −2×∅×
• Check Slenderness:
= ≤ 300
N.B.: ℎ =
……………………………………………………………………………………………....
Example:
For the shown truss, it is required to design the members L5 as 2 angles back to back and
member D5 as on angle given that:
1. The maximum tensile force in member is 25 ton.
2. The maximum tensile force in member is 5.0 ton.
3. Steel used is St. 37
4. Thickness of gusset plate is 10 mm.
5. Bolts used are M16 grade (4.6).
Solution:
Design of member L5:
For steel 37, = 1.40 / , = 2.00 , = 4.00
Choice of section:
. = = 300 , = 0.30
200
300 = ……………. = 2.22
0.30
25
= = = 21
0.85 × 0.84 × 1.40
21
= = = 10.50
2 2
From tables: try 2 angles back to back 75 × 75 × 8
= 11.50
= 2.26
= 2.13
Check minimum angle:
3 × d + t = 3 × 16 + 8 = 56
= 70 , then >3× + , then ok.
Check stresses:
∅= +2 = 16 + 2 = 18 = 1.80
25
= = = 1.240 /
((2)(11.5)) − ((2)(1.8)(0.80))
= 1.240 / < = 1.40 /
Ok. Safe.
Check slenderness:
= 2.26 ( )= ( ( )) +( + .
)
= = 300 , = 0.20
Calculate :
6.31
= −∅× = − 1.80 × 0.60 = 2.075
2 2
6.31
= = = 3.15
2 2
3 3 × 2.075
= + = 2.075 + 3.15 = 4.16
3 + 3 × 2.075 + 3.15
5
= = = 1.20 /
4.16
= 1.2 / < = 1.40 /
Ok. Safe.
Check slenderness:
= 1.07
276
= = = 258 < 300 … … … .
1.07
Check L/a ratio:
L = 2.00 meters = 55
200
= = 36.30 < 60 … … .
5.50
Use one angle 55 x 55 x 6
……………………………………………………………………………………………
DESIGN OF COM
MEMBERS
DESIGN OF COMPRESSION MEMBERS
= 37, 44 52
Where,
= ,
= ≤ 180
= ≤ 180
= 0.60 ×
a) For ≤
= =
Where,
= .
-----------------------------------------------------
= =
Where,
= .
----------------------------------------------------
b) Compression in lower
chord members
(cantilever truss):
For member 1:
= =
= = 2( ) = 2 × 3 = 6
To reduce buckling length outside plane
( ), we may use one of the following
steps:
= =
= = =3
For member 1:
= =
= =2
For member 2:
= =
= = ×
= .
c) Web members (verticals and diagonals):
= = 0.50
= =
d) Subdivided members:
= 1.20
e) K - Truss members:
= 1.20
For Vertical members:
= 0.50
Choice of section:
• From stresses:
Assume = 0.75 /
= =⋯
0.75
= =⋯
2
From tables, get angle × ×
• From slenderness:
Assume = 100
= 100 = ......... Get =⋯
.
+ max( )
= = ⋯…….
2
Choose 2 angles back to back × ×
Minimum angle 3 × +
Minimum angle 45 × 45 × 5
• Checks:
1. = ≤ 180
= ≤ 180 = ( ) +( + )
2.
3. = ≤
---------------------------------------------------------------------------------------------------
b) Using two angles star shape:
• Given: Design force, length of member.
• Get
Choice of section:
• From stresses:
Assume = 0.75 /
= =⋯
0.75
= =⋯
2
From tables, get angle × ×
• From slenderness:
Assume = 100
= 100 = ......... Get =⋯
.
+
= = ⋯…….
2
Choose 2 angles star shape × ×
Minimum angle 3 × +
Minimum angle 45 × 45 × 5
• Checks:
4. = ≤ 180
5.
6. = ≤
Design of unsymmetrical sections:
Choice of section:
• From stresses:
Assume = 0.60 × 0.75 / = 0.45 /
= =⋯
0.45
From tables, get angle × ×
• From slenderness:
Assume = 100
= 100 = ......... Get =⋯
.
+
= = ⋯…….
2
Choose 2 angles back to back × ×
Minimum angle 3 × +
Minimum angle 45 × 45 × 5
• Checks:
7. = ≤ 180
8.
9. = ≤
-------------------------------------------------------------------------------------------------------
Design of tie plates:
7
Dr. Amr Mohamed Ibrahim Chapter (4): Design of compression members
= ⋯ … . . √√
′
=
≤
′
≤
′= ×
Usually ′ >
We will use one tie plate in the middle of any tension members composed of two elements.
Choice of section:
= = 180 = √√ Get =…
Example:
For the shown truss, design the three marked members.
Given data:
• Steel used is steel 37.
• tGPL = 10 mm.
• Bolts used are ordinary bolts.
Solution:
For member 1:
F = -17 ton L = 1.80 meters
Lbx = 1.80 meters Lby = 1.80 meters.
Choice of section:
Assume Fc = 0.75 t/cm2 • λmax = 100
• Ag of 2 angles = • λx = Lbx / rx
λx = 180 / 0.30a = 100 a = 6 cm
Ag of 2 angles = = 22.67
.
• λy = Lby / ry
.
Ag of 1 angle = = 11.30
λy = 180 / 0.45a = 100 a = 4 cm
• From Tables,
Choose 2 angles 80 x 80 x 8 back to back
Aavg = = 7 cm.
1. Check slenderness
From tables: rx 2 angles = rx 1 angle = 2.12 cm e = 1.97 cm
λMax = 67.92
2. Check Stresses:
Fc = 1.4 – 6.5x10-5 (λmax) 2 = 1.40 - 6.5x10-5 (67.92)2 = 1.1 t/cm2
= 67.92
= = 1.37 ( )
≤
′
≤
′ = 1.37 × 67.92 = 93 cm then, use one tie plate at the middle of the member.
For member 2:
• From Tables,
Choose 1 angle 45 x 45 x 5.
. .
Aavg = = 8.2 cm.
1. Check slenderness
From tables: rv = 1.55 cm
2. Check Stresses:
------------------------------------------------------------------------------------------------------------
= 0.28
= 0.48
Choice of section:
• From stresses:
Assume = 0.75 /
= =⋯
0.75
= =⋯
2
+
= = ⋯…….
2
Choose 2 angles back to back × ×
• Checks:
1. = ≤ 180
= ≤ 180 = ( ) +( + )
2.
3. = ≤
SHEET 4:
1. For the following figure, design the top compression member (A), if the
design force is -28 tons (case of loading B) and its length is 300 cms, the bolts
used are with diameter 20mm.
2. Design the vertical member (B) if the design force is -3.00 tons (case of
loading Ⅱ) and its length is 400 cms, the bolts used in the connection are with
diameter 20 mms.
3. Design the vertical member (B) if the design force is -3.00 tons (case of
loading Ⅰ) and its length is 400 cms, the connection is welded connection.
DESIGN OF BEAM
Design of Beams 1
2- Non-compact sections:
Are those sections which can achieve the yield moment
without local buckling of any of its compression elements.
1/27 Beams
Design of Beams 1
3- Slender sections:
Are those sections, which undergo local buckling before
achieving the yield moment.
C C C
tf
S
r=
Axis of bending h h h
dw dw dw
tw tw
b b
2/27 Beams
Design of Beams 1
1
c=
1
(b − t w − 2 r ) c = ( b − 2s − t w )
2 2
d w = h − 2(t f + r ) d w = h − 2( t f + s)
16.9
≤
15.3
Compact ≤ Compact
Fy
Fy
c 23
≤ Non − compact c 21
tf Fy ≤ Non − compact
tf Fy
> 23 Slender 21
Fy > Slender
Fy
127
127 ≤
≤ Compact
Compact
Fy
Fy
d w 190 d w 190
≤ Non − compact ≤ Non − compact
tw Fy tw Fy
190
> 190
Slender
> Slender
Fy Fy
From tables pages 9 to 12, we can see that we treat every portion of the
section as a separate part.
Note that in all tables we use the flat portions.
Important note: For rolled section and if "r" is not given, we can take "r" ≈ tf
1 1
So c = (b-tw-2r) = (b-tw-2tf)
2 2
And d w = h-2(tf + r) = h-2(tf + tf) = h-4tf
Important note: If for example, the flange is non-compact and the web is
compact, so we consider the whole section as non-compact (more safe).
3/27 Beams
Design of Beams 1
Important note:
a) In ECP 9, Web is subjected to moment ( ) in case of beams, to
compression ( ) for columns and to bending and compression (
) in beam-columns.
.
Section at Section at
support mid section
4/27 Beams
Design of Beams 1
Lu max is the maximum unsupported length. This is the maximum length with no
lateral torsional buckling. Lu max calculated from 2 equations in the code.
Lu act is the actual unsupported length. Lu act calculated from the given structure.
To calculate Lu max : ECP page 16
We take the smaller of the following 2 values:
20b f
L u . max =
Fy
OR
1380A f
L u . max = Cb
Fy d
5/27 Beams
Design of Beams 1
6/27 Beams
Design of Beams 1
Closed ring
Hooked bar
Spiral
Studs
or
n ect
le con
xib
Friction only Compression flange Fle
embedded in conc
1-Floor beams (with concrete slab or steel deck): (Mezzanine floors, tanks)
a- For Simple floor beams:
The system is either main and secondary beams, or secondary, main beams and
main girders as shown in the following figures:
M.B. M.B.
S.B.
S.B.
S.B.
S.B.
Main girder
Main girder
S.B.
S.B.
S.B.
S.B.
S.B.
M.B.
Direction Direction
of load of load
S.B.
S.B.
S.B.
S.B.
M.B. M.B.
System consists of Main and secondary beams System consists of secondary and meain beams
together with main girder
7/27 Beams
Design of Beams 1
8/27 Beams
Design of Beams 1
We have 3 sections.
Section 1, the positive section of the first panel, Lu act is 0.8L because the
compression flange is the upper flange. The upper flange is supported laterally
with the column and tension in the flange at distance 0.2L from support.
9/27 Beams
Design of Beams 1
Important Notes:
• We will know lateral, how to deal with the section if it is slender. So now,
all the sections will be either compact or non-compact.
• We must check compactness of the section to be sure that it is not slender,
this means we cannot begin with the check of L.T.B.
10/27 Beams
Design of Beams 1
i.e. if FLTB 1 is bigger than 0.58Fy, so stop calculations and take Fbcx = 0.58Fy
For the following equations, see page 18 and 19 in the ECP
Fbc = (F 2
ltb1 + F 2 ltb 2 ) ≤ 0.58Fy
800A f C b
Where Fltb1 = ≤ 0.58F
Lud
Lu C
Fltb 2 = 0.58Fy for ≤ 84 b
rt Fy
( L u / rt ) 2 C L C
Fltb 2 = (0.64 − 5
Fy , for 84 b ≤ u ≤ 188 b
1.176 *10 * c b Fy rt Fy
12000 L C
Fltb 2 = 2
* c b , for u > 188 b
( L u / rt ) rt Fy
Where rt is the radius of gyration about Y-Y axis for the compression flange and
(1/6) of the web.
y
I y−y 1
rt = , where A = bf * tf + hw * tw
A 6
1h
6 w
t f * b3f (1 / 6) h w * t 3w
Iy-y = + (the second term can be y
12 12
neglected)
Very important note: Lu in the equations is Lu act NOT Lu max
11/27 Beams
Design of Beams 1
How to determine allowable compressive bending stress
20 b f Fbt = 0.64Fy
Fy
Fbc = 0.64Fy
No Cb LU C
84 ≤ ≤ 188 b
Fy rT Fy
The section is non-compact 2
( rT ) × FY
2
Fbt = 0.58Fy Calculate (Lu/rT) LU
Fbc = (F 2
ltb1 )
+ F 2 ltb2 ≤ 0.58Fy Fltb2 = 0.64 −
1.176 ×105 Cb
× Fy ≤ 0.58 Fy
800 A f C b
Fltb1 = ≤ 0.58F y
LU d Lu C
≥ 188 b
rt Fy
12000C b
Fltb2 = 2
≤ 0.58F y
Lu
r
t
12/27 Beams
Design of Beams 1
5 wL4
• For simple beam with distributed load: act =
384 EI
• For continuous beam with distributed load: act = 0.8* act of simple beam.
PL3
• For simple beam with one concentrated load at mid span: act=
48EI
wL4
• For cantilever with distributed load: act =
8EI
PL3
• For cantilever with concentrated load at its end: act=
3EI
13/27 Beams
Design of Beams 1
act = Mε in m3t
EI
14/27 Beams
Design of Beams 1
15/27 Beams
Design of Beams 1
Example:
These shown beams are used to support a
13 t 13 t
machine (No R.C. slab)
3*2.33=7m
For the given secondary I.P.E. 600, it is
required to: 13 t 13 t
92
WD = 0.122 * = 1.23 m t
8
QD = 0.122 * 9/2 = 0.55 t
b – Live load: 13 t 13 t
3m 3m 3m
M = 39 m t Q = 13 t
• To calculate Fbcx:
1 – Check compactness:
C = 0.5 (22 – 1.2 – 2 * 2.4) = 8 cm, d w = 60 – 2 * 1.9 – 2 * 2.4 = 51.4 cm
C 16.9 dw 127
= 8/1.9 = 4.21 < = 10.9 = 51.4/1.2 = 42.8 < = 82
tf 2.4 tw 2 .4
So the section is compact
2. Check lateral torsional buckling:
16/27 Beams
Design of Beams 1
20 * 22
Lu act = 900 cm Lu max = = 284 cm < 900
2.4
∴ No need to calculate the other equation L.T.B. will occur and we have to
calculate Fltb . (Cb for simple beam carrying concentrated load = 1.35)
800 * (22 *1.9)
Fltb1 = *1.35 = 0.836 t / cm2 < 1.4 t / cm2
900 * 60
Therefore, we have to calculate Fltb2
Cb 1.35 Cb
84 = 84 = 63 188 = 141
Fy 2.4 Fy
L C
∴ u f 188 b
rt Fy
Fltb = 0.836 2 + 0.632 = 1.04 t / cm2 < 1.4 t/ cm2 ∴ Fbcx = 1.04 t / cm2
Check Stresses:
(39 + 1.23) * 100
1 – Moment : Fact = = 1.31t / cm 2 > 1.04t / cm 2
3070
Unsafe (Don't complete checks)
In order to decrease Lu act, we may add
3*2.33=7m
3*3=9m
17/27 Beams
Design of Beams 1
lateral movement & at the same time don't carry vertical loads. These members
are bracing as shown
Lu act = 9/3 = 3m
Lu max = 284 < 300 cm
800 * ( 22 *1.9)
∴ Fltb = *1.35 = 2.51t / cm 2 f 1.4t / m 2
1 300 * 60
So take Fbcx = 1.4 t / cm2
Checks:
(39 + 1.23) *100
1. Moment : Fact = = 1.31t / cm 2 p 1.4t / cm 2 OK
3070
(13 + 0.55)
2. Shear : qact = = 0.19t / cm2 p 0.84t / cm2
60 *1.2
3. Deflection : calculate elastic 13 13
reactions 3 3 3
ME = 117*4.5–58.5*(1.5/2)–
58.5*(1.5+1) = 336.4 m3t 39mt
117
336.4 *106 900 58.5 58.5
∴ δ act = = 1.74cm p
2100 * 92080 300
= 3cm
Live load:
ML = 13*2.33 = 30.3 mt
QL = 13 t
Total loads:
18/27 Beams
Design of Beams 1
19/27 Beams
Design of Beams 1
Applications of beams
1- Floor beams
The system consists of secondary and main beams
Calculation of loads for floor beams:
Loads:
Rc slab 10 – 14 cm
F.C. 150 kg / m2
L.L. 300 kg / m2
S2
MD = WD * ……..m t
8
S
Q D = WD * ……….t
2
Where S is the span of secondary beam
b – Live load:
WL = L.L. * a = ………t / m\
Assume L.L. 300 kg / m\
20/27 Beams
Design of Beams 1
S2 S
ML = W L * ……..m t Q L = WL * ……….t
8 2
c – Total loads:
MTot = MD + ML Q Tot = QD + QL
The moment at the end panel is the largest moment, so we estimate the section
from it. We have to design 2 sections. One at the mid of the first panel where
M=0.9Mo and Lu act = zero, while the second is of smaller moment, M=0.75Mo,
but its Lu act = 0.2S
For shear: Q max = 0.6wS as shown in the following figure:
0.4wS 0.5wS 0.5wS 0.5wS
21/27 Beams
Design of Beams 1
The second main beam is the most critical main beam as it is subjected to the
maximum reaction, which is 1.1wS as shown above.
Concentrated loads = Reaction of secondary beams = 1.1WTot * S
Assume o.w. = 0.1 t / m\ = 100 kg / m\
Calculate Mx & Q x
Note that the deflection is calculated due to L.L. only, so we have to RE-
CALCULATE the values of the reaction from the secondary beams.
Example:
2.0
Main beam
2.5*4m = 10m
Solution:
1) Secondary beam simple:
a- Dead load:
wD = 0.12 * 2.5 + 0.175 = 0.475 t/m2
22/27 Beams
Design of Beams 1
5 1* 64 600
L.L = * * 10 6 = 0.68 < = 2 cm
384 2100 * 11770 300
DONOT forget to multiply *106 to change m4 to cm4 and t/m to t/cm
m4 * t/m' = m 3t = 106 cm3t
* 6 = 13.44 t
RL = WL * S = 1 * 6 = 6 t M
20.66
Assume o.w. = 100 kg/m2
MT = 68.45 mt
QT = 20.66 t
There is haunch so Lu act = spacing between secondary beams.
Lu act = 2.5 m < 3 Assume Fbcx = 1.536 t/cm2
68.45 *100
Sx = = 4456 cm3 Max Sx in tables of IPE is 3070 cm3
1.536
So use board flange I-beam HEA
Choose HEA 600
1- Check compactness
C = 0.5 (30 – 1.3 – 2*2.7) = 11.65 cm
dw = 59 -2*2.5 – 2*2.7 = 48.6 cm
C 11.65
= = 4.66 < 10.8
tf 2.5
d w 48.6
= = 37.4 < 82
tw 1.3
Compact sections
24/27 Beams
Design of Beams 1
20 * 30
2.4 = 387cm
L u max = the least of
1380 * (30 * 2.5) *1.35 = 986cm
59 * 2.4
25/27 Beams
Design of Beams 1
7.56mt
sec1 sec2
9.07 *100
Choice of section: S = = 590 cm3
1.536
Choose IPE 330 (same as in case of simple beam)
Checks:
1- Moment:
For sec 1: same as before for compactness
Lu act = zero (compression flange is the upper flange contacted with R.C. slab
Therefore fact = 9.07*100/713 = 1.27 t/cm2 < 1.536 t/cm2
For sec 2: Lu act = 0.2*6 = 1.2 m
Therefore, we have to calculate Lu max
Cb = 1.3 (continuous beam with distributed load)
20 *16
2.4 = 206cm
Lu = the least of
max
1380 * (16 * 0. 75)
*1.3 = 272cm
33 * 2.4
26/27 Beams
Design of Beams 1
2- Shear:
6.72t 6.72t 6.72t
Note that reaction is (1.1 w*S) not (w*S) as in case of simple beam
RT =1.1 WD+L S =1.1*2.24*6 =
14.78 14.78 14.78
14.78 t
2.5 2.5 2.5 2.5
o.w.
RL = 1.1 WL S = 1.1*1*6 = 6.6 t
Assume o.w. = 100 kg/m2
M
MT = 75.15 mt
20.66
QT = 22.67 t
Sx = 75.15*100 / 1.536 = 4892 cm3 6.6 6.6 6.6
2.5 2.5 2.5 2.5
Use BFIB 650
Exactly as before with the new values of
moment and shear and the new BFIB
(HEA) chosen
Note: use loads 6.6 t in check deflection
27/27 Beams
Design of beams
Introduction:
Beams are sections subjected to moment and shear only (no
tension or compression forces with the moment and shear). This moment
may be from concrete floor as in case of floor beams, may be from
corrugated sheets as in case of purlins or may be from wind as in case of
side and end girt.
Design of beams:
Beams have same concept of design. We have to choose a section
in which the actual stresses due to moment and shear are less than the
allowable stresses of each of them.
As in case of sections subjected to tension or compression, we have
to estimate an approximate section and check.
Table (2.1d) in page 12, is used for the ratios of equal and unequal
angles as well as T-sections (T-stub) and circular sections. In case of
unequal angles, we have to make 2 checks (look page 12). Angles and
channels cannot be compact.
Support
Support
L
Figure 1 Figure 2
Sec 1
Case 1
Sec 1 Sec 3
Case 2
Sec 2
For Case 1 :
WL2
a- If there is no shear connector : Luact = L &M=
8
WL2
b- If there is shear connector : Luact = zero &M=
8
1/10 Beams
Design of Beams 2
For Case 2 :
a -If there is no shear connector:
Sec M Luact
1 0.9M 0 0.8 L
2 0.75 M 0 0.2 L
3 0.8M 0 0.6 L
So only, check Section 1
Sec M Luact
1 0.9M 0 zero
2 0.75 M 0 0.2 L
3 0.8M 0 zero
2/10 Beams
Design of Beams 2
3/10 Beams
Design of Beams 2
Example 1:
For the shown plan & elevation of inclined roof
600cm
4*200cm
o
30
4/10 Beams
Design of Beams 2
5 0.87 * 6 4 600
δu = * *106 = 0.23cm < = 2 cm
384 2100 * 30820 300
5/10 Beams
Design of Beams 2
20 * 30
Lu max = = 387 cm
2.4
800 * (30 * 2.15)
Fltb1 = *1.13 = 2.86 t / cm 2 > 1.4 t / cm 2
600 * 34
837 / 2160 484 / 646
Check Stresses: f = + = 0.28 + 0.45 = 0.73< 1 O.K
1.4 1.4
Check shear and deflection as before.
Example 2:
B1
B3 B2 1
4
1
6/10 Beams
Design of Beams 2
Solution:
For Beam B1 10t
0.225
50
W DL = 0.05 + * 0.5 = 0.075 t / m /
1000 3m
/
W LL = 0.3 * 0.5 = 0.15 t / m
W T = 0.15 + 0.075 = 0.225 t / m /
3 32
M = 10 * + 0.225 * = 7.75 m t Q = 5 + 0.225 * 1.5 = 5.34 t
4 8
Assume Fb cx = 1.4 t / cm 2 (Channel can not be compact)
775
Sx = = 553 cm 4 Choose UPN (channel) 320
1.4
c 10 − 1.4 23
Check = = 4.9 < = 14.8 (limit of non-compact)
tf 1.75 2.4
d w 32 − 4 *1.75 190
= = 17.8 < = 122.6 (limit of non-compact)
tw 1.4 2.4
20 *10
Lu act = 300 Lu max = =129 cm < 300
2.4
There will be LTB
800 * (10 *1.75)
Fltb1 = *1.35 = 1.97 t / cm 2 > 1.4 t / cm 2
300 * 32
∴ Fbcx = 1.4 t / cm 2
Note: c b = 1.35 because the effective load is conc. Load
775
Check moment stress = = 1.14 t / cm 2 < 1.4 t / cm 2
679
5.34
Shear q = = 0.12 t / cm 2 < 0.84 t / cm 2
32 *1.4
5 0.15 * 34 10 * 33
δu = * *10 6 + *10 6 = 0.25 cm
384 2100 *10870 48 * 2100 *10870
300
< = 1cm O.K
300
7/10 Beams
Design of Beams 2
0.575
For Beam B 3 :
50 6m
W D = 0.05 + * 1.5 = 0.125 t / m /
1000
W L = 0.3 * 1.5 = 0.45 t / m / W T = 0.125 + 0.45 = 0.275 t / m /
62
M = 0.575 * = 2.6 m t Q = 0.575 * 3 = 1.725 t
8
260
Sx = = 186 cm 3 Choose UPN 200
1.4
c dw
Check , as before
tf tw
20 * 7.5
Lu act = 600 cm Lu max = =96.8 cm < 600 cm
2.4
∴ There is L.T.B.
800 * (7.5 *1.15)
Fltb = *1.13 = 0.65 t / cm 2 < 1.4 t / cm 2
600 * 20
∴ Fbcx = 0.65 t / cm 2
260
Check moment f = = 1.36 t / cm 2 > 0.654 t / cm 2 UNSAFE
191
260
Choose S x = = 400 cm 4 Choose UPN 280
0.65
800 * (9.5 *1.5)
Fltb = *1.13 = 0.77t / cm 2 < 1.4 t / cm 2
600 * 28
260
Check f = = 0.58 t / cm 2 < 0.77 t / cm 2 SAFE
448
1.725
q= = 0.06 t / cm 2 < 0.84 t / cm 2
28 *1
5 0.45 * 6 4 600
δ LL = * *10 6 = < 0.57 cm < = 2 cm
384 2100 * 6280 300
8/10 Beams
Design of Beams 2
9/10 Beams
Design of Beams 2
Example 3:
For the shown plan.
4*5m
52 672
M 0 = 2.15 * = 6.72 m t Sx = = 480 cm 3 Choose IPE 300
8 1.4
Critical section is section 1 with M = 0.9 M 0 (biggest moment) &
Lu act = 0.8 L = 0.8 * 5 = 4 m (biggest Lu act ).
c dw
Check ,
tf tw
20 *15
Lu act = 400 cm & Lu max = =194 cm < 400 There is L T B
2 .4
800 * (15 *1.07)
Fltb1 = *1.3 = 1.39 t / cm 2 ≈ 1.4 t / cm 2
400 * 30
672
f = = 1.21 t / cm 2 < 1.4 t / cm 2
557
0.6 * 2.15 * 5
q= = 0.3 t/cm2 < 0.84 t / cm 2
30 * 0.71
5 0.8 * 5 4 500
δ LL = 0.8 * * *10 6 = < 0.3 cm < = 1.67 cm
384 2100 * 8360 300
10/10 Beams
DESIGN OF BURLIN
Roof Purlins 1
Purlins are those roof beams used to support the roof covering materials.
Usually, purlins are designed as simply supported beam with span equal to the
spacing between trusses or the main frames.
WD.L = WC × a + O.W
cos α
Y
Wx D.L = WD.L*cos Corrugated
Wy D.L = WD.L * sin sheets
X
S2
Mx D.L. = Wx D.L * X
W yD . L .
8
S2 WD.L.
WxD . L.
My D.L. = Wy D.L * .
8
Y
Qx D.L. = Wx D.L * S/2
Important note: Neglect shear in y-direction Qy because it is very small.
(Moments are in kg.m, and we want to change it to cm t, so we multiply it
*(100/1000). Shear is in kg so divide by 1000 to change to tons
Where ( α ) is the roof inclination angle with the horizontal direction, and (S) is
the spacing between trusses.
1/15 R.P. 1
Roof Purlins 1
2-Live load:
The moment due to live load is taken the bigger of uniform load or 100 kg
concentrated load.
a-Due to uniform load:
WL.L
L.L. (kg/m2)
WL.L = L.L. * a
Wx L.L = WL.L*cos
Wy L.L = WL.L * sin 200
S2 Accessible
Mx L.L. = Wx L.L * roof
8
Inaccessible
2 60 roof
S
My L.L. = Wy L.L * 20 kg/m2
8
Tan
Qx L.L. = Wx L.L * S/2 0.6
2/15 R.P. 1
Roof Purlins 1
a
Wx L.L = ( C × k × q) ×
cos α
a/cos
Where:
-0.8
The value of (Ce) is determined from the
shown graph:
Important note:
• When Ce is –ve value (suction), neglect wind load in the design of purlin
as it reduces the positive moment due to dead load and live load. This
case occurs for all trusses when the slope of roof "tan " is less than 0.4
• When Ce is +ve value (pressure), take effect of wind load in the design of
purlin as it increases the positive moment due to dead load and live load.
This case occurs for all trusses when the slope of roof "tan " is more than
0.4. We have to take the effect of wind on the design of roof purlin as
following:
3/15 R.P. 1
Roof Purlins 1
If Wx W.L. is +ve
S2
∴ Mx W.L. = Wx W.L ×
8
My W.L. = zero
Q x W.L. = WW.L. (S/2)
4-Combinations of loads:
a- If the wind is suction: tan ≤ 0.4, Ce negative
Case (I) ⇒ D.L+L.L
Mx = M x D.L + M x L.L My = M y D.L + M y L.L
Qx = Q x D.L + Q x L.L
Where ML.L. is the bigger of the 2 cases of either distributed or concentrated
load. This case of design is case A
Qx = Q x D.L + Q x L.L
Case (II) ⇒ D.L+L.L+W.L "This case of design is case B"
Mx = Mx D.L + Mx L.L + Mx W.L My = My D.L + My L.L
Roof purlins can be Hot rolled steel section “ Channel section UPN” or
Cold formed steel section “ C, Z, …”
4/15 R.P. 1
Roof Purlins 1
Check stresses:
Normal stresses
M xA M yA
Case( I ) fb = + = ... ≤ Fbc = 0.58F y
Sx Sy
M xB M yB
Case( II ) fb = + = ... ≤ 0.58F y × 1.2
Sx Sy
Shear stresses
Q zA
Case( I ) q act = ≤ 0.35Fy Where d = total depth of channel
t wd
Q zB
Case( II ) q act = ≤ 0.35Fy × 1.2
t wd
5/15 R.P. 1
Roof Purlins 1
Check deflection:
Due to live load only
5W x L.L S 4 span
δ L . L. = = ... ≤
384EI x 300
Truss
S/2 T5
T1 T2 T3 T4 S
S/2
Truss
T5
S/3
T1 T2 T3 T4
S/3 S
S/3
Truss
6/15 R.P. 1
Roof Purlins 1
1-Dead load:
WD.L = WC × a + O.W
cos α
Wx D.L = WD.L*cos Wy D.L = WD.L * sin
S2
Mx D.L. = Wx D.L *
8
• Case of using one tie rod at mid span:
(S / 2) 2 1
My D.L. = Wy D.L * = My D.L (case of no tie rods)
8 4
• Case of using 2 tie rods at middle thirds:
(S / 3) 2 1
My D.L. = Wy D.L * = My D.L (case of no tie rods)
8 9
Qx D.L. = Wx D.L * S/2
2-Live load:
a- case of uniform load:
WL.L = L.L. a
Wx L.L = WL.L*cos Wy L.L = WL.L * sin
S2
Mx D.L. = Wx D.L *
8
• Case of using one tie rod at mid span:
(S / 2) 2 1
My L.L. = Wy L.L * = My L.L (case of no tie rods)
8 4
• Case of using 2 tie rods at middle thirds:
(S / 3) 2 1
My L.L. = Wy L.L * = My L.L (case of no tie rods)
8 9
Qx L.L. = Wx L.L * S/2
7/15 R.P. 1
Roof Purlins 1
3-Wind load:
The same as before, as in case of purlins without tie rods because the
moments are in direction of X-only and tie rods affect only in Y-direction.
Wy = Wy D.L+Wy
Tie rod
8/15 R.P. 1
Roof Purlins 1
T3 = T2 + Wy × S , T4 = T3 + Wy × S
2 2
T’5 = T4 + Wy × S
2
Q 2T5 sin θ = T5
'
'
T5
∴ T5 =
2 sin θ
T3 = T2 + Wy × S , T4 = T3 + Wy × S
3 3
T’5 = T4 + Wy × S
3
'
T5
∴ T5 =
sin θ
T’5 in its general form = (0.5wy *S/2) + n (wy *S/2) for using one tie rod
= (0.5wy *S/3) + n (wy *S/3) for using two tie rods
∴ Force = area × stress
π
∴ T5 = 0.7 Aφ × Ft = 0.7 × × φ 2 × Ft
4
Get φ =…
Use minimum rienforcement bar 12 mm
9/15 R.P. 1
Roof Purlins 1
Example 1:
For a system of trusses with spacing = 6.00 m and panel length =2.00m
Design an intermediate purlin using hot rolled section, Slope 1:10
Assume any missing data.
Solution:
As hot rolled section
Q l (span of purlin ) = 6.00 m
& a (panel length) = 2.00 m
1
& = tan-1 = 5.710
10
1) Dead Load:
Assume wc =6 kg / m2 & o.w. (purlin) = 20 kg / m/
2
∴ wD.L. = 6 * + 20 = 32.06 kg / m/
COS 5.71
wx D.L. = 32.06 * cos5.71 = 31.9 kg / m/
wy D.L. =32.06 * sin 5.71 = 3.19 kg / m/
(31.9)(6) 2
MX D.L. = = 143.55 kg .m.
8
(3.19)(6)2
My D.L. = = 14.355 kg. m
8
(31.9)(6)
QXD.L. = = 95.7 kg
2
2) Live load:
a) Uniform load
L .L . = 60 – 66.67 * (0.1) = 53.33 kg / m2
Wl.l. = 53.33 * 2 = 106.66 kg / m/
wx l.l. = 106.66 * cos5.71 = 106.13 kg / m/
wy l.l. = 106.66 * sin5.71 =10.61 kg / m/
10/15 R.P. 1
Roof Purlins 1
(106.13)(6)2
∴ Mx L.L.= = 477.59 kg . m
8
(10.61)(6)2
My l.l. = = 47.76 kg .m.
8
(106.13)(6)
Qx L.L. = = 318.39 kg
2
b) 100 kg conc. Load
Px = 100 * cos5.71 = 99.5 Py = 100 * sin 5.71 = 9.95
99.5 * 6 9.95 * 6
Mx l.l. = = 149.3 kg. m My l.l. = = 14.93 kg. m
4 4
Uniform L.L. is more critical
3) Wind Load:.
Q tan = 0.1 < 0.4 wind is suction neglect wind load
4-Combination of loads
Mx = 143.55 + 477.59 = 621.14m. kg = 62.11 cm. t.
My = 14.355 + 47.75 = 62.1m. kg = 6.21 cm. t.
Qx = 95.7 + 318.39 = 414.1kg = 0.41 t
Choice of section
Assume Sx = 7 Sy & Fbc = 0.58Fy =1.4 t / cm2
62.11 + 6.21* 7
Sx = = 75.41 cm3 choose channel 140
1.4
Check compactness: Channel section, non-compact section
c 4.3 23 23
C= 6-0.7-1 = 4.3cm ∴ = = 4.3 < = = 14.84
t f 1.0 Fy 2.4
d w 10 190 190
dw= 14-2*1-2-1 = 10 cm ∴ = = 14.3 < = = 122.6
t w 0.7 Fy 2.4
Note that we used the limits of non-compact because we know that according to the
Egyptian code, the channels are non-compact.
11/15 R.P. 1
Roof Purlins 1
Simple beam, Compression flange is the upper flange and supported with corrugated
sheets, so Luact = zero (no need to calculate Lu max).
Check stresses:
62.11 6.21
1- fact = + = 1.14 t/cm2 < 1.4 t/cm2
86.4 14.8
0.41
2- q act = = 0.04t / cm 2 <<<< 0.35Fy = 0.84 t/cm2
14 * 0.7
Shear is not critical in purlins at all
Example 2:
For a system of trusses with spacing =
6.00 m
Design an intermediate purlin using hot 3.5m
rolled section and any other additional
member given that the maximum 1.75
9m
available section is channel 100 7m
( ) only available
• Sheets are of weight 10kg/m2
Solution:
3.5
α = tan −1 = 26.60 tan = 0.5
7
a 1.75
1) DL: = = 1.96m, o.w = 20 kg / m/
cos α cos 26.6
WDL = 10 * 1.96 + 20 = 39.6 kg / m/
Wx DL = 39.6 cos = 35.4 kg / m/ , Wy DL = 39.6 sin = 17.7 kg / m/
62
MxDL = 35.4 * = 159.3 kg m
8
12/15 R.P. 1
Roof Purlins 1
62
MyDL= 17.7 * = 79.6 kg m
8
Shear is not critical
LL à WLL = 60 – 66.66 tan 26.6 = 26.67 > 20 kg / m2
wLL = 26.67 * 1.75 = 46.67 kg /m/
wx LL = 46.67 cos α = 41.73 kg / m / wy LL = 46.67 sin α = 20.9 kg / m /
62 62
Mx LL = 41.73 * = 187.78 kg m My LL = 20.9 * = 94.05 kg m
8 8
Conc. Load ß check 100 kg ( )
3) Wind load:
Q tan = 0.5 > 0.4
There is pressure & suction
0.5 − 0.4 C e
=
0.8 − 0.4 0.8
Ce = 0.2 & and neglect the suction value of Ce
∴ ww= 0.2*1.1(clear height is 9 m)*70*1.96=30.18 kg /m
62
Mx wl = 30.18 * = 135.8 kg m
8
Design loads:
Case I : MxDL + Mx LL = 159.3 + 187.8 = 347.1 kg m =34.7cmt
Case ` : MxD + MXl +Mxw = 347.1 + 135.8 = 482.9 kg m =48.3cmt
In both cases: My = 79.6 + 94.05 = 173.65 kg m =17.4cmt
caseB 482.9
= = 1.39 > 1.2
caseA 347.1
∴ Use case B i.e. D + L +W
48.3 + 17.4 * 7
Estimation of section: Sx = = 101.2 cm3
1.4 *1.2
Choose channel 160 > channel 100 which is available
13/15 R.P. 1
Roof Purlins 1
17.4
∴ Mx = 48.3 cm t & My = = 4.35 cm t
4
48.3 + 4.35 * 7
Sx = = 46.9 cm3
1.4 *1.2
∴ Choose channel120 > channel 100
17.4
Mx = 48.3 cm t & My = = 1.93 cm t
9
48.3 + 1.93 * 7
Sx = = 36.8 cm3
1.4 *1.2
Use channel100
Check compactness: Channel section, non-compact section
c 3.55 23 23
C= 5-0.6-0.85=3.55cm ∴ = = 4.17 < = = 14.84
t f 0.85 Fy 2.4
Note that we used the limits of non-compact because we know that according to the
Egyptian code, the channels are non-compact.
Simple beam, Compression flange is the upper flange and supported with corrugated
sheets, so Luact = zero (no need to calculate Lu max).
48.3 1.93
Checks: 1) f= + = 1.4 t / cm2 < 1.4*1.2=1.68 t / cm2
41.2 8.49
34.71 1.93
f= + = 1.07 t / cm2 < 1.4 t / cm2
41.2 8.49
(2) (Not critical for shear)
(3) Check deflection
5 41.73 * 6 4 600
δ= * * 103 = 1.62 cm < = 2 cm O.K.
384 2100 * 206 300
14/15 R.P. 1
Roof Purlins 1
Wy = wy LL + wy DL = 17.7+20.9 = 38.6 kg / m/
1 6 6
T4/ = * 38.6 * + 3 * (38.6 * ) = 270.4 kg = 0.27 t
2 3 3
T4 cos θ = T4/
Truss
-1 2
θ = tan = 490 T1 T2 T3 T4
1.75
T4 cos 49 = 0.27 T4 = 0.39 t 6m
πϕ 2
= 0.4 ϕ = 0.7 cm = 7 mm
4
ϕ min = 12 mm (minimum)
15/15 R.P. 1
DESIGN OF BRACING
Design of Bracing Members
Bracing is used to carry the loads acting ⊥ to the frames or trusses plane. Such
as wind load, braking force, … etc.
As it is used to carry the wind load, so wind load will be Case A not B.
Wind Load Path:
Wind load à Corrugated sheets à End girts
1/2 base
à End gable columns 1/2 Hz bracing àVL bracing à base
h1 = Clear height + h
h1
h2
h2 = Clear height + H
1) HL bracing: B
R
Vertical
Bracing
W
w
2) VL bracing: R
Used to carry the reaction of the Hz bracing system.
.D.B.M-1/8
Design of Bracing Members
Steps of design:
1- Calculating of forces and buckling lengths:
a) Hz bracing:
R R R
l
R R
Note that: F= ±
n cosθ
Where:
"n" is the number of members you cut
F
" the angle between member and direction of "R"
F
.D.B.M-2/8
Design of Bracing Members
R e 3
1
d R 1
h 1 1 Sec 1-1
b 4 a 2 c Sec 1-1
Sec 2-2
2 R
C 1
b a c
2
Sec 2-2
S
Note that: "C" is the clear height, "S" is the spacing and "h" is the distance between
upper and lower chord.
Calculation of F 1:
From summation of forces at joint a: ∑y=0
The forces in member 1 and 1/ are equal and opposite
∑x =0
R
For section 1-1: R = 2 F1 cos 1 So F1= ±
2 cos θ1
Calculation of F 2:
R
For section 2-2: ∑x =0 R = 2 F2 cos 2 So F2= ±
2 cosθ 2
Calculation of F 3:
∑x =0
R
From joint e: R = F1 cos 1 + F3 = cos 1 + F3
2 cosθ1
R
∴F3 =
2
Calculation of F 4:
R
From joint b: ∑x =0 F2 cos 2 = F4
2 cosθ 2
cos 2= F4
R
∴ F4 =
2
.D.B.M-3/8
Design of Bracing Members
Buckling lengths:
S
For l1 è lin = l, lout = l.2 l l= ( )2 + h2
2
2- W-shape:
d c 5 b
R 6 1
R
1 Sec 1-1
3 a 4 Sec 1-1
Sec 2-2 R 1
2 b a c
2
Sec 2-2
R
From sec 1: F1= ±
4 cosθ1
R R
From sec 2: F2= ± and F3 = (as before)
2 cosθ 2 2
R R
From joint b: ∑x =0 F5 = F1 cos 1= ±
4 cosθ1
cos 1 =
4
.D.B.M-4/8
Design of Bracing Members
Buckling lengths:
S
For l1 è lin = l, lout = l.2 l l= ( )2 + h2
4
.D.B.M-5/8
Design of Bracing Members
3- Choice of section:
Since the forces are very small (sometimes, the bracing members designed as zero
members), so the guide will be and l/d.
• If the length of the member is smaller than 5m, so will be guide
• If the length of the member is larger than 5m, so use star shape as L/d is the guide.
So we can estimate the section using maximum
l
• If single angle: 200 = out get a
0.2a
l
• If star shape: 200 = out get a
0.38a
• If 2 angles back to back:
l l
200 = in get a 200 = out get a (take bigger a)
0.3a 0.45a
For checks:
Design as Comp member and check as tension member
Steps: 1) Design as comp. member λ ≤ 200 (not 180) ECP 51
F
2) Check ≤ Fc
Agross
F
3) Check ≤ 1.4 t/cm 2
Anet
l
4) Check ≤ 60
d
Don't check 300 as it is smaller than 200
Very Important Notes:
1– For cantilever there is no end gable system, so there is no wind load.
So the members of HL and VL bracing are designed as zero members.
(For zero members, check 2 and 3 are omitted).
L L2
2 – Check L/d for X bracing members = < 60 .
D a
3 – The Connection is always bolted.
.D.B.M-6/8
Design of Bracing Members
L
For member 2: C
R
F2 = Lin = Lout = S
2
S
3 0.5S S R/2 B 5 3
4 L 1.2L R 6
2 cosθ 2
L
5 0.5S S (B+R)/2
6 0.5L 0.75L (R + B ) S
2 cos θ3
.D.B.M-7/8
Design of Bracing Members
Internal
.D.B.M-8/8
DESIGN OF BEAM‐
COL
Beam-Column I
The beam-column members are subjected to both normal and moment, so their
N Mx My
stress is calculated using the formula: + + ≤ Fallowable . Since allowable of
A Sx Sy
1) Rolled sections:
IPE BFIB
2) Built – upysections: y y
x xx x x x
1/33-B.C.I
Beam-Column I
Design steps of columns:
1- Suggest a suitable bracing system
2- Calculate moment and normal and determine the critical sections to be
designed. ( the column may have more than one critical section and the
design is to check the stresses in all the critical sections)
3- Estimation of section.
4- Apply in the interaction equation.
1- If the bracing is not given in the exam, we have to suggest a suitable
bracing system:
Positions of horizontal member in vertical bracing:
1- Level of upper and lower chord of truss.
2- Level of rafter in portal frames.
3- Level of crane girder to avoid braking force.
4- Level of any beam connected to the column especially if this beam carry
load perpendicular to plane of column, (gives My) on column.
5- If hcolumn > 5m and the bracing is not given in the exam.
h > 5m or 6m
post
Beam
2/33-B.C.I
Beam-Column I
For the design of column we have to calculate all the terms of the interaction
equation, so we need to calculate Fc (allowable of compression), which in turns
Lbin Lbout L = k in × L
requires the calculation of both in = and out = . Where bin
rin rout Lbout = k out × L
I- Buckling of Beam-columns
K = is the buckling coefficient, which will be calculated twice, first for in-plane
and second for out-plane.
In order to calculate K for the column, we have to study two points "for in-plane
and for out-plane":-
A-Types of structures according to sway-:
a) Permitted to side sway. (Side movement)
b) Prevented from side sway .
The structure is prevented from sway when we use:
1- Tie member join the structure to the ground
The frame in the figure is prevented from sway
inside plane
3/33-B.C.I
Beam-Column I
2-Types of connection between column and girder-:
a) Fixed:
When the inertia of the girder is too large related to that of the column, the girder
PREVENTS the column from ROTATION.
Example: When the truss is connected to the column with distance "h" min.
1.25m
No rotation (fixed) but sway
Sway Sway
b) Free:
Cantilever .
c) Rigid:
When the inertia of the girder is smaller or bigger than that of the column with
small value and the connection is moment connection, the column and the girder
rotate while the angle between them remains CONSTANT.
Example: The column is connected to the girder with head plate while their
inertias are close to each other.
Usually inertia of girder is smaller than that of column (Ic = 2-3 Ig )
This structure is called PORTAL FRAME
4/33-B.C.I
Beam-Column I
d) Hinged:
When the connection is hinged (does not translate moment).
Example: The column is connected to the girder using angles connecting the
web of the girder.
5/33-B.C.I
Beam-Column I
In case the connection between the column and girder is fixed, hinged or
free we use the table ECP 53
Buckling
shape
h1
h2
hinged hinged
h1
lbin = 2( h2+ ) lbout = h1 or h2 (bigger)
2
ii ) For fixed base:
h1
h2
F ix e d h in g e d
( I n s id e ) ( o u ts id e )
h1
lbin = 1.3 ( h2+ ) lbout = h1 or h2 (bigger)
2
6/33-B.C.I
Beam-Column I
iii ) For partially fixed base :
h1
roof
column h
2
Partially
fixed
Combined h
3
column
Fixed
base
For roof column:
h1
lbin = 1.5 ( h2+ ) lbout = h1 or h2 (bigger)
2
For combined column:
lbin = 1.5 h3 lbout = h3
iv ) For partially fixed base :
If the bracing is given as shown below:
h4
h3
h2
h1
7/33-B.C.I
Beam-Column I
v ) For fink truss:
F ix e d
S b ase
h
1
h
2
h1
lbin = 2.10 ( h2+ ) lbout = ( h1 or h2 ) (bigger)
2
vii ) For cantilever frame:
h
1
h
1
h
2
8/33-B.C.I
Beam-Column I
In case the connection between the column and girder is rigid we use the
alignment chart ECP page 60 and 61.
Buckling length of columns in rigid frames:
B
I
g
I L
c c
A
L
g
For column AB
lbin = KLc lbout = Lc
: (chart) (k)
- for hinged base GA = 10
Where F = factor depends on the condition of the far end of girder and on the
case of frame.
C
1) F = 1 for frames (If there is no real support)
( ) Col 2
2) If there is support at the end of the girder: B
• Frame prevented from sway : Col 1
F = 2.0 for fixed far end A
F = 1.5 for hinged far end
9/33-B.C.I
Beam-Column I
10/33-B.C.I
Beam-Column I
Examples for buckling:
Example 1:
IPE 400
IPE 500
Col 2 Col 4
3.0
4.0
IPE 500 IPE 400 IPE 450
IPE 500
IPE 600
Col 3
4.5
5.0
Col 1
Column 1:
Inside plan: GA = 10 (hinged base)
32080 48200
+
ΣI c / Lc 450 300
GB = =
Σ( I g / L g * F ) 48200
800
.·. GB = 6.06
.·. From chart permitted to s way k = 2.65
.·. lbin = 2.65*4.5=11.925 m
Out-plan: lbout = Lc = 4.50 m.
11/33-B.C.I
Beam-Column I
Column 2:
48200
Inside plan: GB = 6.06 GC = 300 = 5.56
23130
800
From chart k = 2.35
.·. lbin = 2.35*3.0=7.05 m
Out-plan: lbout = 3.00 m
Figure 2:
Column 3: Frame prevented from sway
48200 23130
+
GA = 1.00 (fixed base) GB = 500 400 = 1.10
23130 33740
* 1. 5 + * 2.0
600 800
Note that: although the left support is roller, but this floor level is prevented from
sway, so we use the factor "F" for the prevented from sway frames.
From chart prevented from sway k = 0.78
.·. lb in = 0.78*5.00 = 3.90 m
lb out = 5.00 m
12/33-B.C.I
Beam-Column I
Example 2:
slope 1:10
IPE 400
col 1 IPE 500 3.00
5.50m
36.0m
Example 3:
13/33-B.C.I
Beam-Column I
Solution:
To solve this problem, we have to draw plan to know exactly the location of the
columns.
3.00
Side view (Outside plan)
5.00
col 2
3.00
col 1
Column 1:
48200 / 300 + 23130 / 300
Inside: GA = = 4. 9
8360 / 400 + 8360 / 300
14/33-B.C.I
Beam-Column I
Example 4:
Sec 1 Sec 2
IPE 270
IPE 360 IPE 360
2.0
IPE 400
IPE 500
IPE 400
Col 1
Col 2
Col 3
5.0
28 m 28 m 3m
IPE 330
Sec 1 Sec 2
Portal frame Vertical
bracing bracing
Spacing between frames is 6m
Solution:
Col "1"Inside: → Rigid connection
23130 / 700
GA = = 5. 7
16270 / 2800 Allowed to sway
GB = 1.0 fixed
The crane bracket has no effect on the col., the col. length is 7.0m not 5.0 m
∴ K = 1.7 ∴ lbin = 1.7 * 7 = 11.9 m
lbout : Bracing ∴ Prevented from sway & hinged connection
lbout = 3.5m
Col"2" :
Inside: GA = 1.0 fixed
15/33-B.C.I
Beam-Column I
48200 / 700
GB = = 5.9
16270 / 2800 * 2
K= 1.7 ∴ lb in = 1.7 * 7 = 11.9 m
Outside: → Rigid connection also, so we have to use the alignment chart
GA = 10.0 (hinged) Bases are hinged outside.
2140 / 700
GB = = 0.15
11770 / 600
∴ K = 1.75 lb in = 1.75 * 7 = 12.25 m
Col 3: Same as col."1" because we neglect effect of cantilever (Its stiffness = zero)
Example 5:
IPE 300 IPE 300
IPE 360
IPE 360
Col 2 Col 2
2.5
2.5
Building
3.5
3.5
Col 1 Col 1
hinged.
bracing frame
lbout = 3.5m
Lbin rigid connections, so use chants
GA = 1.0 fixed
48200 / 350 + 16270 / 250
GB = = 6.9
11770 / 400
Q Upper connection is prevented from sway
16/33-B.C.I
Beam-Column I
The frame is connected to R.C. building which prevent the Sway at the
level of the 1st floor
∴ K = 0.28 from chart of prevented from sway
∴ lbin = 0.85 * 3.5 = 2.97,
Column "2":
Outside is prevented from Sway (bracing) and the connections between
beams & columns are hinged
lbout = 2.5m
Inside: The column is allowed to sway because its top is allowed to Sway
GA (column 2) = GB (column 1) = 6.9
Side view
17/33-B.C.I
Beam-Column I
Example 6:
Calculate the buckling lengths of columns 1, 2 and 3.
IPE400
Col 3 Col 4
IPE 500
IPE 500
IPE330
7.0m
Col 1
IPE 400
3.5
Col 2
8.0m
6.0m 6.0m
25.0m
For Col 1,3 and 4 For Col 2
Solution:-
Column 1:
Inside plan: GA = 10 (hinged base)
48200
Σ I c / Lc
GB = = 700 = 7.44
Σ( I g / L g * F ) 23130
2500
.·. From chart permitted to sway k = 2.85
.·. lbin = 2.85*7.0=19.95 m
Out-plan: lbout = Lc = 7.0 m. from bracing system
Column 2:
Inside plan: fixed base, hinged connection with girder and frame is permitted to
sway, as the case of fixed free, K = 2.1
.·. lbin = 2.1*3.5=7.35 m
Out-plan: lbout = Lc = 3.5 m. from bracing system
18/33-B.C.I
Beam-Column I
Column 3:
Inside plan:
48200 48200
+
GA = 10 (hinged base) GB = 350 350 = 27.08
16270
*0.5
800
.·. From chart permitted to sway k = 3.6
.·. lbin = 3.6*3.5=12.6 m
Out-plan: lbout = Lc = 7.0 m. from bracing system
Column 4:
Inside plan:
48200
GB = 27.08 GB = 350 = 14.88
23130
2500
19/33-B.C.I
Beam-Column I
• To determine Fbcx and Fbcy we have to know whether this section is
compact or non-compact and relation between Lu act and Lu max
C C
≤ 14.8 non-compact ≤ 13.5 non-compact
tf tf
b) Web: Subjected to moment and normal (not as case of beams which are
subjected to moment only) ECP 9
Calculate dw = h – 2 [ tf + r ] ≈ h – 4tf (rolled)
= h – 2 [ tf + s ] ( built-up)
Assume compact section:
Fy Fy
-ve
dw
dw
-ve
-ve
2a
+ve
+ve
Fy
Fy Fy
Moment Compression
N
dw = h – 2tf N = 2a x tw x Fy a=
2t w F y
dw dw N 1 N
dw = +a dw = + = x( d w + )
2 2 2t w F y 2 t w Fy
1 N
∴α = ( + 1)
2 d w t w Fy
20/33-B.C.I
Beam-Column I
Very important note: N is +ve for compression and –ve for tension
> 0.5 (case of compression and moment)
Fy
dw 699
≤
(13α − 1) Fy
dw
tw
-ve
dw
< 0.5 (case of tension and moment)
+ve
dw 63.6
≤
t w α Fy
Fy
Note that: = 0.5 means pure moment, where
dw 63.6 127
≤ =
tw 0.5 * F y Fy
dw
If is greater than the above ratios
tw
− N / A + M x / Sx Tension
= =
− N / A − M x / S x Compression
dw
dw 190
>-1 (compression) ≤
t w (2 + ψ ) F y
+
d w 95(1 − ψ ) − ψ Fy
≤ -1 (tension) ≤
tw Fy
dw 190 190
For = -1(pure moment) = =
tw (2 + ( −1)) F y Fy
21/33-B.C.I
Beam-Column I
dw 190 64
For = 1 (pure compression) = =
tw (2 + 1) F y Fy
dw
If is greater than the above ratios ∴ Web is slender
tw
• To calculate LTB: M M
2 2
Cb = 1.75 + 1.05 + 0.3 2
≤ 2.3
M1 smaller moment
= =
M2 bigger moment
M1 M1
1380 AF 20b f M1 M1
Lumax = Cb or Lumax = = - ve = + ve
F y .d Fy M2 M2
22/33-B.C.I
Beam-Column I
II- We need also to calculate the straining actions on the beam-columns
inplane and outplane “N, Mx and My”:
Edge columns with and without crane
Internal columns with crane
M1 1 M1 1
Inplane h Inplane
2
X X M2
Y Y Outplane
N N Rwind
M1 1 M1 1
Inplane Inplane
2
X X M2
Y Y Outplane
Min = M1 = X x h , N1 = Y Min = M1 = given Mout = zero
Critical section is 1 Min = M2 = given or = M1/2
“Max M and N “ N1 = N 2 = N = Y
Critical section:
sec1 - if M1 > M2
sec2 - if M2 > M1
23/33-B.C.I
Beam-Column I
A- Cantilever column:
The base must be FIXED inside plan to maintain stability
N
M
M
Cantilever Cantilever
N M M
To calculate M and N:
wtot = (wc + ws + wLL) t/m2,
Where wc = (5-8) kg/m2 (corrugated sheets), ws = (20-35) kg/m2
WLL = (60-66.66 tan ) kg/m2 (Note that the value to wtot may be given)
W = wtot x Spacing t/m'
24/33-B.C.I
Beam-Column I
B- Edge columns with cranes:
Cranes give 3 loads in 3 different directions “loads from crane”:
∑P
PY = RDL + RLL+I , PX = 0.1*RLL and B =
7
*-Braking force always distributed on 2 successive columns unless given in
the exam.
The braking force is carried by the bracing if there
is a horizontal member at the same level of the
crane OR cause Mout on the column at section at M
y
B B
the position of crane 2 h
c 2
N2 N2 Rwind
M2
M2 2 2
PY PY
M'1 M1 M'1 B/2
M1 Inplane PX Inplane PX
1 1
3
X X M3
N1 N1
Y Y Outplane
Given X and Y, calculate M1, M1’, M2 and if fixed base M3 Mout = zero
N1 = Y and N2 = Y – PY
Critical Sections:
- If M1 > M2
25/33-B.C.I
Beam-Column I
Sec1 only (Min=M1, N1 and Mout = zero)
- If M2 > M1
Sec1 (Min=M1, N1 and Mout = zero)
and sec2 (Min=M2, N2 and Mout = zero)
N2 M2 N2 R wind
M2 2
PY PY
M'1 M1 M'1 B/2
M1 PX PX
1 1
Inplane Inplane
3
X X M3
N1 N1
Y Y Outplane
N2 N2 R wind
M2
M2 2 2
PY PY
M'1 M1 M'1 B/2
M1 Inplane PX Inplane PX
1 1
3
X M3
X
N1 N1
Y Y Outplane
Given X and Y, calculate M1, M1’, M2 and if fixed base M3 Mout = …..
N1 = Y and N2 = Y – PY
R
Critical Sections:
B M
y
- If M1 > M2
h
Sec1 only (Min=M1, N1 and Mout = ….) h
c
- If M2 > M1
Sec1 (Min=M1, N1 and Mout = ….)
and sec2 (Min=M2, N2 and Mout = zero)
26/33-B.C.I
Beam-Column I
C- External combined columns:
The following figures show the BMD and NFD of combined columns and
roof columns, the moment at the partially fixed connection between the 2
columns must be given in the exam.
Roof Roof
Partially Partially
fixed fixed
Combined Combined
Column Column
Note: If the moment at the partially fixed connection between the 2 columns
is not in the exam, we may consider the connection to be hinged with moment
equals zero as shown:
Roof Roof
Partially Partially
fixed fixed
Combined Combined
Column Column
27/33-B.C.I
Beam-Column I
D- Internal columns with cranes:
Internal
This short column is used to carry the crane girder, s it will be subjected to loads
from crane “Px , Py and B”
Case 1 “the column carry 1 crane girder“
• Inplane PY
The shown column is cant. Inplane
So Min = Px (h+hI)
PX h I
N = Py
h
Min
28/33-B.C.I
Beam-Column I
• Outplane
As this column is inside the building, we have three diff ways for
the outside plane.
a- Ordinary bracing system
Very Very important note: This column did not carry any wind load because it
is an internal column.
Since we used bracing, so the bases outside are hinged
B/2
29/33-B.C.I
Beam-Column I
b- Portal frame bracing system.
B=
ΣP
Mout =
B
xh
B/2 B/2
7 2
2
M out
1
B/2 B/2
Outplane
So we have to design 2 sections
Section "1" at the base: N & Min , while Mout = zero
Section "2"at the top of the column: N & Mout , while Min = zero
30/33-B.C.I
Beam-Column I
c- No bracing “cant. Col. In the outside plane”
⇒ This system is unstable outside. So the column must be
Cantilever outside (ie the base is fixed)
⇒ The column is cant. Inside & outside
31/33-B.C.I
Beam-Column I
Case 2 “the column carry 2 crane girders“
We have here 2 cases of loading
1- 2 cranes working at same time.
PY1 PY2
• Inplane
The shown column is cant. Inplane
Assume crane 1 > crane 2
So Min = Px1 (h+d+hI) + Px2 (h+d+hI) + Py1 (e1) - Py2(e2)
N = Py1 + Py2
• Outplane
We have the same 3 diff bracing systems.
a- Ordinary bracing system
Mout = zero
Lbin = 2.1 h
Lbout = h
ΣP1 ΣP2
Btotal = +
7 7
Same for the other systems with the shown Btotal
32/33-B.C.I
Beam-Column I
2- The max crane working and the other at rest.
PY1 Pd2
PX1 hI Btotal
2
Btotal
2
d
h
Min
Inplane
Outplane
• Inplane
The shown column is cant. Inplane
So Min = Px1 (h+d+hI) + Py1 (e1) + Pd2 (e1)
N = Py1
• Outplane
We have the same 3 diff bracing systems.
b- Ordinary bracing system
Mout = zero
Lbin = 2.1 h
Lbout = h
ΣP1
Btotal =
7
Same for the other systems with the shown Btotal
33/33-B.C.I
Beam-Column 2
After calculating the straining actins and choosing the critical sections, we
get Min, Mout and N.
Orientation of the Section:
1- If the column is subjected to Min and N only
Put Min = Mx so My = Mout = zero
N2
M2
2
M'1
M1
1
Inplane
X N1
Outplane
Y Y
X
N2
M2
2
M'1
M1
1
Inplane
X N1
Outplane
Y Y
X
1/18-B.C.2
Beam-Column 2
Y N1
Outplane
X X
Y
2/18-B.C.2
Beam-Column 2
N
-fca = actual axial compressive stress =
A
7500
= λ >100
λ2
Mx
-fbcx = actual bending stress @ x – axis =
Sx
My
-fbcy = actual bending stress @ y – axis =
Sy
C mx C my
A1 = ≥ 1.00 A2 = ≥ 1.00
f ca f
(1 - ) (1 − ca )
FEx FEy
7500
, FEX = (even if x is the , FEy = 7500 (even if is the
λ 2x
y
λ2y
smaller and smaller than 100)
smaller and smaller than 100)
λx
λy
• To calculate A1 and A2
f ca
For case ≤ 0.15 Take A1 = A2 = 1.00
Fc
3/18-B.C.2
Beam-Column 2
Transverse load
= 1.00 Hinged end
Cmx =1
M 1 smaller moment
α = =
M2 bigger moment
M1 M1
M1 M1
= - ve = + ve
M2 M2
C C
≤ 14.8 non-compact ≤ 13.5 non-compact
tf tf
4/18-B.C.2
Beam-Column 2
Very important note: N is +ve for compression and –ve for tension
dw 699
> 0.5 (case of compression and moment) ≤
tw (13α − 1) Fy
dw 63.6
< 0.5 (case of tension and moment) ≤
t w α Fy
dw
If is greater than the above ratios
tw
dw 190
>-1 (compression) ≤
t w (2 + ψ ) F y
d w 95(1 − ψ ) − ψ
≤ -1 (tension) ≤
tw Fy
dw
If is greater than the above ratios ∴ Web is slender
tw
5/18-B.C.2
Beam-Column 2
• To calculate LTB:
Cb = 1.75 + 1.05 + 0.3 2
≤ 2.3
M1 smaller moment
= = (The same sign as before)
M2 bigger moment
1380 AF 20b f
Lumax = Cb or Lumax = Take smaller
F y .d Fy
horizontal segments
6/18-B.C.2
Beam-Column 2
M M
2
= zero =+M /M
1 2 2
C b = 1.75 C b = 1.75+1.05 +0.3
Cmx = 0.85 (Sway) Cmx = 0.85 (Sway)
M
1
Note that: If M1 for the truss with fixed base is not given, it can be assumed to
be 0.5 M2
M M
Cantilever Cantilever
tie
= -1 = zero
Cb = 1 C b = 1.75
Cmx = 0.85 (Sway) Cmx = 0.6-0.4(0)
M
= 0.6
Fink truss
Base must be fixed
= zero
M C b = 1.75
Cmx = 0.85 (Sway)
7/18-B.C.2
Beam-Column 2
Corrugated
sheets
side
girt
IPE
Elevation Plan
Knee bracing
8/18-B.C.2
Beam-Column 2
Examples:
If h > 6m
h2 h2
M
h1
L =L = L =L =h
u act b out 2 u act b out 1
with no knee bracing
h1
OR L = h AND L =
b out 1 u act 2
Using knee bracing at mid height
If h > 6m
h h
2 2 M
2
Sec1-1 h
1
2 L
h h
1 1
Sec2-2
h1 M
1
L = L = h1 Truss with fixed base
b out 2 b out
Case 2 Case 1
9/18-B.C.2
Beam-Column 2
Case 2:
Sec. 1-1: Luact. = h1 / 2
Sec. 2-2: Lu act. = a (maximum distance between side girts which is mostly the
height of the wall)
⇒ We can add a hz. Member in the v l bracing at the mid height of the
column
1
⇒ Luact = h1= Lb out
2
If h > 6m
h h
2 2 M
Cantilever
h1 h1
M
h
1 L =L =h
L =L = u act b out 1
u act b out 2
In this example, we can not use knee bracing because there is no side girts
Note that: If the column has 2 different sections as shown, we have to study the
2 sections
N
2 Sec 2
M2
3.0m
N M M3
1 Sec 1 1
5.0m
10/18-B.C.2
Beam-Column 2
11/18-B.C.2
Beam-Column 2
Summary
• The design of column is the design of compression member subjected to
pure normal force, then design of beam subjected to pure moment except
in 3 differences:
1. There is a magnification factor called A1 due to p – effect
(additional moment). In the direction of Mx, and A2 in direction of
My. (If there is My)
Mx
∴ S x req. = = …………… cm3
f
Choose IPE no
check: Calculate Lbin =P Lbout = P
Lbin Lbout
λx= λy=
rx ry
12/18-B.C.2
Beam-Column 2
f ca
Get = P ≤ 0.15 ⇒ A1 = A2 = 1.00
Fc
C mx
> 0.15 ⇒ A1 =
F
(1 − ca )
FEx
Mx
fbcx = =P
Sx
Example 1:
Design the column shown 2.0
in the fig using rolled
5.0
section.
4.0 t
5.0
12.0 t
Solution:
N = 12 ton.
Min = Mx = 4 * 5.00 = 20 m.t.
Choice of section
Assume fbcx = 1.00 t/cm2
20 × 100
∴ Sxreq. = = 2000 cm3
1.00
∴ Choose IPE 500
13/18-B.C.2
Beam-Column 2
Checks:
C
= 6.25 <10.9
20 / 2
Flange: =
tf 1. 6
1 N co1
Web: = ( + 1) dw = 50 – 4×1.6 = 43.6 cm
2 d w t w Fy
d 699
= 42.75] <[
43.6 699 / 2.4
∴[ w = = = 72.4]
tw 1.02 (13α − 1) F y (13 × 0.556 − 1
∴ There is LTB
800 A f
∴ Fltb1 = .C b
Lu .d
M1
QFor the lower column segment = Zero ⇒ Cb = 1.75
M2
800 × 20 × 1.6
∴ Fltb1 = × 1.75 = 1.792 > 1.4 t/cm2
500 × 50
2
∴ Fbcx = 1.4 t/cm
2
QLbin = 2(5 + ) = 12 m Lbout = 5.00 m
2
7500
∴ Fc = = 0.557
(116) 2
N 12
fca = = = 0.103 t/cm2
A 116
f ca 0.103
= = 0.186 > 0.15
Fc 0.557
14/18-B.C.2
Beam-Column 2
C mx
∴ A1 = Cmx = 0.85 (permitted to sway )
f
1 − ca
Fex
7500
fEx = = 2.17 t/cm2
(58.82)2
0.85
∴ A1 = = 0.89 < 1.00 ∴ A1 = 1.00
0.103
(1 − )
2.17
Mx 20 × 100
fbx = = = 1.04 t/cm2
Sx 1930
Example 2:
1- Bracing system:
2 .0
3 .0
3 .0
15/18-B.C.2
Beam-Column 2
N = 12ton
M1= 20mt
1
3- Choice of section
Mx 2 20.0 ×100 3
Assume f = = 1.0 t / cm , so Sx = = 2000 cm
Sx 1.0
Choose I.P.E 500
4- Check:
Int. Equ. :
f ca f f bcy
+ A1 ( bcx ) + A 2 ( ) ≤ 1.0
Fc Fbcx Fbcy
As M y = zero
f ca f
+ A1 ( bcx ) ≤ 1.0
Fc Fbcx
N 12 2
* fca = = = 0.103 t/cm
A 116
16/18-B.C.2
Beam-Column 2
M x 20.0 × 100 2
* fbcx = = = 1.04 t/cm
Zx 1930
Fc =
7500
for max > 100
λmax
2
f ca 0.103
= = 0.095
Fc 1.085
* Fbcx :
20b f 20 × 20
Lumax = = = 258 cm
Fy 2.4
* A1
f ca 0.103
As = = 0.095 < 0.15 so A1 =1.0
Fc 1.085
f ca f 1.04
+ A1 ( bcx ) = 0.096 + 1.0( ) = 0.83 < 1.0 Safe
Fc Fbcx 1.4
18/18-B.C.2
Beam-Column 3
x x x x x x
h h
y y y
d d d
(1) 4 angles (2) 4 angles (3) 2 channels
and plate
B.C-3-1/49
Beam-Column 3
y y y
x x
y y y
d d
Design of section:-
1- Choice of section:- y
Assume Fc = (0.5 → 0.8) t/cm2, for section subjected to My, Mx and N only
Choose according to the required section
N.B.:-
For economic section
d = (1.5 → 2.0) h Not a check
2- Checks:-
Calculate A, Ix, Iy, rx and ry for the combined section.
We apply the interaction equation:-
f ca f f by
( ) + ( bx ) A1 + ( ) A2 ≤ 1.00 case (A)
Fc Fbcx Fbcy
Mx Mx h
* fbcx = = y ,y= , I x[ ] = 2(I x[ )
Sx2[ I x2[ 2
My My d d
* fbcy = = x ,x= + e[ , I y[ ] = 2(I y[ + A[ ( )2 )
Sy2[ I y2[ 2 2
λ >100
7500
=
λ max 2
B.C-3-3/49
Beam-Column 3
Local buckling:-
Lz
λ z if there is lacing bars or batten plate, where λ z =
rmin
Where, Lz is the free distance where each individual part an buckle alone.
rmin is minimum radius of gyration of the part that buckles alone.
λ out = λ x = λ ’out
B.C-3-4/49
Beam-Column 3
Lz 2
Check: λ z = = …< 60 and < λ max (of λ in and λ out)
rmin 3
45
°
45
°
B.C-3-5/49
Beam-Column 3
Lz Lz
C my 7500
*A2 = ≥ 1.00, FEy = , λ in = λ y
f
(1 − ca ) λ2y
FEy
B.C-3-6/49
Beam-Column 3
My d b
fbcy = ( + f)
I yII 2 2 y
d
3- Section composed of 4 angels:
2 IPE
y y
x x
h
y y
d d
4 angles 4 angles
N M
Estimation of section: Force on one side = C = + (Force on 2 angels)
2 d
Assume Fc = (1.1 → 1.3) t/cm2
B.C-3-7/49
Beam-Column 3
Force(C)
∴ Area of each side = = ………. cm2 (Area of 2 angles)
Fc
= 10-20mm 4 angles
and plate
Atot − A pl
A1L = Get area of each angle from tables
2
Deal with section exactly like 2 channels
Local buckling will occur inside plan only, so
Lbx L l
λ out = λ in = ( bin ) 2 + (C z ) 2
rx ry rmin
Where rx and ry are of the whole section (4 angles and plate). While rmin is the
minimum radius of gyration of the part buckles alone which is the 2 angles and
I min
the plate of each side. So we have to calculate rmin =
A2 Ls + pl
hp = h
tp as assumed before (10 – 20 mm)
Ap = hp tp
B.C-3-8/49
Beam-Column 3
Iy
rmin = and complete as before
A
5- Section composed of 4 angles and plate:
This section has no local buckling but there is LTB.
H y
Estimation of section: Assume d = , tp = 10mm
12 − 15
N M
C (compression on 2 angles) = + y
2 d
4 angles
2 C/2 and plate
Assume Fc = (1.1 → 1.3) t/cm , A1L =
Fc
H dw
Assume dw = , tw is max of 5mm or
12 − 15 190 Fy
y
N M
Force on flange = +
2 d
Assume stress Fc = (1.1 → 1.3) t/cm2 and get area of flange.
Assume bf = 20 tf for both upper and lower flange. Then we have to deal with it
exactly as rolled section but My not Mx
B.C-3-9/49
Beam-Column 3
plan
Case 2
Case 1 Economic Case 3
Easiest
Estimation of section:
Here we will deal with each section apart "each IPE resists the moment in its direction.
Mx
S x IPE 1 = =P get IPE no. P
0.9 → 1.3
My
S x IPE 2 = =P get IPE no. P (NOTE: Sx not Sy )
0.9 → 1.3
Checks:
Interaction equ.:
f ca f f 1.0 Case I
+ A1 bcx + A 2 bcy ≤
Fc Fbcx Fbcy 1.2 Case II
* fca = N / Atot
Mx
f bcx = y
I xtot
* Calculate Ix and Iy of the 2 IPE together.
My
f bcy = x
I ytot
Lbin I xtot
λin = , rx =
rx Atot
* Fc
Lbout I ytot
λout = , ry =
ry Atot
* A1 and A2 as before
B.C-3-10/49
Beam-Column 3
1- Check compactness:
c
All flanges as before < 10.91
tf
Case 1:
Web of IPE 1 is always compact because
it is stiffened with flange of the other IPE
dw 699 / F y
IPE 2
Web of IPE 2 ⇒ <
tw 13α − 1
1 N IPE 2
Where = *( + 1)
2 dw * t w * Fy
A2 IPE 1
Where NIPE 2 ≈ Ncol
A1 + A2
Case 2:
Web subjected to Web subjected to
bending and comp. IPE 2 comp. only
Web of IPE 1
A2
Where NIPE 2 ≈ Ncol
A1 + A2
B.C-3-11/49
Beam-Column 3
Case 3:
Web subjected to
comp. only
Web subjected to
Web of both IPE 1 and IPE2 bending and comp.
IPE 2
0.5d w 58/ Fy Compact
∴ <
tw 64/ Fy non - Compact
IPE 1
B.C-3-12/49
Beam-Column 3
Q /2 F2
°
4 5
45°
Q /2
Since the given shape has 2 plans of lacing bars, so Q* will be divided to the 2
plans affecting each plan with Q* / 2.
Force in the diagonal: Use method of sections.
Q* Q*
∑x =0 F cos = ± F= ±
2 2 cos α
Force in the horizontal (if any): Use method of joints.
∑x =0 F = ± Q* / 2
B.C-3-13/49
Beam-Column 3
Q F2
°
4 5
45°
Q
Since the given shape has 1 plan of lacing bars, so Q* will be carried by one
plan.
Force in the diagonal: Use method of sections.
Q*
∑x =0 F cos = ± Q* F= ±
cos α
Force in the horizontal (if any): Use method of joints.
∑x =0 F = ± Q*
Q
45°
Joint a
Q /2
Since the given shape has 2 plans of lacing bars, so Q* will be divided to the 2
plans affecting each plan with Q* / 2.
From the equilibrium of joint "a": F1 equals F2 and in opposite directions
So F1 = F2 = F
Force in the diagonal: Use method of sections.
Q* Q*
∑x =0 2* F cos = ± F= ±
2 4 cos α
B.C-3-14/49
Beam-Column 3
Summery of previous:
Q*
F= ± (Force in inclined members)
n m cosα
Q*
F= ± (Force in horizontal member if any)
n
Where:
• is the inclination of lacing bars with horizontal
• n is number of lacing plans.
n = 1 if ONE plan of lacing bars, while n = 2 if TWO plans of lacing bars
• m = 1 for single intersection system and m = 2 for double intersection
system.
The lacing bars are designed as compression members and checked as tension
members.
Lbx = Lby = L
y
B.C-3-15/49
Beam-Column 3
bt 3 Ix bt 3 / 12 t
Ix = ⇒ rx = = =
12 A bt 12
L
λx= < 140 ECP 134
rx
7500
λ >100
λ2x
F
fact = ≤ Fc
bt
L L
2) = = ………………….. ≤ 60 (b is the depth of bar)
d b
a) As comp. member:
Lout
λv= = ……………… ≤ 140
rv
B.C-3-16/49
Beam-Column 3
7500
λ v >100
λ2v
b) As tension member:
3 A1
Anet = A1 + A2 ( )
3 A1 + A2
L
≤ 60
d
B.C-3-17/49
Beam-Column 3
Design of connection:
a) If bolted connection:
Force < Rs.s.
πΦ 2 0.25 Fu
∴ Force = ( )* ( 0.2 Fu )
4
⇒ Φ = ……………..mm ≤ 20 mm.
For big Φ ⇒ change system or use welded connection
b) If welded connection:
Assume size of weld ≤ thickness of lacing bar
S = (5 or 6) mm
Force
Get Lact = + 2S
(2 S ) * (0.2 Fu )
(1-1.25)d (1-1.25)d
(1-1.25)d
(1-1.25)d (1-1.25)d
d
B.C-3-18/49
Beam-Column 3
d d d
a L a a
z
a a
B.C-3-19/49
Beam-Column 3
Q /4
2
Q /2
d
2 3
a a
d
2 R
1
Q /4 Q /4 Q /4
Q*/2 Q*
The system is said to be anti-symmetric, so reaction at joint 1 is =
2 4
x = 0, so reaction at joint 2 = Q* / 4
d Q* Q * .a
M1 = 0, R* = *a R=
2 4 2d
Where: tmin = d /50 Ecp 136 ( as lacing bars)
d is the distance between centerlines of column sections
"a" is distance between assumed joints = Lz + h batten pl d
The forces affecting batten plate are 2
M = R*d/2 and Q = R
R
B.C-3-20/49
Beam-Column 3
1- Bolted connection:
The height of the batten plate is taken (0.75-1) d
Mt
So we arrange bolts with edge 2d and pitch (3-4) d M r
t 2
r
The critical bolt (the upper bolt) is subjected to: Q Q
n
Vertical force V= Qy /n
Mt
Horizontal force = H= * y1
∑r2
Where ∑ r 2 = ∑ y 2 and y1 is the ordinate of the critical bolt.
2- Welded connection:
The height of the weld = h batten plate Mt Q
1 1
b = flange of column x y
Assume size = 10 mm Mt
Important: assume C.G. is the same as that of
Q
the column.
Calculate Ip = Ix + Iy, also calculate Avl
Point 2 Point 1
Q Mt Mt Mt Mt
V= + *x2 H= * y2 V= *x1 H= * y1
Avl I p Ip Ip Ip
H 2 + V 2 ≤ 0.2 Fu H 2 + V 2 ≤ 0.2 Fu
B.C-3-21/49
Beam-Column 3
Solved examples:
Example 1:
Design the shown roof column (N=7.00 t., M = 4.00 m.t.). Design also the
combined column using welded batten plates (N = 25.00 t., M = 29.00m.t. Q =
3.00 t.). Design also the batten plate and its welded connection to the column
section. Recheck the batten plate if it is bolted to the column and check the M16
grade 4.6 bolts
1.5
roof
column 2.5
Combined 6.5
column
Fixed
base
Solution:
1.5
Q Moment at the partially fixed connection is not
2.5
given, so we can assume moment = zero (hinged
connection) and the bending moment is as shown
6.5
) Roof column:
400
Assume f = 1.00 t/cm2 .·. Sx = = 400cm 3
1.00
Choose IPE 270
Check:
1.5
lbin= 1.5(2.5 + ) = 4.875m lbout=2.5m
2
487.5 250
x= = 43.5 < 180 y= = 82.8 < 180
11.2 3.02
Fc =1.4-6.5*10-5(82.8)2=0.95 t/cm2
B.C-3-22/49
Beam-Column 3
N 7
Fca= = = 0.153t / cm 2
A 45.9
f ca 0.153 7500
= = 0.16 > 0.15 FEX = = 3.96t / cm 2
fc 0.95 2
(43.5)
0.85
A1 = = 0.88 < 1.00 Take A1 = 1
0.153
1−
3.96
400
Fbx = = 0.932t / cm 2
429
c 13.5 / 2
Check compactness: Flanges = = 6.6 < 10.9 compact
tf 1.02
1 7
= ( + 1) = 0.59
2 23.46 * 0.66 * 2.4
d w 23.46 699 / 2.4
.·. [ = = 34.73 ] < = 67.6 compact
tw 0.66 13 * 0.59 − 1
20b f 20 * 13.5
Lu max = = = 174.3cm < Luact = 250cm
Fy 2.4
B.C-3-23/49
Beam-Column 3
70.5
Assume f = 1.2 t/cm2 .·. A1 [= = 58.75cm 2
1.2
d 50
choose 2 channels 300 = = 1.67 .·. o.k.
h 30
Check:
650 975
out = x = = 55.55 /
in = /
y = = 38.7
11.7 25.17
L z 100
z = = = 34.5 < 60 ∴ in = (38.7) 2 + (1.25 * 34.5) 2 = 57.94
rZ 2.9
2
z = 34.5 < * 57.94 = 38.62 ok
3
Fc = 1.4-6.5*10-5(57.94)2 = 1.18 t/cm2
25
fca = = 0.213t / cm 2
117.6
f 0.213 7500
( ca ) = = 0.18 > 0.15 FEy = 2
= 2.23t / cm 2
tc 1.18 (57.94)
C my 0.85
A2 = = = 0.94 < 1.00 Take A2 = 1
f 0.213
1 − ca 1−
t Ey 2.23
My d 2900
fbcy = ( + e[ ) = (25 + 2.7) = 1.08t / cm 2
I y[] 2 74490
B.C-3-24/49
Beam-Column 3
Q * .a 3.5 * 140
Or R = = = 4.9 t ECP 136 3
nd 2 * 50 a
d
M = R * d/2 = 4.9*50/2 = 122.5 cmt 2 R
Q * a 3.5 * 140 1
Or M = = = 122.5 cmt ECP 136
2n 2*2 Q /4
Very important note: If you want to use the equations of the ECP directly, you
must note that, the definition of "a" and "d" is the opposite ( ). This
Qd Q *a
The longitudinal shear force = , so R =
na nd
Qd Qa
The moment = , so M = (n is the number of batten plate plans)
2n 2n
Straining action on batten plate:
Q = R = 4.90 t. M = 122.5 cmt
(1.0)(40) 3
If the batten plate is welded: Ix = = 5333.3cm 4
12
M h 122.5
f= = * 20 = 0.46t / cm 2 < 0.72 * 2.4 = 1.73t / cm 2
I x 2 5333.3
B.C-3-25/49
Beam-Column 3
3Q 3 4.90
q= = * = 0.12t / cm 2 < = 0.84t / cm
2 A 2 1.0 * 40
B.C-3-26/49
Beam-Column 3
(1.0)(40) 3
Ix = − 2 * 1.8(3.3 2 + 9.9 2 + 16.5 2 ) = 4157cm 4
12
M h 122.5
f= = * 20 = 0.59t / cm 2 < 0.72 * 2.4 = 1.73t / cm 2
I x 2 4157
3Q 3 4.90
q= = * = 0.12t / cm 2 < = 0.84t / cm (use gross area)
2 A 2 1.0 * 40
2 2 π * 1.6 2
R= 2.65 + 0.82 = 2.77 t > Rss = 0.25*4 = 2.01t
4
So we have to increase dimensions of the plate to be 50 cm instead of 40 cm and
increase number of bolts, and then recheck.
B.C-3-27/49
Beam-Column 3
Example 2:
For the shown main system with spacing = 7.00 m
It is required to:
1- Design a built-up section for column 1using section composed of 4 angles.
2- Design also its welded lacing bars and its connection to the column.
3- Redesign the lacing bars if it is bolted to the column as well as its connection.
4- Redesign bolted lacing bars with horizontal member and its connection.
5- Redesign the lacing bars using double intersection system assuming welded
connection.
6- Redesign the lacing system using lacing angles assuming bolted connection.
IPE400
10 10
Col 1
7.0m
1.5
5.0
25.0m
Solution:
To get reactions from crane girder
Dead load: Assume o.w. of crane girder = 0.2 t /m'
RD.L. = 0.7*2 = 1.40 ton
10 10
5.50
Live load: RL.L. = 10 + 10 * = 17.86ton
7.50
1.5 5.5
* Assume impact factor I = 25% R
B.C-3-28/49
Beam-Column 3
1 1
* Total braking force = vertical loads without impact = (2 *10) = 2.86ton.
7 7
Since bracing is not given, so we can assume a suitable bracing system that the
braking force is resisted by the column and the column is not subjected to My
* Fc :
Lbin = 2.10*5.00 = 10.5 , Lbout = 5.00 m
1- Global buckling:-
1050 500
λ/y = = 52 λ/x = = 32.8
20.19 15.25
2- Local buckling:-
Shape of lacing bars:
70
So L Z = 35 cm ≈ d ≈ h 35 cm
70
r min = r v of single angle = 1.76 cm
35
λz = = 19.9 < 60 40
1.76 30
Elevation Side view
3- Overall buckling:-
λ y = 52 2 + 19.9 2 = 55.67
7500
FEX = = 2.42 t / cm2
55.67 2
0.85
A2 = = 1.01
0.39
1−
2.42
* Fbcy = 1.4 t/cm2
Applying in the interaction equation:
0.8
0.32 + * 1.01 = 0.9 < 1.2 (case of lateral shock)
1.4
So we may try 4 angles 80 * 8 to get an economic sec.
B.C-3-30/49
Beam-Column 3
Q*
Force in lacing bar F = + = tan-1 (35/40) = 410
2 cosα
2.27
.·. F = + = 1.5t
2 * 1 * cos 41
Dimension of lacing bar:
d 40 l
l= = = 53cm Assume b = = 5.00cm.
cos 45 cos 41 10
l 53
Thickness of lacing bar t. = = = 1.06cm Taken 12mm
50 50
Check of lacing bar as comp. member:
t 1.2
lbx = l = 53 cm rx = = = 0.35cm
12 12
lbx 53
.·. x = = = 151.5 > 140
rx 0.35
7500 1.5
Fc = = 0.43 t/cm2 fact = = 0.21t / cm 2 < 0.43 t/cm2
132.5 2 5.00 * 1.40
F 1.61
lact = + 2S = + 2 * 0.6 = 3.06cm take lact = 5.00 cm.
2 * S (0.2 Fu ) 2 * 0.6 * 0.72
B.C-3-31/49
Beam-Column 3
3- If lacing bars are bolted to the column: Assume use M16 grade 4.6
For dimensions, the same as in case of welded except b= 10cm > 3*1.6= 4.8 cm
because this is the minimum edge from both sides.
Check compression is the same as in welded
1.5
Check tension: f = = 0.34t / cm 2 < 1.4 t/cm2
5 * 1.4 − (1.8 * 1.4)
l 53
= = 10.6 << 60 .·. o.k. The same as in welded
b 5.00
π * 1.6 2
Rss = 0.25*4 = 2.01t < 4.01t, so R least =2.01t > 1.5t (force on lacing)
4
Ok safe use one M16 bolt
4- If lacing bars are bolted to the column and have horizontal member:
The diagonal will be the same as previous
The horizontal member:
Q * 2.27
F= = = 1.135 t
2 2
lin = lout = d = 40 cm
Dimensions of horizontal bar:
l = 40 cm, b= 40/10 = 4 cm, tmin= 40/50 = 0.8 cm
Check as compressions member:
0.8
r= = 0.23 cm
12
40 1
= = 173 > 140 Take t = 1 cm, r= = 0.29 cm
0.23 12
40
= = 138 < 140
0.29
B.C-3-32/49
Beam-Column 3
7500 1.135
Fc = = 0.39 t/ cm2 fca = = 0.28 t/ cm2 < 0.39 t/ cm2
138 2 4 *1
Q*
Force in lacing bar F = + = tan-1 (35/40) = 410
2 * 2 cos α
2.27
.·. F = + = 0.75t
2 * 2 * cos 41
Dimension of lacing bar:
d 40 l
l= = = 53cm Assume b = = 5.00cm.
cos 45 cos 41 10
l 53
Thickness of lacing bar t. = = = 1.06cm Taken 12mm
50 50
Check of lacing bar as comp. member:
t 1.2
lbx =0.7 l = 0.7*53 = 37.1cm rx = = = 0.35cm
12 12
lbx 37.1
.·. x = = = 106 < 140
rx 0.35
7500 0.75
Fc = = 0.67 t/cm2 fact = = 0.125t / cm 2 < 0.67 t/cm2
106 2 5.00 * 1.20
B.C-3-33/49
Beam-Column 3
Q*
Force in lacing bar F = + = tan-1 (35/40) = 410
2 cosα
2.27
.·. F = + = 1.5t
2 * 1 * cos 41
d 40
Dimension of lacing angle: l= = = 53cm = Lb
cos 45 cos 41
Assume minimum angle 55*5 (using bolt M16) or choose as comp member
Check as compression member:
53
v = =49.53 < 140
1.07
Fc = 0.6 * [1.4 – 6.5*10-5(49.53)2] = 0.74 t/ cm2
1.5
fca = = 0.28 t/ cm2 < 0.74 t/ cm2
5.32
B.C-3-34/49
Beam-Column 3
Example 3:
For the shown figure, it is required to design the B.U. column using the given
section (4 angles and 2 plates). The straining actions are M=30mt and N=40t.
1.5
roof
column d
1 2.5
d
2
Combined 6.0
column
Proposed
Fixed section
base
Solution:
6.0 d1
Assume d1 = = 40 cm Take d2 = = 25 cm
12 − 15 1.5 → 2
d1
Note economic section = 1.5 2
d2
B.C-3-35/49
Beam-Column 3
1.5 * 34 3
I out = 4 [52.4 + 10.1* 152] + 2 * = 19126 cm4
12
A = 4 * 10.1 + 2 * 34 * 1.5 = 142.4 cm2
104176 19126
rin = = 27 cm rout = = 11.6 cm
142.4 142.4
34 * 1.53 1.5
Iy= + 34 * 1.5 (1.54 - ) 2 + 2 [52.4 y
12 2
part behaves
+ 10.1 * (1.5 + 2.03 – 1.54)2] = 226.19 cm4 lonely
226.19 100
rmin = = 1.78 cm λz = = 56.2 < 60
2 * 10.1 + 34 * 1.5 1.78
2
λ z = 56.2 > * 65.3 = 43.5 Unsafe
3
So we can use horizontal member. Lz = d = 50 cm
50
λz = = 28.1 λin = 28.12 + 33.3 2 = 43.6
1.78
FC = 1.4 – 6.5 * 10-5 * 51.72 = 1.23 t / cm2
40
f ca = = 0.28 t / cm2
142.4
B.C-3-36/49
Beam-Column 3
f ca 0.28
= = 0.23 > 0.15
FC 1.23
0.85
A2 = = 0.91 < 1 take A2 = 1
0.28
1−
7500 / 43.6 2
Applying in the interaction equation:
3000
* ( 25 + 2.03 + 1.5)
0.23 + 104176 = 0.82 < 1 O. K.
1.4
Example 4: L3
Calculate Lz for the shown section. The section
L1 30
consists of 4 angles as shown. The distance is 60
and 30 cm. L2
60
Solution:
L1 L2 L3
60 cm
Lz = 60 cm
120 cm
60 cm 30 cm
Elevation Side view
B.C-3-37/49
Beam-Column 3
Example 5:
For the shown frame it is required to:
1. Suggest a suitable bracing system
7m
2. Design column using the shown section
using batten plate 70cm
5t
3. Calculate force affecting batten plate 25 m
20 t
4. If lacing bars are used, calculate the
maximum force.
Solution:
1. Bracing system is as shown
3.5m
2. M = 5 * 7 = 35 mt N = 20 t
3.5m
C = (20/2) + (35/0.7) = 60 t
Area of 2 angles = 60 / 1.2 = 50 cm2
6.0m
Area of 1 angle = 50/2 = 25 cm2
Use 4 angels 120 * 12
A = 4 * 27.5 = 110 cm2
Iy = 4 (368 + 27.5 * 352) = 136222 cm4
Assume thickness of batten plate = 70/50 = 1.4 cm (tmin)
1.4
2
Ix = 4368 + 27.5 * 3.4 + = 3321 cm4
2
136222 3321
ry = = 35.2 cm rx = = 5.5 cm
110 110
To calculate buckling lengths:
Q It's a frame, so we have to use alignment chart
Assume Ic = 2-3 Ig
So GA = 10 (hinged base)
Ic / 7
GB = = 7.14 → K = 2.8
0.5 I c / 25
1960 350
λ'in = = 55.7 , '
λout = = 63.6
35.2 5.5
Assume Lz = d = 70 cm (use batten plate each 70 cm)
rmin = rv = 2.35 cm
70
λz = = 29.8 < 60
2.35
B.C-3-39/49
Beam-Column 3
5.4 * 130
M= = 351 cmt
2 *1
F1
4. If using lacing bars:
Q* = 5.4 t , α = 45 o Q F2
45°
Q
5.4
F1 = = 7.64 t
1 * 1 cos 45
F2 = Q* = 5.4 t
B.C-3-40/49
Beam-Column 3
Example 6:
The given figure shows the main structural system of an industrial building:
1:10
IPE 400
3.0 m
shape 1
7.0 m col 1
H
V
30 shape 2
B.C-3-41/49
Beam-Column 3
Solution
The crane is simply supported over columns
Assume ow = 0.15 t/m 15 15
RLL = 15+15*4/6 = 25 t
2 4
Py = 25 ×1.25 + 0.15 * 6 = 32.15 t (max) R
5.0m 5.0
Note that we have to design the column twice for each case BUT
Q For case II Mx2 >Mx1 & N2 >N1 ∴ Case II is more critical
42/49-B.C-3
2007-2008
Beam-Column 3
Outplan:
94750 125023
rYin = = 18 cm , rxout = = 20.7 cm
290 290
lb in = 2.1*5 = 10.5 cm (cantilever)
Outside → Allowed to sway with Rigid connections because it's frame
∴ We must use GA & GB
Assume Ic = 2Ig
∴ GA = 10 (hinged outside)
I c 15 (2 I g ) / 5
GB = = = 2.4
I g 16 Ig /6
1050 1100
in = = 58.3 out = = 53.14
18 20.7
∴ Fc = 1.4 – 6*10-5 (58.3)2 = 1.18 t/cm2
fca = 64.3 / 290 = 0.22 t/cm2
f ca 0.22
= = 0.19 > 0.15
Fc 1.18
B.C-3-44/49
Beam-Column 3
Check compactness:
IPE600
C 0.5(22 − 1.2 − 2 * 1.9)
Check = = 4.47 <10.9 compact
tf 1.9
1 N
For web of IPE 550: Get α = + 1
2 d w * t w * F y
134 M Stiff
N IPE 500 = 64.3 * = 29.7 t y
134 + 156
B.C-3-45/49
Beam-Column 3
Properties of section:
A = (1/2) * 134 + 156 = 223 cm2
Mx
I xin = 92080 + 0.5 * 2670 = 93415 cm4
Stiff
25.8
IPE 600
B.C-3-46/49
Beam-Column 3
Head PL.
Stiff PL.
Stiff PL.
B.C-3-47/49
Beam-Column 3
Head PL.
B.C-3-48/49
Beam-Column 3
Head PL.
Stiff PL.
Stiff PL.
B.C-3-49/49
Examples-Column 4
1:10
IPE 400
Vc
3.0 m
H
c
H
V
30
It is required to:
a) Design column "1" in the following cases:
1- Design a rolled section for column "1" in the following cases using bracing
system and calculate the loads on the bracing system you suggested.
2- Redesign a rolled section for column "1" using portal frame bracing. If
unsafe, try BU section.
3- Redesign a BU section for column "1" (2 IPE with batten plates) using no
bracing at all (Cantilever)
b) Design the welded and bolted connection between the double crane bracket
and column "1" using pretensioned bolts M24 grade 8.8 for the case of using
portal frame bracing outside.
1/24-B.C.4
Examples-Column 4
Solution:
The crane is simply supported over columns
Assume ow = 0.15 t/m 15 15
RLL = 15+15*4/6 = 25 t
2 4
Vc = 25 ×1.25 + 0.15 * 6 = 32.15 t (max) R
To calculate Mx:
2/24-B.C.4
Examples-Column 4
5.0m 5.0
Note that we have to design the column twice for each case BUT
Q For case II Mx2 >Mx1 & N2 >N1 ∴ Case II is more critical
2B * 2 = 4B = 2.14 × 4 = 8.6 t
3/24-B.C.4
Examples-Column 4
2B 4B = 8.6 t F1
2B
F2
F3
5.0
6.0
-1 5
θ = tan = 39.8o
6
2F2 cos θ = 8.6 F2 = 5.6 t
F1 = 5.6 cos θ = 4.3t F3 = zero
2 2
Where l= 5 + 6 = 7.81m
Design of column:
Estimation of section Assume Fbcx = 1 t/cm2
29.3 × 100 3
=1 ⇒ Sx = 2930 cm Use IPE 600
Sx
64.3 2
fca = = 0.41t / cm
156
1050 250
λ in = = 43 λ out = = 54
24.3 4.66
4/24-B.C.4
Examples-Column 4
f ca 0.41 2930
= = 0.34 > 0.15 fbx = = 0.95 t/cm2
Fc 1.2 3070
1
11 − × 1.2 − 1.9
C 2
Fbcx ⇒ = = 4.47 <10.91
tf 1.9
dw = 60 – 4 ×1.9 = 52.4 cm
1 64.3
= [ + 1 ] = 0.71 > 0.5 (compression member)
2 52.4 × 1.2 × 2.4
699 d w 52.4
= 54.6 = = 44 < 54.6
(13α − 1) 2.4 tw 1.2
Luact = 2.5 m
20 × 22
Lumax = = 284cm
2.4
= -0.5 (for the suggested bracing system)
0.85
A1 = = 0.94 → A1 = 1
0.41
1−
4.06
7500
Where FEx = 2
= 4.06 t/cm2
43
bracing
5/24-B.C.4
Examples-Column 4
Estimation of section:
Assume f = 0.8 t/cm2 [for there is My]
2930
= 0.8 ⇒ Sx = 3660 cm3
Sx
Assume Ic = 2Ig
∴ GA = 10 (hinged outside)
6/24-B.C.4
Examples-Column 4
I c 15 (2 I g ) / 5
GB = = = 2.4
I g 16 Ig /6
"N " :
"N "
1050 1100
λ in = = 49.5 λ out = = 151.3 < 180
21.2 7.27
64.3 2 7500
fca = = 0.27 t/cm Fc = 2
= 0.33 t/cm2
239 151.3
f ca 0.27
= = 0.82 Too large
Fc 0.33
1050 1100
λ in = = 41.7 λ out = = 156
25.2 7.07
7500 2 64.3 2
Fc = 2
= 0.31 t/cm Fca = = 0.24 t/cm
156 270
∴ f ca =
0.24
= 0.77
Fc 0.31
1
15 − * 1.55 − 3
C 2
Fbcx ⇒ = = 3.74 <10.9
tf 3
dw = 60 – 4×3 = 48 cm
1 64.3
= [ + 1 ] = 0.68 >0.5
2 48 × 1.55 * 2.4
699 dw 48
= 57.5 = = 31 < 57.5
(13α − 1) 2.4 t w 1.55
7/24-B.C.4
Examples-Column 4
Compact
Lu act = 5m
20 × 30
Lu max = = 387 cm
2.4
∴ There is L.T.B
= zero Cb = 1.75
800 × 30 × 3 2 2
fltb 1 = *1.75 = 4.2 t/cm ∴ Fbcx = Fbcy =1.4 t/cm
500 × 60
7500 2
FEx = 2
= 4.31 t/cm
41.7
0.85
A1 = = 0.9 taken =1
0.24
1−
4.31
→ Check for section at base Mx = 29.3 mt
2930 2
fbx = = 0.51 t/cm
5700
0.24 0.51
+ *1 = 1.14 <1.2
0.31 1.4
Check for section at top of column
My = 21.5 mt
7500 2 0.85
A2 ⇒ FEy = 2
= 0.31 t/cm A2 = = 3.84
0.24
156 1−
0.31
2150
Fby = = 2.7 >> 1.4 t/cm2
902
2150 2
∴ We must use BU.S.[ = 1.97 t/cm >> 1.4]
1090
Note that: 1090 is the Sy of HEB 1000 (biggest section is the tables)
So if we have portal frame outside we have to use the cross
column as shown:
2 IPE
8/24-B.C.4
Examples-Column 4
The previous 2 pages are only to prove that we cannot use single I-beam if we
have portal frame outside. In the exam, if there is portal frame outside, use
cross column directly.
IPE 600
A = A1 + A2 = 156 + 134 = 290 cm2 Stiff
Check for section 1: (at base) Mx = 29.3 mt, N = 64.3 t and My = zero
fca =
64.3
= 0.22 t/cm2 ∴ f ca =
0.22
= 0.205 > 0.15
290 Fc 1.076
7500
FEx = = 2.22 t/cm2
2
58.1
9/24-B.C.4
Examples-Column 4
0.85
A1 = = 0.9 4 taken =1
0.205
1−
2.22
29.3 * 100
fbx = * 30 = 0.927 t/cm2
94750
C 0.5(22 − 1.2 − 2 * 1.9)
Fbcx ⇒ = = 4.47 <10.9
tf 1.9 Mx
58
Limit of compact: = 37.44 Stiff
IPE 600
2.4
Web of IPE 600: dw = 0.5* (60 – 4×1.9) = 26.2 cm. IPE 550
d w 26.5
= = 22.1 < 37.44
tw 1.2
fca =
64.3
= 0.22 t/cm2 ∴ f ca =
0.22
= 0.205 > 0.15
290 Fc 1.076
7500 0.85
FEy = = 1.51 t/cm2 A2 = = 0.98 Taken =1
70.512 1−
0.205
1.51
29.3 * 100
fby = * 30 = 0.927 t/cm2
94750
C 0.5(21 − 1.11 − 2 * 1.72) Stiff
IPE 600
= = 4.78 <10.9
My
tf 1.72
10/24-B.C.4
Examples-Column 4
d w 24.06
= = 21.7 < 37.44 Compact
tw 1.11
∴ Each carries B
My = 4.3 ×5 = 21.5 mt
15
∴ 2B = 2× = 4.3t
7
My
From case of studying the column inside plan (cantilever)
N = 32.15 * 2 = 64.3 t Outside
(Presence of My)
Use 2 IPE 450 spaced 60 cm
11/24-B.C.4
Examples-Column 4
d 60
= = 1.3 <1.5
h 45
d
But QLin = Lout Min ≈ Mout ∴ may be = 1
h
Use batten plate (given) each 1.5d = 1m
100
∴λz= = 24.3 < 60
4.12
2
< × 57 = 38
3
2 2
in = (35) + (1.25 × 24.3) = 46.3
12/24-B.C.4
Examples-Column 4
7500 7500
FE in = 2
= 3.5 t/cm2 FE out = 2
2
= 2.31 t/cm
46.3 57
0.85 0.85
Ainside = = 0.98 → 1 Aoutside = = 0.98 → 1
0.32 0.32
1− 1−
3.5 2.31
Applying Interaction Eqn.
0.72 0.64
0.27 + *1 + * 1 = 1.24 > 1.2
1.4 1.4
∴ We may increase distance between the 2IPE to be 70 cm
d 70
= = 1.56 (1.5 → 2) ok
h 45
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
(b) Design of welded & bolted connection for Bolt & weld.
⇒ Case of max moment & corresponding normal
Q = 2.5 t
For case of max normal [weld only]
13/24-B.C.4
Examples-Column 4
41
5.85
Vc
15.6 3.0
x Hc 38
30
5.0
6t
38t
(1) Mx = 30 mt N= 38t
(2) Mx = 41 mt N= 5.85t
1) Estimation of section
Use bigger moment for estimation
Assume f= 1.0 t/cm2
4100
∴ = Sx ⇒ Sx = 4100 cm2
1.0
For IPE Max Sx = 3070 cm3
∴ Use HEB 500
14/24-B.C.4
Examples-Column 4
Lbont = 5m
3040 500
λ in = = 143.4 < 180 λ out = = 68.8
21.2 7.27
7500 3000
∴ Fc = = 0.36 t/cm2 fbx = = 0.7 t/cm2
143.4 2 4290
1 38
α= [ + 1] = 0.64 > 0.5
2 38.8 × 1.45 × 2.4
699 d w 38.8
= 61.6 = = 26.75 < 61.6
(13 * 0.64 − 1) 2.4 t w 1.45
15/24-B.C.4
Examples-Column 4
dw = 38.8 cm
1 5.85
α= [ + 1] = 0.52 > 0.5
2 38.8 × 1.45 × 2.4
699 dw
= 78.3 = 26.75 < 78.3
(13 * 0.52 − 1)( 2.4) tw
20 × 30
Lu max = = 387cm
2.4
1380 * 30 × 2.8
= × 1.39 = 1342cm
2.4 × 50
∴ The section is compact & No LTB
16/24-B.C.4
Examples-Column 4
5.85
f ca = = 0.024 t/cm2
239
f ca 0.024
= = 0.07 < 0.15 ∴ A1 = 1
Fc 0.36
17/24-B.C.4
Examples-Column 4
L
Design all previous members as compression members & check
d
15.6 3.0
38
8.06 30 Sec 1 R
B
5.0
M outside 6.0
y M inside
x
107200 / 8
Lin ⇒ GA = 10 GB = = 17.4
23130 / 30
Lout = 8m
3040 800
λ in = = 112.2 λ out = = 114
27.1 6.99
7500 2
Fc = 2
= 0.57t / cm
114
18/24-B.C.4
Examples-Column 4
3000 806 2
fbx = = 0.46t / cm 2 fby = = 0.84t / cm
6480 932
1
15 − × 1.6 − 3.1
C 2
Fbcx ⇒ = = 3.58 < 10.9
tf 3.1
dw = 65 – 4×3.1 = 52.6 cm
1 32
α= [ + 1] = 0.59 > 0.5
2 52.6 × 1.6 × 2.4
699 d w 52.6
= 67 = = 17 < 67 Ok compact
(13 * 0.59 − 1) 2.4 tw 3.1
20 × 30
Luact = 8m Lu max = =387 cm
2.4
∴ There is LTB
800 × 30 × 3.1
fltb1 = * C b = 1.43Cb > 1.4t / cm 2
800 × 65
Since the segment of the column for the points braced outside is 8m, and since
the moment is not straight, so take Cb as unity
2
∴ Fbcx = 1.4 t/cm ∴ Fbcy = 1.4 t/cm
7500 7500 2
FEX = = 0.6t / cm 2 FEy = 2
= 0.57t / cm
112.2 2 114
0.85
The frame is allowed to sway inside plan (Mx) A1 = = 1.09
0.13
1−
0.6
The frame is not allowed to sway outside plan (My) because of the presence of
bracing. RB causes transverse load and with hinged base (outside). Cmy=1.0
C my = 1
A2 = = 1.3
0.13
1−
0.57
Applying in the interaction equation:
0.46 0.84
0.23 + × 1.09 + × 1.3 = 1.37 > 1.2 Use HEB 700 & Recheck
1.4 1.4
19/24-B.C.4
Examples-Column 4
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Solved example "2":
P
(1) Design as hot rolled column if P=2t
(2) Design as cold formed box section (square) if P=2t
(3) Calculate Pmax if we use cold formed rectangular box section 4.0 m
300×200×6.3
Solution:
(1) Assume Fc = 0.75t/cm2 in = out = 100
2 2
∴A = = 2.7cm Lin = Lout = 4m (hinged – hinged)
0.75
400
IPE 80 = 100 ry = 4cm
ry
IPE 450
80 + 450
∴ IPE = = 265 Choose IPE 270
2
2 2
fca = = 0.04t / cm
45.9
7500 2
Fc = 2
= 0.43t / cm ∴ fca << Fc
(400 / 3.02)
400
Use smaller IPE & Recheck 180 = ⇒ r y = 2.22
ry
7500
Use IPE 200 Fc = = 0.235t / cm 2
2
(400 / 2.24)
2
fca = = 0.07 t/cm2 < 0.235 t/cm2
28.5
20/24-B.C.4
Examples-Column 4
2 2 400
A= = 2.7cm = 100
0.75 rx
40×40×4 rx = 4 cm = 40
100×100×4
40 + 100
∴ = 70
2
Use 70×70×36
2
Fca = = 0.21 t/cm 2
9.5
400
λx= = 148
2.7
7500
∴ Fc = = 0.34t / cm 2 we may check 60×60×3.2
2
148
400
(3)Max "P" → x = = 48.2 A= 61.2 cm2
8.3
P
= 1.25 → P = 76.4t
61.2
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
21/24-B.C.4
Examples-Column 4
2m 8m
Solution:
Since it is double cantilever so we have to make cases of loading
W corr = 6 kg / m2 , W steel = 20 kg / m2
WLL = 60 – 66.66 * 0.1 = 53.3 kg / m2
6
WDL= ( + 20) * 6 = 156 kg / m/ = 0.160 t / m/
cos α
WLL =53.3 * 6 = 320 kg / m/ = 0.32 t / m/
WTotal = 0.16 + 0.32 = 0.48 t / m/ 6.0
M M
Case 1 Case 2
22/24-B.C.4
Examples-Column 4
15.04 * 100
Assume f = 1.2 t / cm2 Sx= = 1253 cm3
1.2
Use I PE 450
Lb out = 4 m , L b in = 2.1 * 8 = 16.8 m
400 1680
λout = = 97 , λin = = 90.8
4.12 18.5
Fc = 1.4 – 6.5*10-5 (90.8)2 = 0.86 t / cm2
Calculation of Fbcx: Check compactness:
C 0.5 * (18 − 0.86 − 2 * 1.35)
For flange: = = 5.3 < 10.9
tf 1.35
Note that: we used the larger normal force, so the smaller will be compact also.
Segment between braced points
α =-1 , C b = 1.75 + 0.5 (-1) + 0.3 (- 1)2 = 1
LU act = 4 m
4.0 m
20 *19
Lu max = = 245 cm < 400 cm
2.4
Segment
SO LT B will occur y
18*1.35
800 *19 *1.46
F1tb =
1
*1 = 1.23 t / cm2 < 1.4 t / cm2
400 * 45
6.22*0.86 h
1
h = (45 – 2 * 1.46) = 7 cm
6
y
3
1.46 * 19
I= = 834.5 cm4
12
A = 19 * 1.46 + 7 * 0.94 = 34.32 cm2
834.5
rt = = 4.9 cm
34.32
23/24-B.C.4
Examples-Column 4
Lu 400
= = 82
rr 4.9
1 1
84 = 54.2 , 188 = 121.35
2.4 2.4
cb Lu c
84 < < 188 b
Fy rt Fy
82 2 * 2.4 2 2
Fltb2 = (0.64 − )2.4 = 1.18 t / cm < 1.4 t / cm
1.176 * 105 *1
14.4 *100
A1 = 1 , Fbx = = 0.96 t / cm2
1500
0.96
0.06 + * 1 = 0.74 < 1
1. 4
15.04 * 100
A1 = 1 , Fbx = = 1 t / cm2
1500
1
0.05 + * 1 = 0.76 < 1 Waste try IPE 400
1. 4
24/24-B.C.4
COMBOSIT
SECTIONES
Composite sections
Composite Bridges
Explain the main concept of composite action in roadway bridges: ( )
Beam Theory for Composite Beams:
a) If the friction between the slab and beam is neglected. The slab
lower surface is in tension and elongates while the upper surface of the
beam is in compression and shortens. There are 2 neutral axes, one at mid
height of concrete slab and the other at mid height of steel beam. This is
shown in fig 1.
b) Partial interaction, the neutral axis of the slab is closer to the beam
and that of the beam closer to the slab; the horizontal slip has now
decreased. This is shown in fig 2.
c) When a system acts compositely no relative slip occurs between the
slab and beam. Horizontal forces (shears) are developed that act on the lower
surface of the slab to compress and shorten it, while simultaneously they act
on the upper surface of the beam to elongate it. There is 1 neutral axis for the
whole section. This is shown in fig 3.
N.A.
N.A.(Steel)
1/17
Composite sections
Disadvantage:
1) In continuous construction, the negative moment region will have a
different stiffness because the concrete slab in tension is cracked and not
working.
2) Long-term deflection caused by concrete creep and shrinkage
2/17
Composite sections
composite
Important note:
If the neutral axis of the member falls below the bottom of the concrete slab,
the entire concrete slab is in compression.
If the neutral axis of a composite section falls within the concrete slab, only
the portion of the concrete slab above the neutral axis should be included in
the calculation of section properties.
3/17
Composite sections
4/17
Composite sections
Design procedure:
a) Calculation of straining actions:
1- Calculate MDL-1 [Dead load of concrete slab and O.w. of steel beam]
2- Calculate MDL-2 [Floor cover]
3- Calculate ML+I
Important note: Equivalent WL+I may be given in the form of t/m2 or t/m\
If "w" is given in t/ m\ ML+I = w *L2 / 8
If "w" is given in t/m2 ML+I = (a*w) *L2 / 8 where "a" is spacing
between main girders.
b) Estimation of section:
Span
1- hw = ECP page 155
16 → 22
2- tw : For hw < 1, no vl or hz "longitudinal" stiff are required
For 2.0 > hw > 1, only vl stiff are required @ spacing 1.5 → 2m
For 2.8 > hw > 2.0, vl stiff, hz "longitudinal "stiff @ d/5
For hw > 2.8, vl stiff, hz "longitudinal "stiff @ d/5 and d/2
Then we calculate tw from the following checks:
1- tw min = 8 mm
5/17
Composite sections
Q (d + L + I )
2- Check shear: q = ≤ 0.35 Fy ,
hw × tw
Q (d + L + I )
tw ≥ ECP 2.6.3.1 page 13
hw × 0.35Fy
hw 830
3- Flange to web buckling ≤ ECP 7.1 page 122
tw Fy
hw hw 320
For web longitudinally stiffened @ : ≤ ECP 7.7 page 124
5 tw Fy
hw hw hw 365
For web longitudinally stiffened @ , ≤ Euro code
5 2 tw Fy
6/17
Composite sections
Checks:
2
1) If the system is Un-shored:
1- The moment due to O.W. and concrete slab will
be loaded on steel section only. MDL-1
N.A.
Calculate y s and Is
ys
1
2- The moment due to F.C. and L+I will be loaded
on composite section
MDL-2 + ML+I
A f2
Anv = As + conc f2
n
N.A.
AC t
AS y s + * (hs + s )
n 2 y
y nv = y nv
A s
AS + S
n
AC t
I nv = I S + A S ( y nv − y s )2 + (hs + s − y nv ) 2
n 2
Note that: f2\ = f2 / n
Case Upper steel fiber Lower steel fiber Upper concrete fiber
DL1 f US (upper steel) f LS (lower steel)
M DL −1 M DL −1
= * (hs − y s ) = * ys
IS IS
Total
Checks:
7/17
Composite sections
Ac /3n Ac /n
3 f 3-D 3 f 3-L
f2 f2
2 f 2-D 2 f 2-L
N.A. N.A.
h h
y y
nv-1 nv-2
1 1
f 1-D f 1-L
For DL & DL For LL+I
1 2
8/17
Composite sections
Case Upper steel fiber(Pt2) Lower steel fiber(Pt1) Upper concrete fiber(Pt3)
DL1 f US (upper steel) = f LS (lower steel) f u-conc(upper concrete) =
+DL2 M DL −1 + M DL −2 M DL −1 + M DL −2 M DL −1 + M DL− 2
I nv−1 I nv−1 I nv−1
* (h − y nv−1 ) * ( y nv−1 ) * (h − y nv −1 − t s ) / 3n
Total
9/17
Composite sections
Solved example:
The main girder of span 40m and
spacing between main girders 2.70
40m
m will be designed in this example
assuming composite action between
2.70m
the deck slab and the steel section.
Steel used is st.52 and
RC. slab 22 cm with Fcu=300kg/cm2 (Fall = 75 kg/cm2)
Assume F.C. = 175 kg/m2.
Equivalent L.L. = 1.7 t/m2 Distance between X.G. = 5m
It is required to design an intermediate main girder twice: using
a- Un-shored system b- Shored system.
Solution:
1. Staining Actions:
The staining actions for composite girder design are taken as follows:
1.1 Dead load (DL1):
R.C. slab = 22 cm
Assume own weight of steel girder = 0.35 t/m`
WDL1 = ts c x spacing + o.w. = 0.22 x 2.5 x 2.7 + 0.35 = 1.835 t/m`
MDL1 = 1.835x402 / 8 = 367 m.t
QDL1 = 1.835x40 / 2 = 36.7 t
1.2 Dead load (DL2):
Flooring = 0.175 t/m2
WDL2 = flooring x spacing = 0.175 x 2.7 = 0.47 t/m`
MDL2 = 0.47x402 / 8 = 94 mt QDL2 = 0.47x40 / 2 = 9.4 t
1.3 Live load + Impact (L+I):
W eq = 1.7 t / m2 (given) ∴ w = 1.7 * 2.7 = 4.6 t / m/
M L+I = 4.6 * 402 / 8 = 920 m t Q L+I = 4.6 * 40 / 2 = 92 t
10/17
Composite sections
b e : Intermediate M.G.
270
1- C.L. to C.L. : bE = 2 * = 270 cm
2
11/17
Composite sections
L 4000
2- bE = 2 * = 2* = 1000 cm
8 8
1
3- b E = 2 (6 t s + b f ) = 2 (6 * 22 + 0.5 * 55) = 319 cm
2
SO b e = 270 cm t slab = 22 cm
a- Design as Shored:
For F CU = 300 kg / cm2 à n = 9 ECP 158
270
To calculate the section carrying LL+I f2
f2
USE "n" = 9 57.1
N.A.
149.3 12/17
Composite sections
b e = 270 cm t slab = 22 cm
h s = 3.8 + 2.6 + 200 = 206.4 cm
A C = 270 * 22 = 5940 cm2
Case Upper steel fiber(Pt2) Lower steel fiber(Pt1) Upper concrete fiber(Pt3)
DL1 f US (upper steel) f LS (lower steel) f u-conc(upper concrete) =
+DL2 461 * 100 461 * 100 461 * 100
= * 90.85 = * 115.55 = * (90.85 + 22) / 27
7943186 7943186 7943186
= 0.53 t/cm2 = 0.67 t/cm2 = 0.024 t/cm2
13/17
Composite sections
1- Check stresses:
Lower steel fiber: f 1 = 1.92 t / cm2 < 0.58 *3.6 = 2.1 t / cm2
Upper steel fiber: f 2 = 1.01 t / cm2 < 0.58 *3.6 = 2.1 t / cm2
Upper concrete fiber= 0.097 t/cm2 = 97 kg / cm2 > 75 kg / cm2 (Unsafe)
2- Check fatigue: detail B, n = 2000000 (longitudinal member)
0.6 * 920 *100
àF sr = 1.26 t/cm2 *149.3 = 0.74 t / cm2 < 1.26 t / cm2
10995975
75*3.8
For steel section:
A S = 75 * 3.8 + 200 * 1.2 + 55 * 2.6 = 668 cm2
3.8 200 2.6
75 * 3.8 * + 200 * 1.2(3.8 + ) + 55 * 2.6(3.8 + 200 + )
y= 2 2 2 = 82 cm
668
3.8 2 200 3
I S = 75 * 3.8 * (82 - ) + 1.2 * + 1.2 * 200 *(103.8 - 82)2
2 12 124.4
2.6 2
+ 55 * 2.6 (124.4 - ) = 4'909'587 cm4
2 82
For composite section:
b e = 270 cm t slab = 22 cm h s = 3.8 + 2.6 + 200 = 206.4 cm
A C = 270 * 22 = 5940 cm2
5940
668 * 82 + * (206.4 + 11)
y nv = 9 = 149.3 cm
5940
668 +
9
14/17
Composite sections
270
f2
f2
N.A. 57.1
149.3
5940
I n v = 4909587 + 668 * (149.3 – 82)2 + (57.1+11)2 = 10995975 cm4
9
Lower steel fiber Upper steel fiber Upper con. fiber
367 * 100 367 * 100 --------
f1 = * 82 f2 = * 124.4
4909587 4909587
= 0.61 t / cm2 = 0.93 t / cm2
(94 + 920) *100 (94 + 920) *100 (94 + 920) *100 * 79.1
f1 = *149.2 f 2 = * 57.1 f 3 = /9
10995975 10995975 10995975
= 1.38 t / cm2 = 0.53 t / cm2 = 0.081 t / cm2
= 1.99 t / cm2 = 1.46 t / cm2 = 81 kg / cm2 > 75 kg / cm2
< 2.1 t / cm2 < 2.1 t / cm2
Checks:
1- For Upper & lower fiber f < 0.58 F y = 2.1 t / cm2
2- For concrete f con. = 81 kg / cm2 > 75 kg / cm2 Unsafe
15/17
Composite sections
Shear connectors
T-sec
Closed ring
I-sec Hooked bar
channel
Spiral
Studs
r r
ect
o ecto
n n
on con
gi dc xibl
e
Ri Fle
16/17
Composite sections
Angle
channel
ct or
ne
c on
i gid
-r
mi
Se
17/17
DESIGN OF STAIRS
Stairs
1/7-Stairs
Stairs
Design of step:
Steps are made of checkered plate Checkered plate
6/8 as shown
5-7
Assume o.w. of step = 20 kg / m\
L.L = 300 → 500 kg / m2 b = 30 cm
F.C. may be used
20 Beam at 1/2 floor level
W= + (F.C. + L.L.) b
1000
(4.50)
wa 2 wa
a
Calculate M = Q=
8 2
Fbcx = 1.4 t/cm2 (lip is small, so neglect L.T.B.)
L
Check f, q, δ ≤ →L=a
300
a
(6.00) (3.00)
Width of stairs is about 1 → 1.5 m a a
Slope is 1:2 in most cases.
wL2 wL
M= Q=
8 2
Lu act = zero
2/7-Stairs
Stairs
Fbcx = 1.4 t/cm2
dmin of channel → h-22
t
1
4
Check f, q, δ 2
0 3
26.5
L70*7
hchannel
hweld
°31
= 2
cos 2
Calculate Ix
M
Check y = …..< 0.7 ft (allowable of good butt weld subjected to tension due
Ix
to moment or due to tension). Look ECP page
a a
If channel is flushed & checkered plate is
welded, so Lu act = zero
If we use grating Lu act = a
3/7-Stairs
Stairs
Solved example: Beam B
b c
It is required a complete design of stairs (4.50)
1.25
(steps, beam of stairs with its connection &
3.0
beam at 1/2 floor height)
Given that: L.L. = 400 kg/m2, F.C. =150
kg/m2
1.25
(6.00) (3.00)
a d
1.0 1.25 1.25 1.0
Solution: 0.5
Design of step:
Assume o.w. of step = 20 kg/m\
Take shape of step as Z – section (assume b = 30cm) (checkered plate 6/8)
WDL = 20 + 150 * 0.3 = 65 kg/m\
WLL = 400 * 0.3 = 120 kg/m\
WT = 120 + 65 = 185 kg/m\
4/7-Stairs
Stairs
Design of stair beam:
Assume o.w. = 25 kg/m\
Weight of other steel structure is 70 kg/m\
WDL = 25 + (70 + 150) * (1.25 / 2)
= 162.5 kg/m\
WLL = 400 * (1.25 / 2) = 250 kg/m\
Wtotal = 250 + 162.5 = 412.5 kg/m\ w = 0.41 t/m'
0.41 * 5.5 2
M= = 1.56 mt
8
Q = 0.41 * (5.5 / 2) = 1.13 t 1.56
1.41
Assume Fbcx = 1.4 t/cm2 1.13
Sx = 156 / 1.4 = 111 cm3
Choose channel 160
Checks:
Lu act = zero So No L.T.B.
c 6.5 − 0.75 − 1.05
= = 4.48 < 10.9
tf 1.05
dw
= 11.6 / 0.75 = 15.5 < 82
tw
Therefore, the section is not slender (simply symmetric channel)
1. f = 156 / 116 = 1.34 t/cm2 < 1.4 t/cm2
1.13
2. q = = 0.09 t/cm2 < 0.84 t/cm2
16 * 0.75
5 0.25 * 5.5 4
3. δ L.L. = * *10 6 = 1.53 cm < 550/300 = 1.83cm
384 2100 * 925
5/7-Stairs
Stairs
Min channel: t 9 . 94
30cm h-2 =
h − 2t 2 5cm
= 9.94 (From drawing)
2
t ≈ 1cm h = 22 cm 0
26.5
Choose channel minimum 220
L70*7
Chequerd L70*7
plate
6/7-Stairs
Stairs
Design of beam B (at mid floor level)
Rtotal stair beam = 1.13 t, O.W. = 50 kg/m' 1.13 1.13 1.13
RLL stair beam = 0.25 * 5.5 / 2 = 0.69 t 0.05
(To be used in check of deflection)
1.25 1.25
Mconc = 2.385 x 2.25 – 1.13 x 1.25 – 0.05 x 1.00 0.5 1.00
2
1.25 /2= 3.83 mt
Q = 0.03 x 5 / 2 + 1.13 x 4 / 2 = 2.385 mt
Assume Fbcx = 0.64 Fy = 1.54 t/cm2
Sx = 383/ 1.54 = 259 cm3 choose IPE 220
Checks:
c 11 − 0.59 − 2 * 1.2 dw
= = 8.7 < 10.9 , = 21.2 / 0.59 =35.9 < 82
tf 0.92 tw
3.51
0.69 1.725
0.54 0.56
3. deflection due to live load only " RLL stair beam "
M ε = 3.51 * 2.5 – 0.56 * (0.25/2) – 0.54 * (0.5 + 1.25/3) – 1.725 * (0.25 +
1.25/2) – 0.69 * (0.25 + 1.25 + 1/3) = 5.43 m3t
5.43 * 10 6
δ L.L. = = 0.93 cm < 550/300 = 1.67cm
2100 * 2770
7/7-Stairs
PROJECTS
Portal Frame I
General Layout
vertical bracing
horizontal bracing ? = 30 - 60
purlins
spacing
(4-8m)
S
end gable
4 - 8m
h
L
h > 6.0 m
Used if
1/26 P.F.I
2007-2008
Portal Frame I
L/10 - L/20
1.5 - 2.0 1.0 m
1.0 - 1.5
2.0 - 3.0
span = L
Main frame
window
2/26 P.F.I
2007-2008
Portal Frame I
h S
1) Dead load :
• O.W. of the steel structure which include ( purlins, rafters, bracings)
WS = (20 – 35) kg/m2 "depend on span L ".
2) Live load :
• L.L. = 60 – 66.67 tan "for inaccessible roofs"
= 200 – 300 tan "for accessible roofs"
WL.L. = L.L. x S
3/26 P.F.I
2007-2008
Portal Frame I
3) Wind load :
Wwind = ( Ce x K x q ) x S
W W
2 3
K= 1.0 for h 10 m
= 1.1 for h 20 m
q = 70 kg/m2 in Cairo C
2
C
3
Pressure side
W C Pressure Suction C W
o Vertical surface " surface 1" 1 1 4 4
side side
Ce = +0.8
W1 = 0.8 x 1.0 x 70 x S
We solve the frame as 2 hinged frame using computer program or by using virtual work
method.
"In case of using computer program take Icol = (2 – 3) Igirder"
1 M +ve 3
M +ve = (0.55 – 0.60) x M-ve 4
Ncol = WT x L / 2
Case (A) D.L. + L.L.
4/26 P.F.I
2007-2008
Portal Frame I
Wind effect
3
2 2
3
1 1
4
MA = MD + ML Case A
MB = MD + M L + M W Case B
5/26 P.F.I
2007-2008
Portal Frame I
Design of rafter
a
M 3
Mh
M 2
Mx = Q ( h + X tan ) + WT X2 / 2 – Y x X Q
1 to get Xh put Mx = M 2 Y
2 to get the point of Zero Moment “beginning of the –ve moment zone " Xo
put Mx = zero
• L / 20 Xh L /10
1- Choice of Section:
M max
fb = ≤ Fbcx
Sx
Assume fb = 1.536 t/cm2 " compact section "
M
and get the Sx required = max cm3
1.536
and from the tables we choose the appropriate IPE .
6/26 P.F.I
2007-2008
Portal Frame I
2- Check
2- Lumax = min of 20 b f / fy
L 80X80X8
Purlin
L 60X60X6
PL 10MM Y
h
Sec 3-3: Max -ve
Ix = tw x (2h)3 / 12 + 2 ( bf x tf )( h – tf / 2 )2
Sx = Ix / y = Ix / h X X
Fbcx = ( 1.4 if non compact
h
1.536 if compact sec ).
tf
Fbx = M3 / Sx < Fbcx
bf
Y
7/26 P.F.I
2007-2008
Portal Frame I
Design of column
Choose the critical section 1 " without wind " or 4 " with wind "
1-Choice of Section:
Mx
fb = ≤ Fbcx
Sx
Mx
Assume fb = (0.8 to 1.2) t/cm2 and get the Sx required = cm3
fb
and from the tables we choose the appropriate IPE .
2-Check
f ca f bcx
Finally get fca, Fc, fbcx, Fbcx and A1 and check + × A1 ≤ 1.00 as previously described
Fc Fbcx
in design of rolled columns.
8/26 P.F.I
2007-2008
Portal Frame I
The end gable column is the supporting element of the end girts, its statical system is hinged
base and roller connection with the rafter as shown in figure, so there is no normal force transmitted
from the rafter to the end gable.
Design Procedure:
a. Dead Load:
i. Own weight (40 – 60) kg/m’.
ii. Weight of the steel sheets wc = (5-8) kg/m2 for single layer.
iii. Weight of the end girts wg = (10 – 20) kg/m’.
b. Wind load:
i. In this case the wind load will be a main load so it will be a case A
ii. Wwind = ((Ce + Ci ) x K x q) x S1
WX × h2
MX =
8
9/26 P.F.I
2007-2008
Portal Frame I
3- Choice of Section:
M
f b = x ≤ Fbcx
Sx
Mx
Assume fb = 1.2 t/cm2 and get the Sx required = cm3
1.2
And from the tables we choose the appropriate IPE.
4- Check
1- lbin = lby = the bigger of ( distance between end girts or height of wall ) .
2- lbout = lbx = h
4- Luact = distance between end girts or height of wall for pressure case.
= h "for case of suction (compression flange is the inner flange), we can use knee
bracing to reduce it."
20 × b f
Fy
5- Calculate Lu max = Cb = 1.13
1380 × A f
× Cb
Fy × d
f ca f bcx
6- And finaly get fca ,Fc , fbcx , Fbcx and A1 and check + × A1 ≤ 1.00 as previously
Fc Fbcx
described in design of rolled columns.
10/26 P.F.I
2007-2008
Portal Frame I
Example:
42 m
24 m
a. Draw with a suitable scale a complete layout for the main system "2 hinged steel frame" of
clear height 8 m.
b. Calculate the loads on the frame for the diff. cases of loading.
d. Design the end gable column and draw its connection with the rafter.
e. Design and draw the connection between the rafter and the column
Use M24 grade (10.9) bolts, T = 22.23 ton Ps = 7.11 ton.
11/26 P.F.I
2007-2008
Portal Frame I
Solution:-
2.0 m
8
7
6
5
42.0 m
4
3
2
6.0 m
6.0 m
1
6.0 m
4.0 m 4.0 m
24.0 m
12/26 P.F.I
2007-2008
Portal Frame I
2.0 m
10:1
1.5 m 1.0 m
8.0 m
1.0 m
2.5 m
24.0 m
Elevation
@ axis 2 to 7
10:1
1.5 m
8.0 m
1.0 m
2.5 m
6.0 m
24.0 m
1.5 m
8.0 m
1.0 m
2.5 m
6.0 m
24.0 m
13/26 P.F.I
2007-2008
Portal Frame I
B – Loads on frame:
tan = 0.1 = 5.71o
1) Dead load :
• WS = 25 kg/m2
• WC = 5 kg/m2
2) Live load :
• L.L. = 60 – 66.67 tan = 60 – 66.67 x 0.1 = 53.33 kg/m2
WL = L.L. x S = 53.33 x 6 = 320 kg/m
3) Wind load :
Wwind = ( Ce x K x q ) x S
W W
2 3
K= 1.0 for h 10 m
= 1.1 for h 20 m
q = 70 kg/m2 in Cairo C
2
C
3
Pressure side
W C Pressure Suction C W
o Vertical surface " surface 1" 1 1 4 4
side side
Ce = +0.8
W1 = 0.8 x 1.0 x 70 x 6 = 340 kg/m
Suction side
o Vertical surface " surface 3"
Ce = -0.5
W3 = -0.5 x 1.0 x 70 x 6 = - 200 kg/m
14/26 P.F.I
2007-2008
Portal Frame I
Original system
W2 W
3
WT
W Pressure Suction W
1 side side 4
Modified system
W2 W
3
WT
W W
1 4
4.32 ton
2.72 mt 1.6 mt
1 ton
M1 Mo Wind load
15/26 P.F.I
2007-2008
Portal Frame I
10 + X1 x 11 =0
X1 = 2.378
10 + X1 x 11 =0
X1 = 0.746
Final Moment
6.22 mt
20mt 2 20 mt 3
2
1 13 mt 3 1
4
17.7 mt 0.432 mt
Case (A) D.L. + L.L.
Case of wind
neglected
16/26 P.F.I
2007-2008
Portal Frame I
Design of rafter:
M2 = 13 mt M3 = 20 mt N = neglected 0.5
20/8 = 2.5
Mx = 2.5 ( 8 + X x 0.1 ) + 0.5 X2 / 2 – 9 x X
= 0.25 X2 – 5.75 X + 20 6
1 to get Xh put Mx = M2
13 = 0.25 Xh2 – 5.75 Xh + 20
Xh = 1.29 take length of haunch = 1.5 m
2 to get the point of Zero Shear "beginning of the –ve moment zone" Xo
Put Mx = zero
0 = 0.25 Xo2 – 5.75 Xo + 20
Xo = 4.27 m
Choice of sec:
Check:
Sec is compact
Fbx = Mx / Sx = 1300 / 904 = 1.438 t / cm2 < Fbcx = 1.536 t / cm2 Safe
17/26 P.F.I
2007-2008
Portal Frame I
Y
Luact = Xo = 4.27 m > Lu max
so use knee bracing at each purlin Luact = 2 m < 2.19 m
X X
Sec 3-3: Max -ve
Ix = tw x (2h)3 / 12 + 2 ( bf x tf )( h – tf / 2 )2 36
Ix = 0.8 x (72)3 / 12 + 2 ( 17 x 1.27 )( 36 – 1.27 / 2 )2
= 78887 cm4 1.27
Sx = Ix / y = 78887 / 36 = 2191.6 cm3 17
Fbcx = 1.536 t/cm2 Y
18/26 P.F.I
2007-2008
Portal Frame I
Design of column
Choice of sec 1 – 1 :
Mx = 20 mt N = 6 ton
Check:
Fc:
Lbin = K x 8
GA = 10 hinged base
GB = ( Ic / Lc ) / ( Ig / Lg ) = ( 48200 / 8 ) / ( 16270 / 24 ) = 8.8 K = 2.90
Fca / Fc = .09
Fbcx :
1- Local buckling "compact and non-compact"
C = 10 cm , dw = 50 – 4 x 1.6 = 43.6
1 6 699 2.4
For Web , = ( + 1) =0.528 > 0.5 compare with = 76.6
2 43.6 × 1.02 × 2.4 (13α − 1)
2- L.T.B.
19/26 P.F.I
2007-2008
Portal Frame I
Column height is devided out plane in 2 parts by the hz member, critical one is sec 1 .
A1:
20/26 P.F.I
2007-2008
Portal Frame I
b. Wind load:
i. In this case the wind load will be a main load so it will be a case A
ii. Wwind = ((Ce + Ci ) x K x q) x S1
Ce = 0.8, Ci = 0.3
K= 1.0 for h ≤ 10 m
q = 70 kg/m2 in Cairo
WX × h2
MX = = 0.462 x 9.22 / 8 = 4.88 mt
8
b. Case of wind suction
Wx = due to wind load only
Wx = Wwind = 0.5 x 1 x 70 x 6 = 0.21 t/m'
WX × h2
MX = = 0.21 x 9.22 / 8 = 2.22 mt
8
Choice of sec:
From wind pressure case
Mx = 4.88 mt N = 1.21 ton
21/26 P.F.I
2007-2008
Portal Frame I
Check:
Fc:
Lbin = 2.5 m "wall height" , Lbout = 9.2 m
in = Lby / ry = 250 / 3.02 = 82.8 < 180
out = Lbx / rx = 920 / 11.2 = 82.14 < 180
max = 83 < 100
Fca / Fc = .027
Fbcx :
1- Local buckling "compact and non-compact"
C = 6.4 cm , dw = 27 – 4 x 1.02 = 22.92
2- L.T.B.
Fltb = 800 Af Cb / ( Lu d ) = 800 x 13.5 x 1.02 x 1.13 / ( 250 x 27 ) = 1.84 > 1.4
A1:
Fca / Fc = .027 < .15 A1 = 1.0
22/26 P.F.I
2007-2008
Portal Frame I
Fbcx :
1- L.T.B.
Fltb = 800 Af Cb / ( Lu d ) = 800 x 13.5 x 1.02 x 1.13 / ( 920 x 27 ) = 0.5 > 1.4
Fltb = 800 Af Cb / (Lu d) = 800 x 13.5 x 1.02 x 1.13 / ( 250 x 27 ) = 1.84 > 1.4
Fbcx = 1.4 t / cm2
A1:
Fca / Fc = .027 < .15 A1 = 1.0
23/26 P.F.I
2007-2008
Portal Frame I
PL. 10 MM
1
STEEL SHEET
RAIN GUTTER .7MM
IPE 360
17.0
1
1.27 2.0 fb
4.0 11.27
8.0 f1
36.0
26.73
H = 2 + 36 + 36 + 2 = 76 cm
As before
24/26 P.F.I
2007-2008
Portal Frame I
17.0
Checks:
At point 1-
q1 = 0 t/cm2
f1 = 2000 x ( 36 + 1 ) / 108301.4 = 0.69 t/cm2 < 0.72 t/cm2 6.0
At point 2-
Mact = 13 mt , Qact = 0
1
RIDGE CAP .7MM
L 80X80X8 C 140X65X4
17.0
1.27 2.0
4.0
H = 2 + 36 + 36 + 2 = 76 cm
36.0
Ix = B H3 / 12 = 17 x 763 / 12 = 621882.667 cm4
Y = H / 2 = 38 cm
X1 = 2 + tf + e + P /2 = 2 + 1.27 + 4 + 4 = 11.27 cm
X2 = H / 2 – X1 = 38 – 11.27 = 26.73 cm 26.73
fb = Mmax Y / Ix = 1300 x 38 / 621882.6 = 0.079 t/cm2 36.0
f1 = Mmax X2 / Ix = 1300 x 26.73 / 621882.6 = 0.056 t/cm2 8.0 f1
4.0 11.27
1.27 2.0 fb
25/26 P.F.I
2007-2008
Portal Frame I
As before
q1 = 0 t/cm2 28.0
f1 = 1300 x ( 36 + 0.6 ) / 70213.472 = 0.67 t/cm2 < 0.72 t/cm2
26/26 P.F.I
2007-2008
Portal Frame II
Both side and end girts are used to mount the side or end cladding, the difference between
the two is that the side girts are supported on the main column and the end girts are supported on the
end gables column.
Design Procedure:
• Live Load :
• Wind load:
- In this case the wind load will be a main load so it will be a case A
- Wwind = ( (Ce + Ci ) x K x q ) x a
Ce = 0.8 , Ci = 0.3
K= 1.0 for h ≤ 10 m
= 1.1 for h ≤ 20 m
q = 70 kg/m2 in Cairo
WX × S 2 W ×S
MX = , QX = X
8 2
1/12-P.F.II
2007-2008
Portal Frame II
Where S is:
The span of side girts = spacing between main frames columns.
The span of end girts = spacing between end gables columns.
And a is the spacing between side or end girts.
3- Choice of Section:
Mx My
fb = + ≤ Fbcx
Sx Sy
M x + (6or 7)M y
By solving the first equation we get the Sx required = cm3
1.4
And from the tables we choose the appropriate channel.
4- Checks
1- Bending stress:
M My
fb = x + ≤ Fbcx = 1.4t / cm 2
Sx Sy
2- Shear stress:
Q
q x = x ≤ 0.35Fy
A web
Qy
qy = ≤ 0.35Fy
A flanges
P ×S 3 span
δ act = <
48E × IY 300
N.B.:
In case of not satisfied we increase the channel section or use tie rod to reduce S in the Y
direction, and so we decrease My and the deflection.
For case of using cold formed section we must use tie rod, to safeguard the deflection
N.B.
We have to check another case of wind, if wind is suction, Ce = 0.5
Wx = Wwind = 0.5 x K x q x a
W ×S2
MX = X And Luact = span
8
2/12-P.F.II
2007-2008
Portal Frame II
Rafter Splices
Splice
WT
x tan?
?
< 12 m < 12 m
x of splice
h
L / 2 > 12 m
X
span = L
3/12-P.F.II
2007-2008
Portal Frame II
2 head plate splice. " using Pretensioned bolts "
M max
Q act
B
2 fb
tf
X1 e
p f1
X
2 h H
I
fb = Mmax Y / Ix = 6 Mmax / B H2
f1 = Mmax X2 / Ix X1 = 2 + tf + e + P /2
X2 = H / 2 – X 1
Check bolts : " Always N is neglected for bolts as it decreases tension on bolts"
Text,b1,M = 1 / 2 ( ( fb + f1 ) /2 x ( B x X1 ) ) 0.8 T
Text,b2,M = 1 / 2 ( ( f1 + 0 ) /2 x ( B x X2 ) ) 0.8 T
4/12-P.F.II
2007-2008
Portal Frame II
Check on weld between head plate and rafter section:
Checks:
At point 1-
q1 = 0
f1 = N / Awtot + Mmax x ( h /2 + S ) / Ix 0.72 t/cm2
At point 2-
q2 = Qact / Awvl
f2 = N / Awtot + Mmax x ( 0.8 h / 2 ) / Ix
R2 = ( f22 + 3q22 ) 0.72 t/cm2 x 1.1
5/12-P.F.II
2007-2008
Portal Frame II
Example:
Solution:
a. Rafter splice:
At splice sec:-
Qact = Y -WT . X of splice = 6 – 0.5 x 4 = 4 ton
Mmax = Sx x Fbcx = 1.536 x 904 = 1388 cmt
Splice Type I
17.0
1.27 2 fb
X1 4.0
8.0 f1 M
X2
36 40
H = 36 + 2 + 2 = 40 cm
Q act
Ix = B H3 / 12 = 17 x 403 / 12 = 90666.6 cm4
Y = H / 2 = 20 cm
X1 = 2 + tf + e + P /2 = 2 + 1.27 + 4 + 4 = 11.27 cm
X2 = H / 2 – X1 = 20 – 11.27 = 8.73 cm
fb = Mmax Y / Ix = 1388 x 20 / 90666.66 = 0.3 t/cm2
f1 = Mmax X2 / Ix = 1388 x 8.73 / 90666.66 = 0.13 t/cm2
6/12-P.F.II
2007-2008
Portal Frame II
4.0
fb
H = 36 + 8 + 8 = 52 cm 8.0
4.0
1.2 7
4.0 f1
Ix = B H3 / 12 = 17 x 523 / 12 = 199194.66 cm4
Y = H / 2 = 26 cm 52.0 36.0
X1 = tf / 2 + 2e = 1.27 / 2 + 2 x 4 = 8.63 cm
X2 = H / 2 – X1 = 26 – 8.63 = 17.37 cm 8.0
fb = Mmax Y / Ix = 1388 x 26 / 199194.66 = 0.181 t/cm2
f1 = Mmax X2 / Ix = 1388 x 17.37 / 199194.66= 0.12 t/cm2
S T . P L 1 0m m
Check bolts :
Text,b1,M = 1 / 2 ( ( 0.181 + 0.12 ) /2 x ( 17 x 8.63 ) ) = 11 < 0.8 T = 17.84 safe
Checks:
At point 1- 0.4x17
7/12-P.F.II
2007-2008
Portal Frame II
• Live Load :
- Py = 100 kg
• Wind load:
- Wwind = ( (Ce + Ci) x K x q ) x a
Ce = 0.8, Ci = 0.3
K= 1.0 for h ≤ 10 m
q = 70 kg/m2 in Cairo
WX × S 2 0.115 × 62
MX = = = 0.517 mt
8 8
W ×S 0.115 × 6
QX = X = = 0.345 t
2 2
3- Choice of Section:
Mx My
fb = + ≤ Fbcx
Sx Sy
8/12-P.F.II
2007-2008
Portal Frame II
M x + 7M y
Sx required = = (51.7 + 7 x 28) / 1.4 = 176.9 cm3
1.4
Choose C 200
4- Check
1- Bending stress:
Luact = zero as the compression flange is fully laterally supported by the corrugated sheets.
Section is non-compact as we are using channels
Fbcx = 1.4 t/cm2
M M 51.7 28
fb = x + y = + = 1.3 < Fbcx = 1.4t / cm 2
Sx Sy 191 27
2- Shear stress:
Q 0.345
qx = x = = 0.02 ≤ 0.35Fy
A web 20 × 0.85
Qy 0.137
qy = = = 0.008 ≤ 0.35Fy
A flanges 2 × 7.5 × 1.15
9/12-P.F.II
2007-2008
Portal Frame II
• Live Load :
- Py = 100 kg
• Wind load:
- Wwind = (( (Ce + Ci) x K x q ) x a
Ce = 0.8, Ci = 0.3
K= 1.0 for h ≤ 10 m
q = 70 kg/m2 in Cairo
WX × S 2 0.115 × 62
MX = = = 0.517 mt
8 8
W ×S 0.115 × 6
QX = X = = 0.345 t
2 2
Mx My
fb = + ≤ Fbcx
Sx Sy
10/12-P.F.II
2007-2008
Portal Frame II
4- Checks:-
a- Code limits for slender sections.
1- Flange
Unstiffened flange subjected to compression = 1 , K = 0.43
b = 65 mm
b t Fy 65 4 2.4
λP = = = 0.87
44 K σ 44 0.43
λ − 0.15 − 0.05ψ 0.87 − 0.15 − 0.05 ×1
ρ= P = = 0.885 < 1
λP2 0.87 2
be = b = 0.885 x 65 = 57.53 mm
2- Web
Stiff. Web subjected to moment = -1 , K = 23.9
h = 160 mm
b t Fy 160 4 2.4
λP = = = 0.29
44 K σ 44 23.9
λP − 0.15 − 0.05ψ 0.29 − 0.15 − 0.05 × −1
ρ= = = 2.25 > 1
λP2 0.292
IX eff = IX table – IX of the reduced part = 606.25 – 0.747x0.4 (9-0.2)2 = 583.11 cm4
0.4×0.7473 0.747 2
IY eff = IY table – IY of the reduced part = 67.2 – ( + 0.4×0.747×(7.5 −1.9 − ) ) = 59cm4
12 2
11/12-P.F.II
2007-2008
Portal Frame II
MX MY 51.7 5.95
fbc = y + x = 9+ (7.5 − 1.9) =1.36 < 1.4 t/cm2
IX IY 583.11 59
b- Check shear stress.
12/12-P.F.II
2007-2008
DRAWING
Drawing and remarks
1/12
Drawing and remarks
Detail A:
2/12
Drawing and remarks
3/12
Drawing and remarks
Detail B:
4/12
Drawing and remarks
5/12
Drawing and remarks
Detail C:
6/12
Drawing and remarks
7/12
Drawing and remarks
General remarks:
1) For fixed base:
Take effect of horizontal shear on the vertical weld
Shear on weld is bigger of:
−Y M Y M
Q= + or 0.6 ( + )
2 d 2 d
On 2 welds from one side
Normal on weld X
N=X on 4 welds Y
Q N M
q= f=
2 sh 4 sh
"h" is the height of side plate.
M
- Y+ M Y+ M
2 d 2 d
h
x
8/12
Drawing and remarks
2) Hinged base:
Hinged base
Gusset plate connected to the web of the I-beam
9/12
Drawing and remarks
Hinged base
10/12
Drawing and remarks
Fixed base:
Fixed base
Gusset plate connected to the side plate
11/12
Drawing and remarks
Fixed base
12/12
SHEAR
CONNECTION
LECTURES IN STEEL STRUCTURES DESIGN – 1.
1. Riveted connections.
2. Bolted connections:
3. Welded connections.
Bolted Connections:
Bolts Diameter:
Bolts used in steel structures are with diameters ranges from 12 mm to 36 mm.
Bolts Grades:
This mean that this bolt has ultimate strength = 4.0 t/cm2, and the ratio between
the yield stress to the ultimate stress (Yield stress/ultimate stress) = 0.60
This means that this bolt is with diameter 20 mm and its ultimate strength is 4.0
t/cm2 and the ratio between the yield strength to the ultimate strength is 0.60.
LECTURES IN STEEL STRUCTURES DESIGN – 1.
Bolts used in structures can be classified into two classes according to their grades:
𝜋 × ∅2
= ∅𝐴
4
𝑏𝑢𝐹 × 𝑞𝑏 = 0.25 )𝑓𝑜𝑟 𝑏𝑜𝑙𝑡𝑠 (4.6, 5.6 𝑎𝑛𝑑 8.8
𝑏𝑢𝐹 × = 0.20 )𝑓𝑜𝑟 𝑏𝑜𝑙𝑡𝑠 (4.8, 5.8, 6.8 𝑎𝑛𝑑 10.9
Bearing in plates:
) 𝑏𝐹( × ) 𝑛𝑖𝑚𝑡 × ∅( = 𝑏𝑅
LECTURES IN STEEL STRUCTURES DESIGN – 1.
𝑊ℎ𝑒𝑟𝑒,
𝐹𝑏 = 𝛼 × 𝐹𝑢 𝐹𝑢 𝑖𝑠 𝑓𝑜𝑟 𝑠𝑡𝑒𝑒𝑙 𝑝𝑙𝑎𝑡𝑒.
𝑡𝑚𝑖𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡1 𝑜𝑟 𝑡2
Edge Distance (e) ≥3ϕ ≥ 2.5 ϕ ≥2ϕ ≥ 1.5 ϕ
α 1.20 1.00 0.80 0.60
𝐹𝑜𝑟𝑐𝑒
𝑇ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑜. 𝑜𝑓 𝑏𝑜𝑙𝑡𝑠 = 𝑛 =
𝑅𝑙𝑒𝑎𝑠𝑡
𝑅𝑙𝑒𝑎𝑠𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑜𝑚 𝑅𝑠𝑠 𝑜𝑟 𝑅𝑏
𝜋 × ∅2
𝐴∅ =
4
𝜋 × ∅2
𝑅𝐷𝑆 =2× × 𝑞𝑏
4
𝐹𝑜𝑟𝑐𝑒
𝑇ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑜. 𝑜𝑓 𝑏𝑜𝑙𝑡𝑠 = 𝑛 =
𝑅𝑙𝑒𝑎𝑠𝑡
𝑅𝑙𝑒𝑎𝑠𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑜𝑚 𝑅𝐷𝑆 𝑜𝑟 𝑅𝑏
𝑅𝑠𝑠 = 𝐴∅ × 𝑞𝑏
𝜋 × ∅2
𝑅𝑠𝑠 = × 𝑞𝑏
4
𝑅𝑏 = (∅ × 𝑡𝑚𝑖𝑛 ) × (𝐹𝑏 )
𝑊ℎ𝑒𝑟𝑒,
𝑞𝑏 = 0.25 × 𝐹𝑢𝑏 𝑓𝑜𝑟 𝑏𝑜𝑙𝑡𝑠 (4.6, 5.6 𝑎𝑛𝑑 8.8)
= 0.20 × 𝐹𝑢𝑏 𝑓𝑜𝑟 𝑏𝑜𝑙𝑡𝑠 (4.8, 5.8, 6.8 𝑎𝑛𝑑 10.9)
𝐹𝑏 = 𝛼 × 𝐹𝑢 𝐹𝑢 𝑖𝑠 𝑓𝑜𝑟 𝑠𝑡𝑒𝑒𝑙 𝑝𝑙𝑎𝑡𝑒.
𝑡𝑚𝑖𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 (𝑡1 + 𝑡3 ) 𝑜𝑟 𝑡2
𝐹𝑜𝑟𝑐𝑒
𝑇ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑜. 𝑜𝑓 𝑏𝑜𝑙𝑡𝑠 = 𝑛 =
𝑅𝑙𝑒𝑎𝑠𝑡
𝑅3𝑆 = 3 × 𝐴∅ × 𝑞𝑏
𝜋 × ∅2
𝑅3𝑆 =3× × 𝑞𝑏
4
𝑅𝑏 = (∅ × 𝑡𝑚𝑖𝑛 ) × (𝐹𝑏 )
𝑊ℎ𝑒𝑟𝑒,
𝑞𝑏 = 0.25 × 𝐹𝑢𝑏 𝑓𝑜𝑟 𝑏𝑜𝑙𝑡𝑠 (4.6, 5.6 𝑎𝑛𝑑 8.8)
= 0.20 × 𝐹𝑢𝑏 𝑓𝑜𝑟 𝑏𝑜𝑙𝑡𝑠 (4.8, 5.8, 6.8 𝑎𝑛𝑑 10.9)
𝐹𝑏 = 𝛼 × 𝐹𝑢
𝐹𝑢 𝑖𝑠 𝑓𝑜𝑟 𝑠𝑡𝑒𝑒𝑙 𝑝𝑙𝑎𝑡𝑒.
𝑡𝑚𝑖𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 (𝑡1 + 𝑡3 ) 𝑜𝑟 (𝑡2 + 𝑡4 )
LECTURES IN STEEL STRUCTURES DESIGN – 1.
𝐹𝑜𝑟𝑐𝑒
𝑇ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑜. 𝑜𝑓 𝑏𝑜𝑙𝑡𝑠 = 𝑛 =
𝑅𝑙𝑒𝑎𝑠𝑡
Arrangement of bolts:
I. One gauge line:
1.50 ∅ ≤ 𝑒 ≤ 12 𝑡𝑚𝑖𝑛
3 ∅ ≤ 𝑝 ≤ 14 𝑡𝑚𝑖𝑛 𝑜𝑟 20 𝑚𝑚
𝑎𝑚𝑖𝑛 = (6 × ∅) + 𝑡 ≅ (6 × ∅) × 1.1
𝑎 = 2𝑒 + 𝑝 + 𝑡
LECTURES IN STEEL STRUCTURES DESIGN – 1.
Notes:
Minimum number of bolts /one gauge line is two bolts.
After arranging all the bolts, the distance Li is measured and to be checked with the
following:
𝐿𝑖 − 15∅
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐵𝐿 = 1 −
200 ∅
𝐹𝑜𝑟𝑐𝑒
𝑛=
𝐵𝐿 × 𝑅𝑙𝑒𝑎𝑠𝑡
LECTURES IN STEEL STRUCTURES DESIGN – 1.
Member 1:
𝐹1
n1 = = 5 𝑏𝑜𝑙𝑡𝑠
𝑅𝑙𝑒𝑎𝑠𝑡
Member 2:
𝐹2
n2 = 𝑅 = 4 𝑏𝑜𝑙𝑡𝑠
𝑙𝑒𝑎𝑠𝑡
Member 3:
𝐹3
n3 = 𝑅 = 3 𝑏𝑜𝑙𝑡𝑠
𝑙𝑒𝑎𝑠𝑡
Member 4:
𝐹4
n4 =𝑅 = 2.2 𝑏𝑜𝑙𝑡𝑠, take n4 = 4 bolts, 2 in each angle.
𝑙𝑒𝑎𝑠𝑡
b) Continuous joint:
Design the connection shown in the figure using non – pre tensioned bolts M16
(4.6).
Draw the connection to scale 1:10
Given Data:
1. Steel used is 37.
2. Thickness of gusset plate is 10 mm.
Solution:
𝜋 × ∅2 𝜋 × 1.62
𝑅𝑠𝑠 = × 0.25 × 𝐹𝑢𝑏 = × 0.25 × 4.00 = 2.01 𝑡𝑜𝑛
4 4
𝑅𝐷𝑆 = 2 × 𝑅𝑆𝑆 = 2 × 2.01 = 4.02 𝑡𝑜𝑛
Member 1:
𝐹𝑜𝑟𝑐𝑒 21
𝑛1 = = = 5.69 Take 𝑛1 = 6 𝑏𝑜𝑙𝑡𝑠
𝑅𝑙𝑒𝑎𝑠𝑡 3.69
Member 2:
𝐹𝑜𝑟𝑐𝑒 15
𝑛2 = = = 5.43 Take 𝑛2 = 6 𝑏𝑜𝑙𝑡𝑠
𝑅𝑙𝑒𝑎𝑠𝑡 2.76
Member 3:
1 angle 80 x 80 x 8 𝑡𝑚𝑖𝑛 = 8 𝑚𝑚
Member 4:
𝐹𝑜𝑟𝑐𝑒 9
𝑛4 = = = 4.50 Take 𝑛4 = 5 𝑏𝑜𝑙𝑡𝑠
𝑅𝑙𝑒𝑎𝑠𝑡 2.01
Welded Connections:
Types of welds:
1. Fillet Welds:
2. Butt welds:
S= size of weld
Aweld = Leff. X S
Lact. = Leff + (2 x S)
Size of weld:
Minimum size of weld Smin = 4 mm (Buildings)
= 6 mm (Bridges and dynamic loads)
Maximum size of weld Smax ≤ Thickness of thinner plate
Length of weld:
Minimum length of weld Min. Leffec = 4 S or 5 cm (the Bigger)
Maximum length of weld Max. Leffec = 70 S
𝐹1
𝐿1 𝑎𝑐𝑡. = + (2 × 𝑆)
(𝑛 × 𝑆)(0.2 𝐹𝑢 )
𝐹2
𝐿2 𝑎𝑐𝑡. = + (2 × 𝑆)
(𝑛 × 𝑆)(0.2 𝐹𝑢 )
Example:
Design the two connections shown in the figure as welded connections.
Given that:
Steel used is St. 37
Thickness of gusset plate = 10 mm.
Solution:
Joint (A) will be designed as a simple
joint.
Assume size of weld (S) = 5 mm.
Member 1:
𝐹 = 23 𝑡 2 angles back to back 80 × 80 × 8 𝑒 = 2.26 𝑐𝑚
8 − 2.26
𝐹1 = 23 × ( ) = 16.50 𝑡𝑜𝑛.
8
𝐹2 = 23 − 16.50 = 6.50 𝑡𝑜𝑛
16.50
𝐿1 𝑎𝑐𝑡. = + (2 × 0.50) = 23.90 𝑐𝑚
(2 × 0.50)(0.2 × 3.60)
Take 𝐿1 𝑎𝑐𝑡. = 24.0 𝑐𝑚
6.50
𝐿2 𝑎𝑐𝑡. = + (2 × 0.50) = 10.03𝑐𝑚
(2 × 0.50)(0.2 × 3.60)
Take 𝐿2 𝑎𝑐𝑡. = 11.0 𝑐𝑚
Member 2:
𝐹 = 19 𝑡 2 angles back to back 60 × 60 × 6 𝑒 = 1.69 𝑐𝑚
6 − 1.69
𝐹1 = 19 × ( ) = 13.65 𝑡𝑜𝑛.
6
𝐹2 = 19 − 13.65 = 5.35 𝑡𝑜𝑛
13.65
𝐿1 𝑎𝑐𝑡. = + (2 × 0.50) = 19.96 𝑐𝑚
(2 × 0.50)(0.2 × 3.60)
Take 𝐿1 𝑎𝑐𝑡. = 20.0 𝑐𝑚
5.35
𝐿2 𝑎𝑐𝑡. = + (2 × 0.50) = 8.40 𝑐𝑚
(2 × 0.50)(0.2 × 3.60)
Take 𝐿2 𝑎𝑐𝑡. = 9.0 𝑐𝑚
Member 3:
𝐹 = 10 𝑡 2 angles back to back 55 × 55 × 5 𝑒 = 1.52𝑐𝑚
5.5 − 1.52
𝐹1 = 10 × ( ) = 7.24 𝑡𝑜𝑛.
5.5
𝐹2 = 10 − 7.24 = 2.76 𝑡𝑜𝑛
7.24
𝐿1 𝑎𝑐𝑡. = + (2 × 0.50) = 11.06 𝑐𝑚
(2 × 0.50)(0.2 × 3.60)
Take 𝐿1 𝑎𝑐𝑡. = 12.0 𝑐𝑚
2.76
𝐿2 𝑎𝑐𝑡. = + (2 × 0.50) = 4.80 𝑐𝑚
(2 × 0.50)(0.2 × 3.60)
𝐿𝑚𝑖𝑛 = 4𝑆 = 4 × 0.50 = 2.00𝑐𝑚 Or 5cm
𝐿2 𝑎𝑐𝑡 ˂ 𝐿𝑚𝑖𝑛
Take 𝐿2 𝑎𝑐𝑡. = 5 + 2𝑆 = 5 + 2 × 0.50 = 6.00 𝑐𝑚
Member 4:
𝐹 = 8.50 𝑡 2 angles star shape 60 × 60 × 6 𝑒 = 1.69 𝑐𝑚
6 − 1.69
𝐹1 = 8.50 × ( ) = 6.10 𝑡𝑜𝑛.
6
𝐹2 = 8.50 − 6.10 = 2.40 𝑡𝑜𝑛
6.10
𝐿1 𝑎𝑐𝑡. = + (2 × 0.50) = 9.47 𝑐𝑚
(2 × 0.50)(0.2 × 3.60)
Take 𝐿1 𝑎𝑐𝑡. = 10.0 𝑐𝑚
2.40
𝐿2 𝑎𝑐𝑡. = + (2 × 0.50) = 4.30 𝑐𝑚
(2 × 0.50)(0.2 × 3.60)
Take 𝐿2 𝑎𝑐𝑡. = 6.00 𝑐𝑚 = 𝐿𝑚𝑖𝑛
Beam connections
1/20C
Beam connections
2/20C
Beam connections
0.5wS 0.5wS
0.5wS
R=0.4wS R=1.1wS R=wS R=wS
R sec
2- n2 =
Rl
Where: Rsec is the reaction of secondary beam from one side only = 0.6*w*S
3/20C
Beam connections
4/20C
Beam connections
5/20C
Beam connections
T
= .....< 1.4 t/cm2
(A1orA 2 )
Q
Q 3
M 1
cant
M1
Q2
6/20C
Beam connections
R sec
2- n2 =
Rl
Where: Rsec is the reaction of secondary beam from one side only = 0.5*w*S
Rl is the least of RS.S. Or Rb where tmin is the least of tL (0.8) or tw of column.
n2 must be even number ( 2 sides)
R main
2- n2 =
Rl
Where: Rmain is the reaction of main beam from one side only
7/20C
Beam connections
40
80
80
80
40
8/20C
Beam connections
Example:
Design the shown connections using non-
pretensioned M18 grade 5.6. Given that total
dead load (slab + ow) is 0.5t/m2 and live load
is 0.35t/m2. Assume that secondary beam is
IPE 270, main beam is IPE 400 and column
is IPE 600.
Solution:
W = (0.5 + 0.35)1.5 = 1.275 t / m /
π
RSS = * 1.82 * 0.25 * 5 = 3.18 t
4
RDS = 2*3.18 = 6.36 t
Assume e = 2 d, = 0.8
Rb = 0.8 * 3.6 * 1.8 * tmin = 5.18 tmin
Connection A:
• If secondary beam is simply supported over M.B.
R = 0.5 w s = 0.5 * 1.27 * 6 = 3.83 t
n1 : tmin = least of (2 * 0.8) or tw of secondary beam = 0.66 cm
Rb = 5.18 * 0.66 = 3.42 t < RDS
3.83
n1 = = 1.12 use 2 bolts
3.42
n2 : tmin = least of (0.8) or tw of main beam = 0.86 cm
Rb = 5.18 * 0.86 = 4.45 t > RSS
3.83
n2 = = 1.2 taken 4 bolts, 2 each side
3.18
• If secondary beam is continuously supported over M.B.
R = 0.6 w s = 0.6 * 1.275 * 6 = 4.59 t
4.59
n1 = = 1.34 taken 2 bolts
3.42
9/20C
Beam connections
4.59
n2 = = 1.44 taken 4 bolts, 2 each side
3.18
1.275 * 62
M0 = = 5.74 m t
8
M connection = 0.75 * 5.74 * 100 = 430 cm t
430
T=C= = 15.9 t assume t plate = 1 cm
27
n3 and n4 : t min =1 cm or t f of secondary beam = 1.02 cm
R b = 5.18 * 1 = 5.18 t > RSS
15.9
n3 = = 5 bolts taken 6 bolts, 3 each side
3.18
(0.6 *15.9)
n4 = = 3 bolts taken 4 bolts, 2 each side
3.18
• Design of tension tie plate:
From drawing:
L1 = 7.1+2*6.8/1.1=19.46 cm
(approximate)
OR L1 = 7.1+2*6.57 +
1.76 2
2* = 20.47 cm
4 * 6.57
(Exact as ECP)
L2 = 24.2 cm
d' = 1.8 + 0.2 = 2cm
A1 = (19.46 - 2*2)*1
= 15.46 cm2
A2 = (24.2 – 4*2)*1
= 16.2 cm2
Take smaller area (critical)
ft = 15.9 / 15.46 = 1.03t/cm2
We may decrease thickness of the plate to be 8mm and recheck
10/20C
Beam connections
Connection B:
If the secondary beam is simply supported over M.B.
This connection is designed same as before
R= 0.5 w s = 3.83 t
3.83
n1 = = 2 bolts
3.42
3.83
n2 = = 4 bolts, 2 each side
3.18
If secondary beam is continuously supported
R = 0.4 w s = 0.4 * 1.275 * 6 = 3.06 t
3.06
n1 = = 2 b0lts
3.42
3.06
n2 = = 4 bolts, 2 each side
3.18
Design of connection C
If secondary beam is simply supported over
1.275 t/m'
M.G, This connection must be continuous.
Max. Shear = 4.25 t 3.4 2.55
22
M connection = 1.275 * = 2.55 m t
2
4.25
4.25
n1 = taken 2 bolts
3.42
4.25
n2 = Taken 4 bolts, 2 each side
3.18
11/20C
Beam connections
Design of connection D
I - Secondary beam with column
Assume all beams as simply supported
1.275
R = 0.5 w s = 0.5 * 6 * ( ) = 1.91 t
2
Note that: The beam connected to column carry half weight
n1: t min is the least of (2 * 0.8) or t w secondary = 0.66 cm
Rb = 5.18 * 0.66 = 3.42 < RDS
1.91
n1 = = 0.5 use 2 bolts
3.42
n2 = tmin is the least of (0.8) or tw of column = 1.2 cm
Rb = 5.18 * 0.8 = 4.14 t > RSS
1.91
n2 = = 0.46 taken 4 bolts, 2 each side
4.14
II – Main beam with column
R sec = 1.275 * 6 = 7.65 t
n1= t min is the least of (2 * 0.8) or t w 7.65 7.65 7.65 7.65 7.65 7.65
main = 0.86 cm
Rb = 5.18 * 0.86 = 4.45 < RDS
22.95
n1 = = 5.16 bolts, taken 6 bolts 22.95
4.45
We may increase edge distance to be 2.5d and = 1.0
Rb = 1 * 3.6 * 1.8 * 0.86 = 5.57t
n1 = 22.95 / 5.57 = 4.12 taken 5 bolts
n2 = tmin is the least of (0.8) or tf of column = 1.9 cm
Rb = 5.18 * 0.8 = 4.14 t > RSS
22.95
n2 = = 7.2 taken 8 bolts, 4 each side
3.18
Detailed drawing with enlarged scale:
Simple beam: Connection "A"
12/20C
Beam connections
13/20C
Beam connections
14/20C
Beam connections
15/20C
Beam connections
16/20C
Beam connections
40
80
80
80
40
17/20C
Beam connections
Isometric:
(1) IF the main beam is simply supported over column:
Column
S.B.
M.B.
18/20C
Beam connections
Column
M.B.
19/20C
Beam connections
20/20C
TABELS
TABLES FOR STEEL CONSTRUCTIONS
TABLES FOR STEEL CONSTRUCTIONS
CONTENTS
List of symbols i
Introduction ii
Bolts 55
Accessories 76
Cranes 79
Welding Symbols 86
Miscellaneous 90
LIST OF SYMBOLS
a (mm): Length of long leg for unequal angle. Iy (cm4): Moment of inertia about Y-Y axis.
b (mm): Length of short leg for unequal angle, Iy upper flange (cm4): Moment of inertia for upper flange about Y-Y axis.
or flange width.
J (cm4): Torsion constant.
b1 (mm): Width of upper flange for unsymmetrical welded I-sections.
r (mm, cm): Radius of inner fillet for cold formed section,
b2 (mm): Width of Lower flange for symmetrical welded I-sections. or Radius of gyration for symmetrical section.
c (mm): Height of curved part including flange thickness for channel and I- r1 (mm): Radius of fillet between web and flange.
sections.
ru (cm): Radius of gyration about U-U axis.
D (mm): Outer diameter of pipe.
rv (cm): Radius of gyration about V-V axis.
d (mm): Height of web for built-up I-sections.
rx (cm): Radius of gyration about X-X axis.
dmax. (mm): Maximum diameter of bolt to be used.
ry (cm): Radius of gyration about Y-Y axis.
e (mm): Distance measured from outer surface to neutral axis of section.
i
Sy (cm3): Elastic modulus of section about Y-Y axis.
Sy upper flange (cm3): Elastic modulus of upper flange about Y-Y axis.
ii
Introduction
The aim of presenting these tables is to provide the structural engineers with
These tables are divided into nine chapters. Chapter one provides the
following:
axial forces.
HEA, HEB, and HEM sections are primarily used for members
iii
• Pipes and hollow sections: primarily used as truss members in
welded trusses.
bridge.
Chapter two introduces the geometric properties for combined hot rolled
This chapter provides the properties for the following combined sections:
iv
• IPE and UPN:
“UPN” section is provided at the top flange where the lateral shock
girders where the lateral shock is applied at the upper flange. The
lips and with inclined lips): These sections are used mainly for roof
purlins and side girts. Sometimes, they can be used in light trusses as
web members.
v
Chapter four provides the geometrical properties for combined cold-formed
Chapter five provides complete information about the size, weight, and grip
length of ordinary and high strength bolts. It also provides the dimension
and weight of washers and nuts used for each type of bolts.
This chapter also includes the dimension and the weight of anchor bolts
sheets whether they are single layer, sandwich panels, or metal decking steel
vi
Chapter eight provides the common symbols used in welding constructions.
vii
HOT ROLLED SECTIONS
H.E.B. PLATES
H.E.M. RAILS
1
Y
U
v
V
s
u2
S u1
d
v
EQUAL ANGLES
a
W2
X X
W1
e
e
a
U a
V
Y
Size Dimensions Axis X-X and Y-Y Axis u-u Axis v-v Details Surface Area
Weight Area
a s e v u1 u2 I S r Iu ru Iv Sv rv w1 w2 dmax Um Ut
mm mm kg/m` cm2 cm cm cm cm cm
4
cm
3
cm cm
4
cm cm
4
cm3 cm mm mm mm -2
x10 m /m
2 \
m2/t
3 1.36 1.74 0.84 1.18 1.04 1.41 0.65 0.90 2.24 1.14 0.57 0.48 0.57 11.60 85.30
30 4 1.78 2.27 0.89 2.12 1.24 1.05 1.81 0.86 0.89 2.85 1.12 0.76 0.61 0.58 N.A. 11.60 65.17
5 2.18 2.78 0.92 1.30 1.07 2.16 1.04 0.88 3.41 1.11 0.91 0.70 0.57 11.60 53.21
3 1.60 2.04 0.96 1.36 1.23 2.29 0.90 1.06 3.63 1.34 0.95 0.70 0.68 20 M10 13.60 85.00
35 4 2.10 2.67 1.00 2.47 1.41 1.24 2.96 1.18 1.05 4.68 1.33 1.24 0.88 0.68 20 N.A. M10 13.60 64.76
5 2.57 3.28 1.04 1.47 1.25 3.56 1.45 1.04 5.63 1.31 1.49 1.10 0.67 20 M10 13.60 52.91
4 2.42 3.08 1.12 1.58 1.40 4.48 1.56 1.21 7.09 1.52 1.86 1.18 0.78 22 M10 15.50 64.00
40 5 2.97 3.79 1.16 2.83 1.64 1.42 5.43 1.91 1.20 8.64 1.51 2.22 1.35 0.77 22 N.A. M10 15.50 52.20
6 3.52 4.48 1.20 1.70 1.43 6.33 2.26 1.19 9.98 1.49 2.67 1.57 0.77 22 M10 15.50 44.03
5 3.38 4.30 1.28 1.81 1.58 7.83 2.43 1.35 12.40 1.70 3.25 1.80 0.87 25 M12 17.40 51.50
45 6 4.00 5.09 1.32 3.18 1.87 1.59 9.16 2.88 1.34 14.50 1.69 3.85 2.05 0.87 25 N.A. M12 17.40 43.50
7 4.60 5.86 1.36 1.92 1.61 10.40 3.31 1.33 16.40 1.67 4.39 2.29 0.87 25 M12 17.40 37.82
5 3.77 4.80 1.40 1.98 1.76 11.00 3.05 1.51 17.40 1.90 4.59 2.32 0.98 30 M12 19.40 51.50
50 6 4.47 5.69 1.45 3.54 2.04 1.77 12.80 3.51 1.50 20.40 1.89 5.24 2.57 0.96 30 N.A. M12 19.40 43.40
7 5.15 6.56 1.49 2.11 1.78 14.60 4.15 1.49 23.10 1.88 6.02 2.85 0.96 30 M12 19.40 37.67
5 4.18 5.32 1.52 2.15 1.93 14.70 3.70 1.66 23.30 2.09 6.11 2.84 1.07 30 M16 21.30 50.96
55 6 4.95 6.31 1.56 3.89 2.21 1.94 17.80 4.40 1.66 27.40 2.08 7.24 3.26 1.07 30 N.A. M16 21.30 33.30
8 6.46 8.23 1.64 2.32 1.97 22.10 5.72 1.64 34.80 2.06 9.35 4.03 1.07 30 M16 21.30 32.97
6 5.42 6.91 1.69 2.39 2.11 22.80 5.29 1.82 36.10 2.29 9.43 3.85 1.17 35 M16 23.30 43.00
60 8 7.09 9.03 1.77 4.24 2.50 2.14 29.10 6.88 1.80 46.10 2.26 12.10 4.84 1.16 35 N.A. M16 23.30 32.90
10 8.69 11.10 1.85 2.62 2.17 34.90 8.41 1.78 55.10 2.23 14.60 5.57 1.15 35 M16 23.30 26.80
7 6.83 8.70 1.85 2.62 2.29 33.40 7.13 1.96 53.00 2.47 13.80 5.27 1.26 35 M16 25.20 36.90
65 8 7.73 9.85 1.89 4.60 2.67 2.31 37.50 8.13 1.95 59.40 2.46 15.60 5.84 1.26 35 N.A. M16 25.20 32.60
9 8.62 11.00 1.93 2.73 2.32 41.30 9.04 1.94 65.40 2.44 17.20 6.30 1.25 35 M16 25.20 29.23
N.A.=not available for this angle size
2
Y
U
v
V s
u2
S u1
d
v
EQUAL ANGLES
a
W2
X X
W1
e
e
a
U a
V
Y
Size Dimensions Axis X-X and Y-Y Axis u-u Axis v-v Details Surface Area
Weight Area
a s e v u1 u2 I S r Iu ru Iv Sv rv w1 w2 dmax Um Ut
mm mm kg/m` cm2 cm cm cm cm cm
4
cm 3
cm cm
4
cm cm
4
cm3 cm mm mm mm -2
x10 m /m
2 \
m2/t
7 7.38 9.40 1.97 2.79 2.47 42.4 8.43 2.12 67.1 2.67 17.6 6.37 1.37 40 M20 27.20 36.90
70 9 9.34 11.90 2.05 4.95 2.90 2.50 52.6 10.6 2.10 83.1 2.64 22.0 7.59 1.36 40 N.A. M20 27.20 29.10
11 11.20 14.30 2.13 3.01 2.53 61.8 12.7 2.09 97.6 2.61 26.0 8.61 1.35 40 M20 27.20 24.28
7 7.94 10.10 2.03 2.95 2.63 52.4 8.67 2.28 83.6 2.88 21.1 7.15 1.45 40 M20 29.10 36.65
75 8 9.03 11.50 2.13 5.30 3.01 2.65 58.9 11.0 2.26 93.3 2.85 24.4 8.11 1.46 40 N.A. M20 29.10 32.20
10 11.10 14.10 2.21 3.18 2.68 71.4 13.5 2.25 113 2.83 28.8 9.55 1.45 40 M20 29.10 26.21
8 9.66 12.30 2.26 3.20 2.82 72.3 12.6 2.42 115 3.06 29.6 9.25 1.55 45 M20 31.10 32.20
80 10 11.90 15.10 2.34 5.66 3.31 2.85 87.5 15.5 2.41 139 3.03 35.9 10.9 1.54 45 N.A. M20 31.10 26.10
12 14.10 17.90 2.41 3.41 2.89 102 18.2 2.39 161 3.00 43.0 12.6 1.53 45 M20 31.10 22.10
9 12.20 15.50 2.54 3.59 3.18 116 18.0 2.74 184 3.45 47.8 13.3 1.76 50 M20 35.10 28.80
90 11 14.70 18.70 2.62 6.36 3.70 3.21 138 21.6 2.72 218 3.41 57.1 15.4 1.75 50 N.A. M20 35.10 23.88
13 17.10 21.80 2.70 3.81 3.24 158 25.1 2.69 250 3.39 65.9 17.3 1.74 50 M20 35.10 20.53
10 15.10 19.20 2.82 3.99 3.54 177 24.7 3.04 280 3.82 73.3 18.4 1.95 55 M24 39.00 25.80
100 12 17.80 22.70 2.90 7.07 4.10 3.57 207 29.2 3.02 328 3.80 86.2 21.0 1.95 55 N.A. M24 39.00 21.90
14 20.60 26.20 2.98 4.21 3.60 235 33.5 3.00 372 3.77 98.3 23.4 1.94 55 M24 39.00 18.90
10 16.60 21.20 3.07 4.34 3.89 239 30.1 3.36 379 4.23 98.6 22.7 2.16 40 80 M20 43.00 25.90
110 12 19.70 25.10 3.15 7.78 4.45 3.93 280 35.7 3.34 444 4.21 116 25.1 2.15 40 80 M20 43.00 21.83
14 22.80 29.00 3.21 4.54 3.98 319 41.0 3.32 505 4.18 133 29.3 2.14 40 80 M20 43.00 18.86
12 21.60 27.50 3.40 4.80 4.26 368 42.7 3.65 584 4.60 152 31.6 2.35 45 85 M20 46.90 21.70
120 13 23.30 29.90 3.44 8.49 4.86 4.27 394 46.0 3.64 625 4.59 162 33.3 2.34 45 85 M20 46.90 20.13
15 26.60 33.90 3.51 4.96 4.31 446 52.5 3.63 705 4.56 186 37.5 2.34 45 85 M20 46.90 17.60
N.A.=not available for this angle size
3
Y
v
V s
u2
S u1
d
v
EQUAL ANGLES
a
W2
X X
W1
e
e
a
U a
V
Y
Size Dimensions Axis X-X and Y-Y Axis u-u Axis v-v Details Surface Area
Weight Area
a s e v u1 u2 I S r Iu ru Iv Sv rv w1 w2 dmax Um Ut
mm mm kg/m` cm2 cm cm cm cm cm4 cm3 cm cm
4
cm cm4 cm3 cm mm mm mm x10-2 m2/m\ m2/t
12 23.60 30.00 3.64 5.15 4.60 472 50.4 3.97 750 5.00 194 37.7 2.54 50 90 M20 50.80 21.50
130 14 27.20 34.70 3.72 9.19 5.26 4.63 540 55.2 3.94 857 4.97 223 42.4 2.53 50 90 M20 50.80 18.68
16 30.90 39.30 3.80 5.37 4.66 605 65.8 3.92 959 4.94 251 46.7 2.52 50 90 M20 50.80 16.44
140 13 27.50 35.00 3.92 9.90 5.54 4.96 638 63.3 4.27 1010 5.38 262 47.3 2.74 55 105 M24 54.70 19.90
15 31.40 40.00 4.00 5.66 4.99 723 72.3 4.25 1150 5.36 298 52.7 2.73 55 105 M24 54.70 17.40
14 31.60 40.30 4.21 5.95 5.31 845 78.2 4.58 1340 5.77 347 58.3 2.94 60 110 M24 58.60 18.50
15 33.80 43.00 4.25 6.01 5.33 898 82.5 4.57 1430 5.76 370 61.6 2.93 60 110 M24 58.60 17.33
150 16 35.90 45.70 4.29 10.60 6.07 5.34 949 88.7 4.56 1510 5.74 391 64.4 2.93 60 110 M24 58.60 16.30
18 40.10 51.00 4.36 6.17 5.38 1050 99.3 4.54 1670 5.70 438 71.0 2.93 60 110 M24 58.60 14.61
20 44.20 56.30 4.44 6.28 5.41 1150 109 4.51 1820 5.68 477 76.0 2.91 60 110 M24 58.60 13.25
15 36.20 46.10 4.49 6.35 5.67 1100 95.6 4.88 1750 6.15 453 71.3 3.14 60 120 M27 62.50 17.30
160 17 40.70 51.80 4.57 11.30 6.46 5.70 1230 108 4.86 1950 6.13 506 78.3 3.13 60 120 M27 62.50 15.40
19 45.10 57.50 4.65 6.58 5.73 1350 118 4.84 2140 6.10 558 84.8 3.12 60 120 M27 62.50 13.85
16 43.50 55.40 5.02 7.11 6.39 1680 130 5.51 2690 6.96 679 95.5 3.50 65 135 M27 70.50 16.20
180 18 48.60 61.90 5.10 12.70 7.22 6.41 1870 145 5.49 2970 6.93 757 105 3.49 65 135 M27 70.50 14.50
20 53.70 68.40 5.18 7.33 6.44 2040 160 5.47 3260 6.90 830 113 3.49 65 135 M27 70.50 13.12
22 58.60 74.70 5.26 7.44 6.47 2210 174 5.44 3510 6.86 918 123 3.50 65 135 M27 70.50 12.03
16 48.50 61.80 5.52 7.80 7.09 2340 162 6.15 3740 7.78 943 121 3.91 65 150 M27 78.50 16.20
18 54.30 69.10 5.60 7.92 7.12 2600 181 6.13 4150 7.75 1050 133 3.90 65 150 M27 78.50 14.50
200 20 59.90 76.40 5.68 14.10 8.04 7.15 2850 199 6.11 4540 7.72 1160 144 3.89 65 150 M27 78.50 13.10
24 71.10 90.60 5.84 8.26 7.21 3330 235 6.06 5280 7.64 1380 167 3.90 65 150 M27 78.50 11.04
28 82.00 105.00 5.99 8.47 7.28 3780 270 6.02 5990 7.57 1580 186 3.89 65 150 M27 78.50 9.57
4
Y V
V1
U
d
A
a
a
UNEQUAL ANGLES X X
W2
V2
W1
s
ex
S
ey
U
b
u2
u1
b
V Y
Size Dimensions Axis X-X Axis Y-Y Axis u-u Axis v-v Details Surface Area
Weight Area
a b s ex ey v1 v2 u1 u2 tan A Ix Sx rx Iy Sy ry Iu ru Iv rv w1 w2 dmax Um Ut
2 4 3 4 3 4 4 -2 2 \ 2
mm mm mm kg/m` cm cm cm cm cm cm cm cm cm cm cm cm cm cm cm cm cm mm mm mm x10 m /m m /t
3 1.11 1.42 0.99 0.50 2.04 1.51 0.86 1.04 0.431 1.25 0.62 0.94 0.44 0.29 0.56 1.43 1.00 0.25 0.42 9.68 87.20
30 20 N.A.
4 1.45 1.85 1.03 0.54 2.02 1.52 0.91 1.03 0.423 1.59 0.81 0.93 0.55 0.38 0.55 1.81 0.99 0.33 0.42 9.68 66.70
3 1.35 1.72 1.43 0.44 2.61 1.77 0.79 1.19 0.259 2.79 1.08 1.27 0.47 0.30 0.52 2.96 1.31 0.30 0.42 22 M10 11.68 86.50
40 20 N.A.
4 1.77 2.25 1.47 0.48 2.57 1.80 0.83 1.18 0.252 3.59 1.42 1.26 0.60 0.39 0.52 3.79 1.30 0.39 0.42 22 M10 11.68 66.00
3 1.72 2.19 1.43 0.70 3.09 2.23 1.21 1.59 0.436 4.47 1.46 1.43 1.60 0.70 0.86 5.15 1.53 0.93 0.65 25 M12 14.64 85.00
45 30 4 2.25 2.87 1.48 0.74 3.07 2.26 1.27 1.58 0.433 5.78 1.91 1.42 2.05 0.91 0.85 6.65 1.52 1.18 0.64 25 N.A. M12 14.64 65.06
5 2.77 3.53 1.52 0.78 3.05 2.27 1.32 1.58 0.430 6.99 2.95 1.41 2.47 1.11 0.84 8.02 1.51 1.44 0.64 25 M12 14.64 52.80
5 3.37 4.29 2.15 0.68 3.90 2.67 1.20 1.77 0.256 15.6 4.04 1.90 2.60 1.12 0.78 16.5 1.96 1.69 0.63 35 M16 17.50 51.90
60 30 N.A.
7 4.59 5.85 2.24 0.76 3.83 2.72 1.28 1.73 0.248 20.7 5.50 1.88 3.41 1.52 0.76 21.8 1.93 2.28 0.62 35 M16 17.50 38.10
5 3.76 4.79 1.96 0.97 4.08 3.01 1.68 2.09 0.437 17.2 4.25 1.89 6.11 2.02 1.13 19.8 2.03 3.50 0.86 35 M16 19.50 51.80
60 40 6 4.46 5.68 2.00 1.01 4.06 3.02 1.72 2.08 0.437 20.1 5.03 1.88 7.12 2.38 1.12 23.1 2.02 4.12 0.85 35 N.A. M16 19.50 37.90
7 5.14 6.55 2.04 1.05 4.04 3.03 1.77 2.07 0.422 23.0 5.79 1.87 8.07 2.74 1.11 26.3 2.00 4.73 0.85 35 M16 19.50 37.93
5 4.74 6.04 2.40 1.17 5.14 3.73 2.03 2.64 0.437 34.4 6.74 2.39 12.3 3.21 1.43 39.6 2.56 7.10 1.08 40 M20 24.44 51.50
75 50 7 6.51 8.30 2.48 1.25 5.10 3.77 2.13 2.63 0.433 46.4 9.24 2.36 16.5 4.39 1.41 53.3 2.53 9.56 1.07 40 N.A. M20 24.44 37.54
9 8.23 10.50 2.56 1.32 5.06 3.80 2.22 2.62 0.427 57.4 11.6 2.34 20.2 5.49 1.39 65.7 2.50 11.9 1.07 40 M20 24.44 29.70
6 5.41 6.89 2.85 0.88 5.21 3.53 1.55 2.42 0.259 44.9 8.7 2.55 7.6 2.44 1.05 47.6 2.63 4.90 0.84 45 M22 23.40 43.20
80 40 N.A.
8 7.07 9.01 2.94 0.95 5.15 3.57 1.65 2.38 0.253 57.6 11.4 2.53 9.7 3.18 1.04 60.9 2.60 6.41 0.84 45 M22 23.40 33.10
6 6.82 8.69 2.89 1.41 6.14 4.50 2.46 3.16 0.442 71.7 11.7 2.87 25.8 5.61 1.72 82.8 3.09 14.6 1.30 50 M24 29.40 43.10
90 60
8 8.96 11.40 2.97 1.49 6.11 4.54 2.56 3.15 0.497 92.5 15.4 2.85 33.0 7.31 1.70 107 3.06 19.0 1.29 50 M24 29.40 32.80
6 6.85 8.73 3.49 1.04 6.50 4.39 1.91 2.98 0.263 89.7 13.8 3.20 15.3 3.86 1.32 95.2 3.30 9.78 1.06 55 M24 29.20 42.60
100 50 8 8.99 11.50 3.59 1.13 6.48 4.44 2.00 2.95 0.258 116 18.0 3.18 19.5 5.04 1.31 123 3.28 12.6 1.05 55 N.A. M24 29.20 32.80
10 11.10 14.10 3.67 1.20 6.43 4.49 2.08 2.91 0.252 141 22.2 3.16 23.4 6.17 1.29 149 3.25 15.5 1.04 55 M24 29.20 26.30
7 8.77 11.20 3.23 1.51 6.83 4.91 2.66 3.48 0.419 113 16.6 3.17 37.6 7.54 1.84 128 3.39 21.6 1.39 55 M24 32.10 36.60
100 65 9 11.10 14.20 3.32 1.59 6.78 4.94 2.76 3.46 0.415 141 21.0 3.15 46.7 9.52 1.82 160 3.36 27.2 1.39 55 N.A. M24 32.10 28.90
11 13.40 17.10 3.40 1.67 6.74 4.97 2.85 3.45 0.410 167 25.3 3.13 55.1 11.4 1.80 190 3.34 32.6 1.38 55 M24 32.10 24.00
N.A.=not available for this angle size
5
Y V
V1
U
d
A
a
UNEQUAL ANGLES
a
X X
W2
V2
W1
s
ex
S
ey
U
b
u2
u1
b
V Y
Size Dimensions Axis X-X Axis Y-Y Axis u-u Axis v-v Details Surface Area
Weight Area
a b s ex ey v1 v2 u1 u2 tan A Ix Sx rx Iy Sy ry Iu ru Iv rv w1 w2 dmax Um Ut
2 4 3 4 3 4 4 -2 2 \ 2
mm mm mm kg/m` cm cm cm cm cm cm cm cm cm cm cm cm cm cm cm cm cm mm mm mm x10 m /m m /t
8 12.20 15.50 3.83 1.87 8.23 5.99 3.27 4.20 0.441 226 27.6 3.82 80.8 13.2 2.29 261 4.10 45.8 1.72 45 85 M20 39.10 32.00
10 15.00 19.10 3.92 1.95 8.18 6.03 3.37 4.19 0.438 276 34.1 3.80 98.1 16.2 2.27 318 4.07 56.1 1.71 45 85 M20 39.10 26.10
120 80
12 17.80 22.70 4.00 2.03 8.14 6.06 3.46 4.18 0.433 323 40.4 3.77 114 19.1 2.25 371 4.04 66.1 1.71 45 85 M20 39.10 22.00
14 20.50 26.20 4.08 2.10 8.10 6.08 3.55 4.17 0.429 368 46.4 3.75 130 22.0 2.23 421 4.01 75.8 1.70 45 85 M20 39.10 19.07
8 11.90 15.10 4.56 1.37 8.50 5.71 2.49 3.86 0.263 263 31.1 4.17 44.8 8.7 1.72 280 4.31 28.6 1.38 50 90 M20 38.10 32.00
130 65 10 14.60 18.60 4.65 1.45 8.43 5.76 2.58 3.82 0.259 321 38.4 4.15 54.2 10.7 1.71 340 4.27 35.0 1.37 50 90 M20 38.10 26.10
12 17.30 22.10 4.74 1.53 8.37 5.81 2.66 3.80 0.255 376 45.5 4.12 63.0 12.7 1.69 397 4.24 41.2 1.37 50 90 M20 38.10 22.00
10 16.60 21.20 4.15 2.18 8.92 6.69 3.75 4.62 0.472 358 40.5 4.11 141 20.6 2.58 420 4.46 78.5 1.93 50 90 M20 42.97 25.88
130 90
12 19.70 25.10 4.84 2.26 8.88 6.72 3.85 4.60 0.463 420 48.0 4.09 165.0 24.4 2.56 492 4.43 92.6 1.92 50 90 M20 42.97 21.81
9 15.30 19.50 5.28 1.57 9.79 6.62 2.90 4.46 0.265 455 46.8 4.83 78.3 13.2 2.00 484 4.98 50.0 1.60 60 110 M24 44.10 28.80
150 75
11 18.60 23.60 5.37 1.65 9.73 6.66 2.97 4.44 0.261 545 56.6 4.80 93.0 15.9 1.98 578 4.95 59.8 1.59 60 110 M24 44.10 23.00
10 19.00 24.20 4.80 2.34 10.30 7.50 4.10 5.25 0.442 552 54.1 4.78 198 25.8 2.86 637 5.13 112 2.15 60 110 M24 48.90 25.70
150 100 12 22.60 28.70 4.89 2.42 10.20 7.53 4.19 5.24 0.439 650 64.2 4.76 232 30.6 2.84 749 5.10 133 2.15 60 110 M24 48.90 21.60
14 26.10 33.20 4.97 2.50 10.20 7.56 4.28 5.23 0.435 744 74.1 4.73 264 35.2 2.82 856 5.07 152 2.14 60 110 M24 48.90 18.70
10 18.20 23.20 5.63 1.69 10.50 7.06 3.07 4.76 0.263 611 58.9 5.14 104 16.5 2.12 648 5.29 67.0 1.70 60 120 M27 46.90 25.70
160 80 12 21.60 27.50 5.72 1.77 10.40 7.10 3.15 4.75 0.259 720 70.0 5.11 122 19.6 2.10 763 5.26 78.9 1.69 60 120 M27 46.90 21.70
14 25.00 31.80 5.81 1.85 10.30 7.16 3.23 4.72 0.256 823 80.7 5.09 139 22.5 2.09 871 5.23 90.5 1.69 60 120 M27 46.90 18.70
10 20.60 26.20 6.28 1.85 11.80 7.89 3.38 5.42 0.262 880 75.1 5.80 151 21.1 2.40 934 5.97 97.4 1.93 65 135 M27 52.80 25.63
180 90 12 24.50 31.20 6.37 1.93 11.70 7.95 3.48 5.38 0.261 1040 89.3 5.77 177 25.1 2.38 1100 5.94 114 1.92 65 135 M27 52.80 21.55
14 28.30 36.10 6.46 2.01 11.70 8.01 3.57 5.34 0.259 1190 103 5.75 202 28.9 2.37 1260 5.92 131 1.91 65 135 M27 52.80 18.65
10 23.00 29.20 6.93 2.01 13.20 8.76 3.75 5.98 0.266 1220 93.2 6.46 210 26.3 2.68 1300 6.66 133 2.14 65 150 M27 58.70 25.50
12 27.30 34.80 7.03 2.10 13.10 8.82 3.84 5.95 0.264 1440 111 6.43 247 31.3 2.67 1530 6.63 158 2.13 65 150 M27 58.70 21.50
200 100
14 31.60 40.30 7.12 2.18 13.00 8.88 3.93 5.92 0.262 1650 128 6.41 282 36.1 2.65 1760 6.60 181 2.13 65 150 M27 58.70 18.60
16 35.90 45.70 7.20 2.26 12.90 8.93 4.02 5.88 0.259 1860 145 6.38 316 40.8 2.63 1970 6.57 204 2.11 65 150 M27 58.70 16.35
6
Y W
b
d
c
r1
ey
CHANNEL
h-2c
h
h
X X
Shear Center xm s
(U.P.N.) s
t
c
t b
Y
7
Y
b w
c
r1
h-2c
STANDARD I - BEAMS
h
X X
( I.P.N. ) s
t
c
Y
Dimensions Axis X-X Axis Y-Y Details Surface Area
Sec. Weight Area Aweb
h b s =r1 t c h-2c Ix Sx rx Iy Sy ry w dmax Um Ut
No.
kg/m` cm2 cm2 mm mm mm mm mm mm cm4 cm3 cm cm4 cm3 cm mm mm x10-2 m2/m\ m2/t
80 5.94 7.57 2.66 80 42 3.9 5.9 10.5 59 77.8 19.5 3.20 6.29 3.00 0.91 N.A. 30.40 51.20
100 8.34 10.60 3.89 100 50 4.5 6.8 12.5 75 171 34.2 4.01 12.2 4.88 1.07 N.A. 37.00 44.40
120 11.10 14.20 5.33 120 58 5.1 7.7 14 92 328 54.7 4.81 21.5 7.41 1.23 N.A. 43.90 39.50
140 14.30 18.20 7.00 140 66 5.7 8.6 15.5 109 573 81.9 5.61 35.2 10.7 1.40 34 M10 50.20 35.10
160 17.90 22.80 8.88 160 74 6.3 9.5 17.5 125 935 117 6.40 54.7 14.8 1.55 40 M10 57.50 32.10
180 21.90 27.90 10.98 180 82 6.9 10.4 19 142 1450 161 7.20 81.3 19.8 1.71 44 M12 64.00 29.20
200 26.20 33.40 13.31 200 90 7.5 11.3 20.5 159 2140 214 8.00 117 26.0 1.87 48 M12 70.90 27.00
220 31.10 39.50 15.84 220 98 8.1 12.2 22 176 3060 278 8.80 162 33.1 2.02 52 M12 77.50 24.90
240 36.20 46.10 18.60 240 106 8.7 13.1 24 192 4250 354 9.59 221 41.7 2.20 56 M16 84.40 23.30
260 41.90 53.30 21.79 260 113 9.4 14.1 26 208 5740 442 10.40 288 51.0 2.32 60 M16 90.60 21.60
280 47.90 61.00 25.21 280 119 10.1 15.2 27.5 225 7590 542 11.10 364 61.2 2.45 60 M16 96.60 20.10
300 54.20 69.00 28.90 300 125 10.8 16.2 29.5 241 9800 653 11.90 451 72.2 2.56 64 M20 103.00 19.00
320 61.00 77.70 32.82 320 131 11.5 17.3 31 258 12510 782 12.70 555 84.7 2.67 70 M20 109.00 17.90
340 68.00 86.70 37.01 340 137 12.2 18.3 33 274 15700 923 13.50 674 98.4 2.80 74 M20 115.00 16.90
360 76.10 97.00 41.73 360 143 13 19.5 35 290 19610 1090 14.20 818 114 2.90 76 M20 121.00 15.90
380 84.00 107.00 46.44 380 149 13.7 20.5 37 306 24010 1260 15.00 975 131 3.02 82 M20 127.00 15.10
400 92.40 118.00 51.38 400 s 14.4 21.6 38.5 323 29210 1460 15.70 1160 149 3.13 86 M20 133.00 14.40
425 104.00 132.00 57.99 425 163 15.3 23 41 343 36970 1740 16.70 1440 176 3.30 88 M20 144.40 13.50
450 115.00 147.00 65.03 450 170 16.2 24.3 43.5 363 45850 2040 17.70 1730 203 3.43 94 M24 148.00 12.90
475 128.00 163.00 72.47 475 178 17.1 25.6 45.5 384 56480 2380 18.60 2090 235 3.60 100 M24 155.10 12.11
500 141.00 179.00 80.28 500 185 18 27 48 404 68740 2750 19.60 2480 268 3.72 100 M27 163.00 11.50
550 166.00 212.00 93.10 550 200 19 30 52.5 445 99180 3610 21.60 3490 349 4.02 110 M27 177.30 10.68
600 199.00 254.00 115.60 600 215 21.6 32.4 57.5 485 139000 4630 23.40 4670 434 4.30 120 M27 191.90 9.64
N.A.=not available for this IPN size
8
Y
b W
c
r1 d
I.P.E.
h-2c
h
X X
s
c
t
Y
9
Y
b w1 w w1
c
r1 d
h-2c
h
( H.E.A. ) s
c
t
Y
10
Y
b w1 w w1
c
r1 d
h-2c
h
( H.E.B. ) s
c
t
Y
Dimensions Axis X-X Axis Y-Y Details Surface Area
Sec. Weight Area Aweb
h b s t r1 c h-2c Ix Sx rx Iy Sy ry w w1 dmax Um Ut
No.
kg/m` cm2 cm2 mm mm mm mm mm mm mm cm
4
cm
3
cm cm
4
cm
3
cm mm mm mm x10-2 m2/m\ m2/t
100 20.4 26.0 4.80 100 100 6.0 10.0 12 22.0 56 450 89.9 4.16 167 33.5 2.53 56 N.A. M12 56.70 27.80
120 26.7 34.0 6.37 120 120 6.5 11.0 12 23.0 74 864 144 5.04 318 52.9 3.06 66 N.A. M16 68.60 25.70
140 33.7 43.0 8.12 140 140 7.0 12.0 12 24.0 92 1510 216 5.93 550 78.5 3.58 76 N.A. M20 80.50 23.80
160 42.6 54.3 10.72 160 160 8.0 13.0 15 28.0 104 2490 311 6.78 889 111 4.05 86 N.A. M20 91.80 21.50
180 51.2 65.3 12.92 180 180 8.5 14.0 15 29.0 122 3830 426 7.66 1360 151 4.57 100 N.A. M24 104.00 20.30
200 61.3 78.1 15.30 200 200 9.0 15.0 18 33.0 134 5700 570 8.54 2000 200 5.07 110 N.A. M24 115.00 18.80
220 71.5 91.0 17.86 220 220 9.5 16.0 18 34.0 152 8090 736 9.43 2840 258 5.59 120 N.A. M24 127.00 17.80
240 83.2 106 20.60 240 240 10.0 17.0 21 38.0 164 11260 938 10.30 3920 327 6.08 90 40 M20 138.00 16.60
260 93.0 118 22.50 260 260 10.0 17.5 24 41.5 177 14920 1150 11.20 5130 395 6.58 95 40 M20 150.00 16.10
280 103 131 25.62 280 280 10.5 18.0 24 42.0 196 19270 1380 12.10 6590 471 7.09 110 40 M20 162.00 15.70
300 117 149 28.82 300 300 11.0 19.0 27 46.0 208 25170 1680 13.00 8560 571 7.58 120 50 M24 173.00 14.80
320 127 161 32.09 320 300 11.5 20.5 27 47.5 225 30820 1930 13.80 9240 616 7.57 120 50 M24 177.00 13.90
340 134 171 35.64 340 300 12.0 21.5 27 48.5 243 36660 2160 14.60 9690 646 7.53 120 50 M24 181.00 13.50
360 142 181 39.38 360 300 12.5 22.5 27 49.5 261 43190 2400 15.50 10140 676 7.49 120 50 M24 185.00 13.00
400 155 198 47.52 400 300 13.5 24.0 27 51.0 298 57680 2880 17.10 10820 721 7.40 120 50 M24 193.00 12.40
450 171 218 55.72 450 300 14.0 26.0 27 53.0 344 79890 3550 19.10 11720 781 7.33 120 50 M24 203.00 11.90
500 187 239 64.38 500 300 14.5 28.0 27 55.0 390 107200 4290 21.20 12620 842 7.27 120 50 M24 212.00 11.30
550 199 254 73.80 550 300 15.0 29.0 27 56.0 438 136700 4970 23.20 13080 872 7.17 120 50 M24 222.00 12.20
600 212 270 83.70 600 300 15.5 30.0 27 57.0 486 171000 5700 25.20 13530 902 7.08 120 50 M24 232.00 11.00
650 225 286 94.08 650 300 16.0 31.0 27 58.0 534 210600 6480 27.10 13980 932 6.99 120 50 M24 242.00 10.80
700 241 306 108.1 700 300 17.0 32.0 27 59.0 582 256900 7340 29.00 14440 963 6.87 120 50 M24 252.00 10.50
800 262 334 128.5 800 300 17.5 33.0 30 63.0 674 359100 9890 32.80 14900 994 6.68 120 50 M24 271.00 10.40
900 291 371 153.6 900 300 18.5 35.0 30 65.0 770 494100 10980 36.50 15820 1050 6.53 120 50 M24 291.00 10.00
1000 314 400 176.3 1000 300 19.0 36.0 30 66.0 868 644700 12890 40.10 16280 1090 6.38 120 50 M24 311.00 9.90
N.A.=not available for this HEB size
11
Y
w1 w w1
b
c
r1 d
BROAD FLANGE I - BEAMS
h-2c
h
( H.E.M. ) X
s
X
c
Y
Dimensions Axis X-X Axis Y-Y Details Surface Area
Sec. Weight Area Aweb
h b s t r1 c h-2c Ix Sx rx Iy Sy ry w w1 dmax Um Ut
No. 2 2
kg/m` cm cm mm mm mm mm mm mm mm cm4 cm3 cm cm4 cm3 cm mm mm mm x10-2 m2/m\ m2/t
100 41.8 53.2 9.60 120 106 12 20 12 32 56 1140 190 4.63 400 75.3 2.74 60 N.A. M12 61.90 14.80
120 52.1 66.4 12.25 140 126 12.5 21 12 33 74 2020 288 5.51 700 112 3.25 68 N.A. M16 73.80 14.20
140 63.2 80.6 15.08 160 146 13 22 12 34 92 3290 411 6.39 1140 157 3.77 76 N.A. M20 85.70 13.60
160 76.2 97.1 18.76 180 166 14 23 15 38 104 5100 566 7.25 1760 212 4.26 86 N.A. M20 97.00 12.70
180 88.9 113 22.04 200 186 14.5 24 15 39 122 7480 748 8.13 2580 277 4.77 100 N.A. M24 109.00 12.30
200 103 131 25.50 220 206 15 25 18 43 134 10640 967 9.00 3650 354 5.27 110 N.A. M24 120.00 11.70
220 117 149 29.14 240 226 15.5 26 18 44 152 14600 1220 9.89 5010 444 5.79 120 N.A. M24 132.00 11.30
240 157 200 37.08 270 248 18 32 21 53 164 24290 1800 11.00 8150 657 6.39 100 40 M20 146.00 9.30
260 172 220 40.50 290 268 18 32.5 24 57 176 31310 2160 11.90 10450 780 6.90 110 40 M20 157.00 9.13
280 189 240 22.76 310 288 18.5 33 24 66 196 39550 2550 12.80 13160 914 7.40 116 40 M20 169.00 8.94
300 238 303 55.02 340 310 21 39 27 67 208 59200 3480 14.00 19400 1250 8.00 120 50 M24 183.00 7.70
320 245 312 58.59 359 309 21 40 27 67 225 68130 3800 14.80 19710 1280 7.95 126 50 M24 187.00 7.63
340 248 316 62.37 377 309 21 40 27 67 243 76370 4050 15.60 19710 1280 7.90 126 50 M24 190.00 7.67
360 250 319 66.15 395 308 21 40 27 67 261 84870 4300 16.30 19520 1270 7.83 126 50 M24 193.00 7.77
400 256 326 73.92 432 307 21 40 27 67 298 104100 4820 17.90 19340 1260 7.70 126 50 M24 200.00 7.81
450 263 335 83.58 478 307 21 40 27 67 344 131500 5500 19.80 19340 1260 7.59 126 50 M24 210.00 7.97
500 270 344 93.24 524 306 21 40 27 67 390 161900 6180 21.70 19150 1250 7.46 130 50 M24 218.00 8.07
550 278 354 103.32 572 306 21 40 27 67 438 198000 6920 23.60 19150 1250 7.35 130 50 M24 228.00 8.20
600 285 364 113.40 620 305 21 40 27 67 486 237400 7660 25.60 18980 1240 7.22 130 50 M24 237.00 8.32
650 293 374 123.48 668 305 21 40 27 67 534 281700 8430 27.50 18980 1240 7.13 130 50 M24 247.00 8.42
700 301 383 133.56 716 304 21 40 27 67 582 329300 9200 29.30 18800 1240 7.01 130 50 M24 256.00 8.50
800 317 404 154.14 814 303 21 40 30 70 674 442600 10870 33.10 18630 1230 6.79 132 50 M24 275.00 8.66
900 333 424 174.30 910 302 21 40 30 70 770 570400 12540 36.70 18450 1220 6.60 132 50 M24 293.00 8.80
1000 349 444 194.88 1008 302 21 40 30 70 868 722300 14330 40.30 18450 1220 6.45 132 50 M24 313.00 8.97
N.A.=not available for this HEM size
12
Y
b
T - SECTION x x
h
Half I.P.E.
ex
Y
Dimensions Axis X-X Axis Y-Y Surface Area
1/2 IPE Weight Area Aweb
h b Ix Sxb Sxt rx ex Iy Sy ry Um Ut
No.
\ 2 2 4 3 3 4 3
kg/m cm cm mm mm cm cm cm cm cm cm cm cm x10-2 m2/m\ m2/m\
80 3.00 3.82 1.32 40 46 4.80 1.58 5.00 1.12 3.04 4.24 1.84 1.05 16.40 54.80
100 4.05 5.15 1.82 50 55 10.3 2.70 8.66 1.41 3.81 7.95 2.89 1.24 20.00 49.50
120 5.20 6.62 2.36 60 64 19.3 4.20 13.79 1.71 4.60 13.80 4.32 1.45 23.70 45.60
140 6.45 8.21 2.97 70 73 33.2 6.14 20.49 2.01 5.38 22.40 6.15 1.65 27.50 42.60
160 7.89 10.10 3.63 80 82 52.9 8.57 28.75 2.29 6.16 34.10 8.34 1.84 31.10 39.40
180 9.40 12.00 4.35 90 91 80.3 11.5 39.17 2.59 6.95 50.40 11.1 2.05 34.90 37.10
200 11.20 14.20 5.12 100 100 117 15.1 52.00 2.87 7.75 71.20 14.2 2.24 38.40 34.30
220 13.10 16.70 5.95 110 110 165 19.3 67.35 3.15 8.55 100.2 18.6 2.48 42.40 32.40
240 15.40 19.60 6.83 120 120 227 24.3 86.31 3.41 9.37 142.0 23.7 2.69 46.00 30.00
270 18.00 23.00 8.24 135 135 346 32.8 116.50 3.88 10.53 210.0 31.1 3.02 52.00 28.80
300 21.10 26.90 9.89 450 150 509 43.6 153.31 4.35 41.68 302.0 40.3 3.35 58.00 27.50
330 24.60 31.30 11.51 165 160 717 55.8 196.44 4.78 12.85 394.0 49.3 3.55 62.50 25.50
360 28.50 36.40 13.38 180 170 992 70.8 255.01 5.22 14.11 521.0 61.3 3.79 67.50 23.60
400 33.20 42.20 16.04 200 180 1450 93.7 320.80 5.86 15.48 659.0 73.4 3.95 73.50 22.20
450 38.80 49.40 19.78 225 190 2220 129 420.45 6.70 17.22 838.0 88.4 4.12 80.50 20.70
500 45.30 57.80 23.87 250 200 3260 172 542.43 7.52 18.99 1070 107.0 4.31 87.00 19.20
550 52.80 67.20 28.62 275 210 4670 225 689.81 8.33 20.73 1330 127.0 4.45 94.00 17.70
600 61.20 78.00 33.72 300 220 6500 288 868.98 9.13 22.52 1690 154.0 4.66 101.00 16.60
13
Y
b
T - SECTIONS x x
Half H.E.A.
ex
Y
Dimensions Axis X-X Axis Y-Y Surface Area
1/2 HEA Weight Area Aweb
h b Ix Sxb Sxt rx ex Iy Sy ry Um Ut
No.
\ 2 2
kg/m cm cm mm mm cm4 cm3 cm3 cm cm cm4 cm3 cm x10-2 m2/m\ m2/m\
100 8.34 10.60 2.00 48 100 12.4 3.16 13.9 1.08 3.91 67 13.4 2.51 28.00 33.60
120 9.94 12.70 2.45 57 120 21.3 4.52 21.7 1.30 4.72 115 19.2 3.02 33.80 34.00
140 12.30 15.70 3.19 66 140 37.5 6.79 33.2 1.55 5.47 194 27.8 3.52 39.70 32.10
160 15.20 19.40 4.02 76 160 61.5 9.72 48.0 1.78 6.32 308 38.5 3.98 45.30 29.80
180 17.80 22.60 4.56 85 180 89.1 12.4 65.0 1.98 7.13 462 51.4 4.52 51.00 28.70
200 21.10 26.90 5.53 95 200 133 16.6 87.5 2.22 7.98 668 66.8 4.98 57.00 26.90
220 25.30 32.20 6.58 105 220 194 21.9 116.9 2.45 8.84 975 88.8 5.51 63.00 24.90
240 30.20 38.40 7.73 115 240 273 28.8 150.8 2.67 9.69 1380 115 6.00 68.50 22.70
260 34.10 43.40 8.44 125 260 355 33.5 185.9 2.86 10.59 1830 141 6.50 74.00 21.70
280 38.20 48.60 9.76 135 280 477 41.7 231.6 3.13 11.44 2380 170 7.00 80.00 21.00
300 44.20 56.30 11.14 145 300 630 51.2 285.1 3.35 12.29 3150 210 7.49 86.00 19.50
320 48.80 62.20 12.56 155 300 808 61.7 335.3 3.60 13.09 3490 233 7.49 88.00 18.00
340 52.40 66.70 14.11 165 300 1020 73.5 386.4 3.91 13.86 3720 248 7.46 89.50 17.10
360 56.00 71.40 15.75 175 300 1270 86.7 442.5 4.22 14.63 3940 263 7.43 91.50 16.40
400 62.40 79.50 19.36 195 300 1890 118 557.5 4.88 16.11 4280 285 7.34 99.50 15.30
450 69.90 89.00 22.89 220 300 2820 156 715.7 5.62 18.06 4730 315 7.29 100.00 14.40
500 77.50 98.80 26.64 245 300 4020 201 891.4 6.38 19.99 5180 345 7.24 105.00 13.60
550 83.10 106.00 30.75 270 300 5530 253 1070 7.23 21.83 5410 360 7.15 110.00 13.30
600 88.90 113.00 35.10 295 300 7400 313 1261 8.08 23.63 5630 375 7.05 115.00 13.00
14
Y
b
x x
T - SECTIONS
ex
Half H.E.B.
Y
Dimensions Axis X-X Axis Y-Y Surface Area
1/2 HEB Weight Area Aweb
h b Ix Sxb Sxt rx ex Iy Sy ry Um Ut
No.
\ 2 2 4 3 3 4 3
kg/m cm cm mm mm cm cm cm cm cm cm cm cm x10-2 m2/m\ m2/m\
100 10.20 13.00 2.40 50 100 16.2 4.05 16.2 1.12 4.00 84 16.8 2.53 28.30 27.80
120 13.30 17.00 3.19 60 120 30.9 6.35 27.1 1.35 4.86 159 26.4 3.06 34.30 25.70
140 16.90 21.50 4.06 70 140 53.5 9.36 41.5 1.58 5.71 275 39.2 3.58 40.20 23.90
160 21.30 27.10 5.36 80 160 91.3 14.0 61.7 1.83 6.52 444 55.5 4.05 45.90 21.50
180 25.60 32.60 6.46 90 180 139 18.9 85.8 2.07 7.38 680 75.6 4.57 52.00 20.30
200 30.60 39.00 7.65 100 200 204 24.8 115.3 2.29 8.23 1002 100 5.07 57.00 18.80
220 35.70 45.50 8.93 110 220 289 31.8 150.5 2.52 9.08 1422 129 5.59 63.50 17.80
240 41.60 53.00 10.30 120 240 397 40.0 192.7 2.74 9.94 1961 163 6.08 69.00 16.60
260 46.50 59.20 11.25 130 260 512 47.3 235.9 2.94 10.83 2570 197 6.58 75.00 16.10
280 51.60 65.70 12.81 140 280 673 57.7 290.1 3.20 11.68 3300 235 7.09 81.00 15.70
300 58.50 74.60 14.41 150 300 871 69.5 352.6 3.42 12.53 4280 285 7.58 86.50 14.80
320 63.30 80.70 16.04 160 300 1097 82.3 409.3 3.69 13.32 4620 308 7.57 88.50 13.90
340 67.10 85.40 17.82 170 300 1362 96.7 468.0 3.99 14.09 4840 323 7.53 90.50 13.50
360 70.90 90.30 19.69 180 300 1671 113 530.5 4.30 14.85 5070 338 7.49 92.50 13.00
400 77.60 98.90 23.76 200 300 2437 149 665.8 4.96 16.34 5410 360 7.40 96.50 12.40
450 85.60 109.00 27.86 225 300 3566 195 843.0 5.72 18.27 5860 390 7.33 101.00 11.90
500 93.70 119.00 32.19 250 300 5020 249 1041.5 6.49 20.18 6310 421 7.27 106.00 11.30
550 99.70 127.00 36.90 275 300 6834 311 1244.8 7.33 22.01 6540 436 7.17 111.00 11.20
600 106.00 135.00 41.85 300 300 9060 381 1461.3 8.19 23.80 6760 451 7.08 116.00 11.00
15
t
PIPES D
16
t
D
PIPES
17
Y
h
x x
HOLLOW SQUARE SECTION t
h
Y
18
Y
h
HOLLOW SQUARE SECTION x x
t
h
Y
19
Y b
h
x x
t
20
MASS (kg/m\) FOR RECTANGULAR STEEL PLATES*
mm
00
10
thickness
width
Dimensions
Rail h h1 h2 2ck 2cf d t0 t2 af r1 r3 r4 r5 r6 ar
Type mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm
vst 130 43 33 60 100 12 23 12 67 13 10 80 200 36
I 145 45 37 65 125 14 25 13 6 30 80 300 19
III 159 49 36 70 140 16 30 13 93 13 16 508 80 300 19
IV 161 51 39 67 125 16 30 14 91 13 16 508 80 300 19
VI 172 51 38 72 150 16.5 32 13 100 13 35 120 80 300 21
Y
2Ck
r1 ar
r6
r5
h2
h1
r4
r3
Properties d
X
h
X
Rail Weight Area Ix Sxt Sxb ex Iy Sy
r4
Type r3
ex
kg/m\ cm2 cm4 cm3 cm3 cm cm4 cm3
vst 35.7 45.5 1000 156 153 6.6 157 31
to
t2
I 46.2 58.8 1630 216 235 6.9 298 47.7
af
III 54.4 69.3 2350 279 313 7.5 418 59.6
IV 53.8 68.8 2310 276 298 7.8 341 54.6 2Cf
VI 60.3 76.9 3060 336 377 8.1 513 68.4
Y
22
RAILS
Dimensions
Rail h 2cf af 2ck d t1 t2 t3 h1 h2 r1 r2 r3 r4 r5
Type mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm
A 45 55 125 54 45 24 14.5 11 8 24 20 4 3 4 5 4
A 55 65 150 66 55 31 17.5 12.5 9 28.5 25 5 5 5 6 5
A 65 75 175 78 65 38 20 14 10 34 30 6 5 5 6 5
A 75 85 200 90 75 45 22 15.4 11 39.5 35 8 6 6 8 6
A 100 95 200 100 100 60 23 16.5 12 45.5 40 10 6 6 8 6
A 120 105 220 120 120 72 30 20 14 55.5 47.5 10 6 10 10 6
Y
2CK
r1
Properties
h2
h1
Rail Weight Area Ix Sxt Sxb ex Iy Sy r2
Type
X
\ 2 4 3 3 4 3
X
h
kg/m cm cm cm cm cm cm cm
r3
A 45 22.2 28.3 91 27.5 41.6 2.2 169 27.0 r4 d
r5
t1
A 55 32.0 40.7 182 46.9 69.5 2.6 337 44.9
ex
A 65 43.5 55.4 327 73.7 106.9 3.1 609 69.6
t2
t3
A 75 56.6 72.1 545 109.0 155.7 3.5 1010 101.0 aF
A 100 75.2 95.6 888 170.0 207.0 4.3 1360 136.0 2CF
A 120 101.3 129.0 1420 249.0 295.8 4.8 2370 215.0
23
RAILS
Dimensions
Y
C
C1
R2
Properties d
h w CL. BOLT HOLE
X N.A. R
X
Rail Weight Area Ix Sxt Sxb ex
Type R1 g
kg/m\ cm2 cm4 cm3 cm3 cm ex
USS & BETH 135 67 85.9 2110 282 295 7.11 .
K
BETH 171 84.9 108 3060 402 400 7.65 t
USS & BETH 175 86.8 110 2920 386 381 7.67
b
24
RAILS
Dimensions
Depth Head Base Web
Rail k h r rc R
d c b t w g
Type
mm mm mm mm mm mm mm mm mm mm mm
ASCE 40 89 48 89 6 10 40 16 47 305 6.4 305
ASCE 60 108 60 108 7 12 52 19 58 305 6.4 305
ASCE 85 132 65 132 8 14 63 23 70 305 6.4 305
BETH 104 127 64 127 13 25 62 27 62 305 12.7 89
USS 105 132 65 132 10 24 56 25 61 305 6.4 305
Y
C
Properties 13°
r
N.A.
Rail Weight Area Ix Sxt Sxb ex X X
Type 2 4 3 3 d h C.L. of bolt hole
kg/m cm cm cm cm cm W
ASCE 40 19.8 25.4 272 58.8 63.7 4.27 rc ex
g
60 29.8 38.3 606 108 116 5.21 k 13°
85 42.2 53.7 1250 182 199 6.27 b
t
BETH 104 51.6 66.4 1240 175 221 5.61
USS 105 52.1 66.5 1430 203 234 6.12
Y
25
COMBINED HOT ROLLED SECTIONS
26
Y
ex
tG
27
Y
ex
tG
Y
size Axis X-X ry (cm) About Axis Y-Y
Weight Area
a s Ix Sx rx ex tG (mm)
\ 2 4 3
mm mm kg\m cm cm cm cm cm 8 10 12 14
7 13.64 17.40 66.8 14.3 1.96 1.85 2.98 3.06 3.14 3.22
65 8 15.46 19.70 75.0 16.3 1.95 1.89 3.01 3.08 3.16 3.24
9 17.24 22.00 82.6 18.1 1.94 1.93 3.03 3.11 3.19 3.27
7 14.76 18.80 84.8 16.9 2.12 1.97 3.18 3.26 3.33 3.41
70 9 18.68 23.80 105.2 21.2 2.10 2.05 3.23 3.30 3.38 3.46
11 22.40 28.60 123.6 25.4 2.09 2.13 3.28 3.36 3.44 3.52
7 15.88 20.20 104.8 17.3 2.28 2.03 3.33 3.41 3.48 3.56
75 8 18.06 23.00 117.8 22.0 2.26 2.13 3.39 3.47 3.54 3.62
10 22.20 28.20 142.8 27.0 2.25 2.21 3.45 3.52 3.60 3.68
8 19.32 24.60 144.6 25.2 2.42 2.26 3.60 3.67 3.75 3.82
80 10 23.80 30.20 175.0 31.0 2.41 2.34 3.65 3.72 3.80 3.88
12 28.20 35.80 204.0 36.4 2.39 2.41 3.69 3.77 3.84 3.92
9 24.40 31.00 232.0 36.0 2.74 2.54 4.02 4.09 4.17 4.24
90 11 29.70 37.40 276.0 43.2 2.72 2.62 4.06 4.14 4.22 4.29
13 34.20 43.60 316.0 50.2 2.69 2.70 4.10 4.18 4.26 4.34
10 30.20 38.40 354.0 49.4 3.04 2.82 4.43 4.50 4.58 4.65
100 12 35.60 45.40 414.0 58.4 3.02 2.90 4.47 4.55 4.62 4.70
14 41.20 52.40 470.0 67.0 3.00 2.98 4.52 4.59 4.67 4.75
10 33.20 42.40 478.0 60.2 3.36 3.07 4.83 4.90 4.98 5.05
110 12 39.40 50.20 560.0 71.4 3.34 3.15 4.87 4.95 5.02 5.10
14 45.60 58.00 638.0 82.0 3.32 3.21 4.90 4.98 5.05 5.13
12 43.20 55.00 736.0 85.4 3.65 3.40 5.27 5.34 5.42 5.49
120 13 46.60 59.80 788.0 92.0 3.64 3.44 5.29 5.36 5.44 5.51
15 53.20 67.80 892.0 105.0 3.63 3.51 5.34 5.41 5.48 5.56
28
Y
ex
tG
29
Y
ex
Short Legs Back to Back
tG
``
Y
Size Axis X-X ry (cm) About Axis Y-Y
Weight Area
a b s IX SX rX eX tG (mm)
\ 2 4 3
mm mm mm kg\m cm cm cm cm cm 8 10 12 14
3 2.22 2.84 0.88 0.58 0.56 0.50 1.68 1.76 1.85 1.93
30 20
4 2.90 3.70 1.10 0.76 0.55 0.54 1.71 1.79 1.88 1.96
3 2.70 3.44 0.94 0.60 0.52 0.44 2.23 2.31 2.39 2.48
40 20
4 3.54 4.50 1.20 0.78 0.52 0.48 2.25 2.34 2.42 2.51
3 3.44 4.38 3.20 1.40 0.86 0.70 2.32 2.40 2.48 2.57
45 30 4 4.50 5.74 4.10 1.82 0.85 0.74 2.36 2.44 2.52 2.60
5 5.54 7.06 4.94 2.22 0.84 0.78 2.38 2.46 2.55 2.63
5 6.74 8.58 5.20 2.24 0.78 0.68 3.18 3.26 3.34 3.43
60 30
7 9.18 11.70 6.82 3.04 0.76 0.76 3.24 3.32 3.41 3.49
5 7.52 9.58 12.22 4.04 1.13 0.97 3.02 3.10 3.18 3.26
60 40 6 8.92 11.36 14.24 4.76 1.12 1.01 3.05 3.13 3.21 3.29
7 10.28 13.10 16.14 5.48 1.11 1.05 3.07 3.15 3.24 3.32
5 9.48 12.08 24.60 6.42 1.43 1.17 3.68 3.76 3.84 3.91
75 50 7 13.02 16.60 33.00 8.78 1.41 1.25 3.72 3.80 3.88 3.96
9 16.46 21.00 40.40 10.98 1.39 1.32 3.77 3.85 3.93 4.01
6 10.82 13.78 15.18 4.88 1.05 0.88 4.13 4.21 4.29 4.37
80 40
8 14.14 18.02 19.36 6.36 1.04 0.95 4.19 4.27 4.35 4.43
6 13.64 17.38 51.60 11.22 1.72 1.41 4.37 4.44 4.52 4.60
90 60
8 17.92 22.80 66.00 14.62 1.70 1.49 4.41 4.49 4.57 4.65
6 13.70 17.46 30.60 7.72 1.32 1.04 5.04 5.11 5.19 5.27
100 50 8 17.98 23.00 39.00 10.08 1.31 1.13 5.10 5.18 5.26 5.34
10 22.20 28.20 46.80 12.34 1.29 1.20 5.15 5.23 5.31 5.39
7 17.54 22.40 75.20 15.08 1.84 1.51 4.82 4.90 4.97 5.05
100 65 9 22.20 28.40 93.40 19.04 1.82 1.59 4.87 4.95 5.03 5.11
11 26.80 34.20 110.20 22.80 1.80 1.67 4.92 5.00 5.08 5.16
30
Y
ex
tG
Y
Size Axis X-X ry (cm) About Axis Y-Y
Weight Area
a b s IX SX rX eX tG (mm)
mm mm mm kg\m\ cm2 cm4 cm3 cm cm 8 10 12 14
8 24.40 31.00 161.6 26.40 2.29 1.87 5.70 5.77 5.85 5.93
10 30.00 38.20 196.2 32.40 2.27 1.95 5.75 5.83 5.91 5.98
120 80
12 35.60 45.40 228.0 38.20 2.25 2.03 5.79 5.87 5.95 6.03
14 41.00 52.40 260.0 44.00 2.23 2.10 5.84 5.92 6.00 6.08
8 23.80 30.20 89.6 17.44 1.72 1.37 6.48 6.56 6.63 6.71
130 65 10 29.20 37.20 108.4 21.40 1.71 1.45 6.54 6.61 6.69 6.77
12 34.60 44.20 126.0 25.40 1.69 1.53 6.59 6.67 6.74 6.82
10 33.20 42.40 282.0 41.20 2.58 2.18 6.13 6.21 6.28 6.36
130 90
12 39.40 50.20 330.0 48.80 2.56 2.26 6.65 6.73 6.81 6.89
9 30.60 39.00 156.6 26.40 2.00 1.57 7.46 7.53 7.61 7.69
150 75
11 37.20 47.20 186.0 31.80 1.98 1.65 7.51 7.58 7.66 7.74
10 38.00 48.40 396.0 51.60 2.86 2.34 7.06 7.14 7.21 7.29
150 100 12 45.20 57.40 464.0 61.20 2.84 2.42 7.12 7.19 7.27 7.34
14 52.20 66.40 528.0 70.40 2.82 2.50 7.16 7.23 7.31 7.38
10 36.40 46.40 208.0 33.00 2.12 1.69 7.92 8.00 8.08 8.15
160 80 12 43.20 55.00 244.0 39.20 2.10 1.77 7.97 8.05 8.13 8.21
14 50.00 63.60 278.0 45.00 2.09 1.85 8.03 8.11 8.19 8.26
10 41.20 52.40 302.0 42.20 2.40 1.85 8.85 8.92 9.00 9.08
180 90 12 49.00 62.40 354.0 50.20 2.38 1.93 8.90 8.97 9.05 9.13
14 56.60 72.20 404.0 57.80 2.37 2.01 8.95 9.03 9.11 9.18
10 46.00 58.40 420.0 52.60 2.68 2.01 9.77 9.85 9.92 10.00
12 54.60 69.60 494.0 62.60 2.67 2.10 9.83 9.90 9.98 10.05
200 100
14 63.20 80.60 564.0 72.20 2.65 2.18 9.88 9.96 10.03 10.11
16 71.80 91.40 632.0 81.60 2.63 2.26 9.92 10.00 10.08 10.15
31
Y
ex
Long Legs Back to Back
tG
Y
ex
tG
Y
33
Y
BACK to BACK
tG
Y
Axis X-X Axis Y-Y
Sec. Weight Area Aweb
Ix Sx rx Iy Sy ry Iy Sy ry Iy Sy ry
No.
kg/m` cm2 cm2 cm4 cm3 cm tG = 8 mm tG = 10 mm tG = 12 mm
30x15 3.48 4.42 1.68 5.06 3.38 1.07 4.50 2.37 1.01 5.36 2.68 1.10 6.30 3.00 1.19
30 8.54 10.88 1.60 12.78 8.52 1.08 42.47 11.48 1.98 46.30 12.19 2.06 50.35 12.91 2.15
40x20 5.74 7.32 2.90 15.16 7.58 1.44 10.66 4.44 1.21 12.30 4.92 1.30 14.09 5.42 1.39
40 9.74 12.42 2.60 28.20 14.10 1.50 50.53 12.96 2.02 54.95 13.74 2.10 59.62 14.54 2.19
50x25 7.72 9.84 3.80 33.20 13.46 1.85 19.39 6.69 1.40 21.87 7.29 1.49 24.54 7.92 1.58
50 11.18 14.24 3.60 52.80 21.20 1.92 62.85 14.96 2.10 68.04 15.82 2.19 73.50 16.71 2.27
60 10.14 12.92 5.76 63.20 21.00 2.21 31.19 9.17 1.55 34.71 9.92 1.64 38.48 10.69 1.73
65 14.18 18.06 5.50 115.0 35.40 2.52 88.02 19.14 2.21 94.78 20.17 2.29 101.89 21.23 2.38
70 13.46 17.14 6.84 122.2 35.00 2.67 79.57 18.09 2.15 85.98 19.11 2.24 92.74 20.16 2.33
80 17.28 22.00 7.68 212.0 53.00 3.10 114.10 23.28 2.28 122.5 24.49 2.36 131.3 25.74 2.44
100 21.20 27.00 9.96 412.0 82.40 3.91 161.27 29.86 2.44 172.1 31.29 2.52 183.4 32.75 2.61
120 26.80 34.00 14.28 728.0 121.4 4.62 222.40 37.69 2.56 236.3 39.39 2.64 251.0 41.14 2.72
140 32.00 40.80 16.80 1210 172.8 5.45 314.00 49.06 2.77 332.0 51.07 2.85 350.7 53.14 2.93
160 37.60 48.00 20.85 1850 232.0 6.21 411.44 59.63 2.93 433.4 61.92 3.00 456.4 64.28 3.08
180 44.00 56.00 25.28 2700 300.0 6.95 529.41 71.54 3.07 556.0 74.13 3.15 583.6 76.79 3.23
200 50.60 64.40 30.09 3820 382.0 7.70 670.04 84.82 3.23 701.7 87.72 3.30 734.7 90.70 3.38
220 58.80 74.80 35.10 5380 490.0 8.48 876.58 104.4 3.42 915.3 107.7 3.50 955.6 111.1 3.57
240 66.40 84.60 40.66 7200 600.0 9.22 1081.2 121.5 3.57 1126.5 125.2 3.65 1173.6 129.0 3.72
260 75.80 96.60 46.40 9640 742.0 9.99 1369.9 145.7 3.77 1424.1 149.9 3.84 1480.4 154.2 3.91
280 83.60 106.60 50.00 12560 896.0 10.90 1713.2 173.0 4.01 1776.7 177.7 4.08 1842.3 182.4 4.16
300 92.40 117.60 53.60 16060 1070 11.70 2120.1 203.9 4.25 2194.2 209.0 4.32 2270.7 214.2 4.39
320 119.00 151.60 79.80 21740 1358 12.10 2558.4 246.0 4.11 2650.9 252.5 4.18 2746.4 259.1 4.26
350 121.20 154.60 89.04 25680 1468 12.90 2352.1 226.2 3.90 2440.2 232.4 3.97 2531.4 238.8 4.05
380 126.20 160.80 93.96 31520 1658 14.00 2472.7 233.3 3.92 2563.7 239.6 3.99 2658.0 246.1 4.07
400 143.60 183.00 101.92 40700 2040 14.90 3394.4 297.8 4.31 3507.8 305.0 4.38 3624.9 312.5 4.45
34
Y
c
d
X X
TOE to TOE
Y
d
SYMMETRICAL WELDED I- SECTIONS x x
S
Y
depth Web Flange Axis x-x Axis y-y Surface Area
Weight Area Aweb
h d s b t Ix Sx rx Iy Sy ry Um Ut
2 2 4 3 4 3 -2 2 \
mm mm mm mm mm kg/m` cm cm cm cm cm cm cm cm x10 m /m m 2/t
210 200 5 140 5 18.84 24.0 10.0 1805 172 8.67 228.9 32.7 3.09 97.00 51.49
212 200 5 140 6 21.04 26.8 10.0 2116 200 8.89 274.6 39.2 3.20 97.40 46.30
214 200 5 140 7 23.24 29.6 10.0 2434 227 9.07 320.3 45.8 3.29 97.80 42.09
260 250 5 140 5 20.80 26.5 12.5 2927 225 10.51 228.9 32.7 2.94 107.00 51.44
262 250 5 140 6 23.00 29.3 12.5 3404 260 10.78 274.7 39.2 3.06 107.40 46.69
264 250 5 140 7 25.20 32.1 12.5 3888 295 11.01 320.4 45.8 3.16 107.80 42.78
262 250 5 165 6 25.36 32.3 12.5 3896 297 10.98 449.5 54.5 3.73 117.40 46.30
264 250 5 165 7 27.95 35.6 12.5 4466 338 11.20 524.3 63.6 3.84 117.80 42.15
340 330 5 140 5 23.94 30.5 16.5 5426 319 13.34 229.0 32.7 2.74 123.00 51.37
342 330 5 140 6 26.14 33.3 16.5 6240 365 13.69 274.7 39.2 2.87 123.40 47.21
344 330 5 140 7 28.34 36.1 16.5 7063 411 13.99 320.5 45.8 2.98 123.80 43.69
342 330 5 165 6 28.50 36.3 16.5 7086 414 13.97 449.6 54.5 3.52 133.40 46.81
344 330 5 165 7 31.09 39.6 16.5 8057 468 14.26 524.4 63.6 3.64 133.80 43.04
346 330 5 165 8 33.68 42.9 16.5 9039 522 14.52 599.3 72.6 3.74 134.20 39.85
344 330 5 200 7 34.93 44.5 16.5 9448 549 14.57 933.7 93.4 4.58 147.80 42.31
346 330 5 200 8 38.07 48.5 16.5 10639 615 14.81 1067.0 106.7 4.69 148.20 38.93
36
Y
b
h
SYMMETRICAL WELDED I- SECTIONS
d
x x
S
Y
depth Web Flange Axis x-x Axis y-y Surface Area
Weight Area Aweb
h d s b t Ix Sx rx Iy Sy ry Um Ut
\ 2 2 4 3 4 3 -2 2 \
mm mm mm mm mm kg/m cm cm cm cm cm cm cm cm x10 m /m m 2/t
414 400 5 140 7 31.09 39.6 20.0 10784 521 16.50 320.6 45.8 2.85 137.80 44.33
412 400 5 165 6 31.24 39.8 20.0 10827 526 16.49 449.7 54.5 3.36 147.40 47.18
414 400 5 165 7 33.83 43.1 20.0 12234 591 16.85 524.6 63.6 3.49 147.80 43.68
416 400 5 165 8 36.42 46.4 20.0 13655 656 17.15 599.4 72.7 3.59 148.20 40.69
414 400 5 200 7 37.68 48.0 20.0 14263 689 17.24 933.8 93.4 4.41 161.80 42.94
416 400 5 200 8 40.82 52.0 20.0 15985 769 17.53 1067.1 106.7 4.53 162.20 39.74
420 400 5 200 10 47.10 60.0 20.0 19480 928 18.02 1333.8 133.4 4.71 163.00 34.61
514 500 6 140 7 38.94 49.6 30.0 18846 733 19.49 321.0 45.9 2.54 157.60 40.48
514 500 6 165 7 41.68 53.1 30.0 21096 821 19.93 525.0 63.6 3.14 167.60 40.21
516 500 6 165 8 44.27 56.4 30.0 23284 902 20.32 599.9 72.7 3.26 168.00 37.95
514 500 6 200 7 45.53 58.0 30.0 24245 943 20.45 934.2 93.4 4.01 181.60 39.89
516 500 6 200 8 48.67 62.0 30.0 26897 1043 20.83 1067.6 106.8 4.15 182.00 37.39
420 500 6 200 10 54.95 70.0 30.0 32263 1241 21.47 1334.2 133.4 4.37 182.80 33.27
520 500 6 250 10 62.80 80.0 30.0 38767 1491 22.01 2605.1 208.4 5.71 202.80 32.29
524 500 6 250 12 70.65 90.0 30.0 45579 1740 22.50 3125.9 250.1 5.89 203.60 28.82
37
Y
b
d
SYMMETRICAL WELDED I- SECTIONS x x
S
Y
depth Web Flange Axis x-x Axis y-y Surface Area
Weight Area Aweb
h d s b t Ix Sx rx Iy Sy ry Um Ut
2 2 4 3 4 3 -2 2 \
mm mm mm mm mm kg/m` cm cm cm cm cm cm cm cm x10 m /m m 2/t
614 600 7 165 7 51.10 65.1 42.0 33879 1104 22.81 526 64 2.84 187.40 36.67
614 600 7 200 7 54.95 70.0 42.0 38393 1251 23.42 935 94 3.65 201.40 36.65
616 600 7 200 8 58.09 74.0 42.0 42175 1369 23.87 1068 107 3.80 201.80 34.74
620 600 7 200 10 64.37 82.0 42.0 49813 1607 24.65 1335 134 4.03 202.60 31.47
620 600 7 250 10 72.22 92.0 42.0 59117 1907 25.35 2606 208 5.32 222.60 30.82
624 600 7 250 12 80.07 102.0 42.0 68789 2205 25.97 3127 250 5.54 223.40 27.90
624 600 7 330 12 95.14 121.2 42.0 86769 2781 26.76 7189 436 7.70 255.40 26.84
674 660 7 165 7 54.40 69.3 46.2 42464 1260 24.75 526 64 2.75 199.40 36.65
676 660 7 165 8 56.99 72.6 46.2 46223 1368 25.23 601 73 2.88 199.80 35.06
674 660 7 200 7 58.25 74.2 46.2 47914 1422 25.41 935 94 3.55 213.40 36.64
676 660 7 200 8 61.39 78.2 46.2 52470 1552 25.90 1069 107 3.70 213.80 34.83
680 660 7 200 10 67.67 86.2 46.2 61664 1814 26.75 1335 134 3.94 214.60 31.71
680 660 7 250 10 75.52 96.2 46.2 72887 2144 27.53 2606 208 5.20 234.60 31.07
684 660 7 250 12 83.37 106.2 46.2 84515 2471 28.21 3127 250 5.43 235.40 28.24
680 660 7 330 10 88.08 112.2 46.2 90845 2672 28.45 5991 363 7.31 266.60 30.27
38
Y
b
d
SYMMETRICAL WELDED I- SECTIONS x x
S
Y
depth Web Flange Axis x-x Axis y-y Surface Area
Weight Area Aweb
h d s b t Ix Sx rx Iy Sy ry Um Ut
2 2 4 3 4 3 -2 2 \
mm mm mm mm mm kg/m` cm cm cm cm cm cm cm cm x10 m /m m2/t
764 750 7 200 7 63.19 80.5 52.5 64724 1694 28.36 935.5 93.5 3.41 231.40 36.62
766 750 7 200 8 66.33 84.5 52.5 70576 1843 28.90 1068.8 106.9 3.56 231.80 34.95
770 750 7 200 10 72.61 92.5 52.5 82373 2140 29.84 1335.5 133.5 3.80 232.60 32.03
770 750 7 250 10 80.46 102.5 52.5 96814 2515 30.73 2606.3 208.5 5.04 252.60 31.39
774 750 7 250 12 88.31 112.5 52.5 111713 2887 31.51 3127.1 250.2 5.27 253.40 28.69
770 750 7 330 10 93.02 118.5 52.5 119919 3115 31.81 5991.6 363.1 7.11 284.60 30.59
774 750 7 330 12 103.38 131.7 52.5 139586 3607 32.56 7189.5 435.7 7.39 285.40 27.61
764 750 8 200 7 69.08 88.0 60.0 68240 1786 27.85 936.5 93.7 3.26 231.20 33.47
766 750 8 200 8 72.22 92.0 60.0 74092 1935 28.38 1069.9 107.0 3.41 231.60 32.07
770 750 8 200 10 78.50 100.0 60.0 85888 2231 29.31 1336.5 133.7 3.66 232.40 29.61
770 750 8 250 10 86.35 110.0 60.0 100329 2606 30.20 2607.4 208.6 4.87 252.40 29.23
774 750 8 250 12 94.20 120.0 60.0 115229 2977 30.99 3128.2 250.3 5.11 253.20 26.88
770 750 8 330 10 98.91 126.0 60.0 123435 3206 31.30 5992.7 363.2 6.90 284.40 28.75
774 750 8 330 12 109.27 139.2 60.0 143102 3698 32.06 7190.6 435.8 7.19 285.20 26.10
39
Y
b
d
x x
S
Y
depth Web Flange Axis x-x Axis y-y Surface Area
Weight Area Aweb
h d s b t Ix Sx rx Iy Sy ry Um Ut
2 2 4 3 4 3 -2 2 \ 2
mm mm mm mm mm kg/m` cm cm cm cm cm cm cm cm x10 m /m m /t
814 800 7 200 7 65.94 84.0 56.0 75455 1854 29.97 935.6 93.6 3.34 241.40 36.61
816 800 7 200 8 69.08 88.0 56.0 82097 2012 30.54 1069.0 106.9 3.49 241.80 35.00
820 800 7 200 10 75.36 96.0 56.0 95480 2329 31.54 1335.6 133.6 3.73 242.60 32.19
820 800 7 250 10 83.21 106.0 56.0 111883 2729 32.49 2606.5 208.5 4.96 262.60 31.56
824 800 7 250 12 91.06 116.0 56.0 128775 3126 33.32 3127.3 250.2 5.19 263.40 28.93
824 800 7 330 12 106.13 135.2 56.0 160426 3894 34.45 7189.7 435.7 7.29 295.40 27.83
828 800 7 330 14 116.49 148.4 56.0 182941 4419 35.11 8387.6 508.3 7.52 296.20 25.43
814 800 8 200 7 72.22 92.0 64.0 79722 1959 29.44 936.7 93.7 3.19 241.20 33.40
816 800 8 200 8 75.36 96.0 64.0 86364 2117 29.99 1070.1 107.0 3.34 241.60 32.06
820 800 8 200 10 81.64 104.0 64.0 99747 2433 30.97 1336.7 133.7 3.59 242.40 29.69
820 800 8 250 10 89.49 114.0 64.0 116150 2833 31.92 2607.6 208.6 4.78 262.40 29.32
824 800 8 250 12 97.34 124.0 64.0 133042 3229 32.76 3128.4 250.3 5.02 263.20 27.04
824 800 8 330 12 112.41 143.2 64.0 164693 3997 33.91 7190.8 435.8 7.09 295.20 26.26
828 800 8 330 14 122.77 156.4 64.0 187208 4522 34.60 8388.7 508.4 7.32 296.00 24.11
40
Y
b
h
SYMMETRICAL WELDED I- SECTIONS
d
x x
S
41
Y
b1
t
UNSYMMETRICAL WELDED I-SECTIONS x x
d
h
S
ex
t
b2
Y
depth Web Flange Axis x-x Axis y-y Surface Area
Weight Area Aweb
h d s b1 b2 t Ix Sxt Sxb rx ex Iy Sy ry Syupper flange Um Ut
2 2 4 3 3 4 3 3 -2 2 \
mm mm mm mm mm mm kg/m` cm cm cm cm cm cm cm cm cm cm cm x10 m /m m2/t
224 200 5 140 70 12 27.63 35.2 10.0 2943 339 214 9.14 13.73 309 44 2.96 39.20 85.80 31.05
224 200 5 200 100 12 36.11 46.0 10.0 4031 478 289 9.36 13.97 900 90 4.42 80.00 103.80 28.75
274 250 5 140 70 12 29.59 37.7 12.5 4657 432 280 11.11 16.62 309 44 2.86 39.20 95.80 32.37
274 250 5 250 140 12 46.55 59.3 12.5 8184 759 493 11.75 16.62 1837 147 5.57 125.00 131.80 28.31
324 300 5 200 100 12 40.04 51.0 15.0 9203 735 463 13.43 19.87 900 90 4.20 80.00 123.80 30.92
324 300 5 250 140 12 48.51 61.8 15.0 11834 920 606 13.84 19.53 1837 147 5.45 125.00 141.80 29.23
354 330 5 200 100 12 41.21 52.5 16.5 11226 814 520 14.62 21.61 900 90 4.14 80.00 129.80 31.50
354 330 5 250 140 12 49.69 63.3 16.5 14383 1018 676 15.07 21.27 1837 147 5.39 125.00 147.80 29.74
358 330 5 300 140 14 61.31 78.1 16.5 17831 1375 781 15.11 22.83 3470 231 6.67 210.00 158.60 25.87
358 330 5 330 165 14 67.35 85.8 16.5 20171 1520 895 15.33 22.53 4717 286 7.41 254.10 169.60 25.18
428 400 5 250 140 14 58.56 74.6 20.0 24709 1443 962 18.20 25.67 2143 171 5.36 145.83 162.60 27.77
428 400 5 300 165 14 66.80 85.1 20.0 28773 1712 1107 18.39 26.00 3674 245 6.57 210.00 177.60 26.59
432 400 5 330 165 16 77.87 99.2 20.0 33909 2111 1250 18.49 27.14 5391 327 7.37 290.40 184.40 23.68
432 400 5 400 200 16 91.06 116.0 20.0 40401 2547 1478 18.66 27.34 9600 480 9.10 426.67 205.40 22.56
532 500 5 250 140 16 68.61 87.4 25.0 44398 2074 1396 22.54 31.80 2450 196 5.29 166.67 183.40 26.73
532 500 5 300 165 16 78.03 99.4 25.0 51623 2459 1603 22.79 32.21 4199 280 6.50 240.00 198.40 25.43
536 500 5 330 165 18 89.57 114.1 25.0 59816 2982 1783 22.90 33.54 6065 368 7.29 326.70 205.20 22.91
536 500 5 400 200 18 104.41 133.0 25.0 71148 3595 2104 23.13 33.81 10801 540 9.01 480.00 226.20 21.67
540 500 5 500 250 20 137.38 175.0 25.0 97001 4956 2817 23.54 34.43 23438 938 11.57 833.33 257.00 18.71
42
Y
b1
d
h
S
ex
t
b2
43
Y
CHANNEL (U.P.N.)
BUILT-UP SECTION X X
ex
IPE
44
Y
CHANNEL (U.P.N.)
BUILT-UP SECTION X X
IPE +Channel (U.P.N.)
ex
IPE
45
COLD FORMED SECTIONS
UNSTIFFENED CHANNEL
LIPPED CHANNEL
46
Yb
r
ey
UNSTIFFENED CHANNEL x x
h
(COLD FORMED SECTION) t
Y
Dimensions Axis X-X Axis Y-Y
Weight Area Aweb
h b t r Ix Sx rx Iy Sy ry ey
2 2 4 3 4 3
mm mm mm mm kg/m` cm cm cm cm cm cm cm cm cm
30 25 4 8 1.99 2.54 0.88 2.87 1.91 1.06 1.28 0.89 0.71 1.06
40 20 4 8 1.99 2.54 1.28 4.80 2.40 1.38 0.73 0.58 0.54 0.73
40 24 4 8 2.24 2.86 1.28 5.84 2.92 1.43 1.35 0.90 0.69 0.90
50 25 4 8 2.62 3.34 1.68 10.80 4.32 1.80 1.73 1.05 0.72 0.85
50 35 4 8 3.25 4.20 1.68 15.03 6.01 1.91 4.78 2.14 1.07 1.27
60 30 4 8 3.24 4.14 2.08 20.30 6.77 2.22 3.29 1.62 0.89 0.97
65 38 4 8 3.90 4.98 2.28 30.71 9.45 2.48 6.82 2.68 1.17 1.25
70 25 4 8 3.25 4.14 2.48 25.40 7.26 2.48 2.00 1.13 0.70 0.73
80 45 4 8 4.81 6.14 2.88 58.81 14.70 3.10 12.05 3.91 1.40 1.41
100 50 4 8 5.76 7.34 3.68 109.40 21.88 3.86 17.67 5.00 1.56 1.46
120 60 4 8 7.01 8.94 4.48 195.80 32.63 4.68 31.50 7.34 1.88 1.71
140 65 4 8 7.96 10.14 5.28 300.13 42.88 5.44 41.54 8.78 2.02 1.77
160 65 4 8 8.58 10.94 6.08 411.28 51.41 6.13 43.37 8.95 1.99 1.65
180 80 4 8 10.06 12.94 6.88 637.23 70.80 7.02 80.45 13.60 2.49 2.09
200 80 4 8 10.78 13.74 7.68 816.04 81.60 7.71 83.13 13.80 2.46 1.98
200 100 4 8 12.04 15.34 7.68 969.70 96.97 7.95 154.37 21.17 3.17 2.71
60 40 3.6 8 3.51 4.48 1.90 24.48 8.16 2.34 7.02 2.66 1.25 1.36
60 40 4 8 3.87 4.94 2.08 26.58 8.86 2.32 7.64 2.92 1.24 1.38
80 40 2.25 8 2.61 3.32 1.70 32.33 8.08 3.12 5.24 1.83 1.26 1.14
80 40 2.5 8 2.89 3.68 1.88 35.52 8.88 3.11 5.75 2.02 1.25 1.15
80 40 3 8 3.43 4.37 2.22 41.66 10.42 3.09 6.75 2.39 1.24 1.18
80 40 4 8 4.50 5.74 2.88 53.04 13.26 3.04 8.60 3.09 1.22 1.22
80 50 5 7.5 6.32 8.05 3.50 77.30 19.33 3.10 19.55 5.85 1.56 1.66
100 40 3 8 3.91 4.97 2.82 70.96 14.19 3.78 7.31 2.48 1.21 1.05
100 40 4 8 5.13 6.54 3.68 90.97 18.19 3.73 9.33 3.21 1.19 1.09
100 50 5 8 7.10 9.05 4.50 131.83 26.37 3.82 21.32 6.10 1.53 1.51
120 60 4 8 7.01 8.94 4.48 195.80 32.63 4.68 31.50 7.35 1.88 1.71
140 63 4 8 7.83 9.98 5.28 292.73 41.82 5.42 38.05 8.27 1.95 1.70
160 63 4 8 8.46 10.78 6.08 401.54 50.19 6.10 39.70 8.43 1.92 1.59
180 75 4 8 9.84 12.54 6.88 606.25 67.36 6.95 67.20 12.01 2.32 1.90
47
Yb
d
ey
LIPPED CHANNEL
x x
(COLD FORMED SECTION)
h
t
Y
Dimensions Axis X-X Axis Y-Y
Weight Area Aweb
h b d t r Ix Sx rx Iy Sy ry ey
2 2 4 3 4 3
mm mm mm mm mm kg/m` cm cm cm cm cm cm cm cm cm
100 40 15 3 8 4.28 5.45 2.82 76.88 15.38 3.76 10.41 3.84 1.38 1.29
140 70 30 3 8 7.34 9.35 4.02 280.23 40.03 5.47 67.30 15.44 2.68 2.64
160 70 30 3 8 7.81 9.95 4.62 384.69 48.09 6.22 70.80 15.70 2.67 2.49
160 80 34 3 8 8.47 10.79 4.62 427.20 53.40 6.29 103.10 20.68 3.09 3.01
160 80 34 3.65 8 10.21 13.01 5.57 510.03 63.75 6.26 121.93 24.46 3.06 3.01
160 80 30 4 8 10.89 13.87 6.08 545.86 68.23 6.27 124.07 24.35 2.99 2.90
160 80 35 4 8 11.20 14.27 6.08 554.90 69.36 6.24 133.39 26.90 3.06 3.04
180 80 25 3.6 8 10.14 12.91 6.22 642.27 71.36 7.05 109.29 20.30 2.91 2.62
180 80 25 4 8 11.20 14.27 6.88 705.60 78.40 7.03 119.15 22.13 2.89 2.62
100 50 20 2 8 3.40 4.33 1.92 65.92 13.18 3.90 15.36 4.85 1.88 1.84
200 60 20 2 8 5.28 6.73 3.92 386.55 38.66 7.58 30.47 6.96 2.13 1.62
250 70 20 2 8 6.38 8.13 4.92 723.51 57.88 9.43 47.56 9.05 2.42 1.74
185 60 25 1.5 8 3.93 5.00 2.73 251.81 27.22 7.09 25.60 6.12 2.26 1.82
185 60 26.4 2 8 5.25 6.69 3.62 333.19 36.02 7.06 34.09 8.22 2.26 1.85
185 60 27.7 2.5 8 6.56 8.36 4.50 412.99 44.65 7.03 42.46 10.32 2.25 1.89
185 60 29.1 3 8 7.89 10.05 5.37 491.57 53.14 7.00 50.82 12.46 2.25 1.92
215 60 25 1.5 8 4.29 5.46 3.18 360.67 33.55 8.13 26.86 6.21 2.22 1.67
215 60 26.4 2 8 5.72 7.29 4.22 477.98 44.46 8.10 35.79 8.34 2.21 1.70
215 60 27.7 2.5 8 7.15 9.11 5.25 593.41 55.20 8.07 44.59 10.47 2.21 1.74
215 60 29.1 3 8 8.59 10.95 6.27 707.49 65.81 8.04 53.41 12.64 2.21 1.78
48
Y b
r
d
STRAIGHT LIPPED Z-SECTION t
x x
(COLD FORMED SECTION)
h
t
Y
Dimensions Axis X-X Axis Y-Y
Weight Area Aweb
h b d t r Ix Sx rx Iy Sy ry
mm mm mm mm mm kg/m` cm2 cm2 cm4 cm3 cm cm4 cm3 cm
100 50 20 2 8 3.40 4.33 1.92 65.92 13.18 3.90 28.40 5.80 2.56
150 60 20 2 8 4.50 5.73 2.92 195.22 26.03 5.84 46.04 7.80 2.83
150 60 20 2.5 8 5.58 7.10 3.63 239.74 31.97 5.81 55.66 9.47 2.80
200 60 20 2 8 5.28 6.73 3.92 386.55 38.65 7.58 46.04 7.80 2.62
200 60 20 2.5 8 6.56 8.35 4.88 475.94 47.59 7.55 55.66 9.47 2.58
250 70 20 2 8 6.38 8.13 4.92 723.51 57.88 9.43 69.53 10.08 2.92
250 70 20 2.5 8 7.93 10.10 6.13 893.12 71.45 9.40 84.41 12.28 2.89
Y b
d
r
h
x x
(COLD FORMED SECTION)
12
0°
49
COMBINED COLD FORMED SECTIONS
50
Y
b
r
h
t
tG
Y
51
Y
b
r
h
t
tG
Y
52
Y
c
r
TWO CHANNELS TOE to TOE
X X
(COLD FORMED SECTION)
h
t
b
Y
Axis x-x Axis y-y (toe to toe) Axis y-y (c=h)
Dimensions (mm) Weight Area Aweb
Ix Sx rx Iy Sy ry Iy Sy ry
2 2 4 3 4 3 4 3
h b t r kg/m` cm cm cm cm cm cm cm cm cm cm cm
30 25 4 8 3.99 5.08 1.76 5.74 3.82 1.06 13.09 5.24 1.61 N.A.
40 20 4 8 3.99 5.08 2.56 9.60 4.80 1.38 9.65 4.83 1.38 9.65 4.83 1.38
40 24 4 8 4.49 5.72 2.56 11.68 5.84 1.43 15.57 6.49 1.65 N.A.
50 25 4 8 5.24 6.68 3.36 21.60 8.64 1.80 21.65 8.66 1.80 21.65 8.66 1.80
50 35 4 8 6.59 8.40 3.36 30.06 12.02 1.91 51.33 14.67 2.47 N.A.
60 30 4 8 6.50 8.28 4.16 40.60 13.54 2.22 40.70 13.57 2.22 40.70 13.57 2.22
65 38 4 8 7.82 9.96 4.56 61.42 18.90 2.48 78.40 20.63 2.81 N.A.
70 25 4 8 6.50 8.28 4.96 50.80 14.52 2.48 29.94 11.98 1.90 67.53 19.29 2.86
80 45 4 8 9.64 12.28 5.76 117.62 29.40 3.10 141.35 31.41 3.39 106.48 26.62 2.94
100 50 4 8 11.52 14.68 7.36 218.80 43.76 3.86 219.30 43.86 3.87 219.30 43.86 3.87
120 60 4 8 14.04 17.88 8.96 391.60 65.26 4.68 392.07 65.34 4.68 392.07 65.34 4.68
140 65 4 8 15.92 20.28 10.56 600.26 85.76 5.44 536.80 82.58 5.14 637.80 91.11 5.61
160 65 4 8 17.18 21.88 12.16 822.56 102.82 6.13 601.41 92.52 5.24 969.00 121.12 6.65
180 80 4 8 20.32 25.88 13.76 1274.46 141.60 7.02 1064.84 133.10 6.41 1396.62 155.18 7.35
200 80 4 8 21.57 27.48 15.36 1632.08 163.20 7.71 1162.15 145.27 6.50 1933.78 193.38 8.39
200 100 4 8 24.08 30.68 15.36 1939.40 193.94 7.95 1939.20 193.92 7.95 1939.20 193.92 7.95
N.A.= Section is not available with the specified configuration.
53
Y
c
h
t
b
Y
Axis x-x Axis y-y (toe to toe) Axis y-y (c=h)
Dimensions (mm) Weight Area Aweb
Ix Sx rx Iy Sy ry Iy Sy ry
2 2 4 3 4 3 4 3
h b t r kg/m` cm cm cm cm cm cm cm cm cm cm cm
60 40 3.6 8 7.03 8.96 4.22 48.96 16.32 2.34 76.49 19.12 2.92
N.A.
60 40 4 8 7.76 9.88 4.16 53.16 17.72 2.32 83.10 20.78 2.90
80 40 2.25 8 5.21 6.64 6.04 64.66 16.16 3.12 64.79 16.20 3.12 64.79 16.20 3.12
80 40 2.5 8 5.78 7.36 6.00 71.04 17.76 3.11 71.28 17.82 3.11 71.28 17.82 3.11
80 40 3 8 6.86 8.74 5.92 83.32 20.84 3.09 83.00 20.75 3.08 83.00 20.75 3.08
80 40 4 8 9.01 11.48 5.76 106.08 26.52 3.04 105.92 26.48 3.04 105.92 26.48 3.04
80 50 5 8 12.64 16.10 5.60 154.60 38.66 3.10 218.71 43.74 3.69 N.A.
100 40 3 8 7.80 9.94 7.52 141.92 28.38 3.78 101.12 25.28 3.19 169.71 33.94 4.13
100 40 4 8 10.27 13.08 7.36 181.94 36.38 3.73 129.42 32.36 3.15 218.63 43.73 4.09
100 50 5 8 14.21 18.10 7.20 263.66 52.74 3.82 263.10 52.62 3.81 263.10 52.62 3.81
120 60 4 8 14.04 17.88 8.96 391.60 65.26 4.68 392.07 65.34 4.68 392.07 65.34 4.68
140 63 4 8 15.67 19.96 10.56 585.46 83.64 5.42 498.45 79.12 5.00 636.78 90.97 5.65
160 63 4 8 16.92 21.56 12.16 803.08 100.38 6.10 557.69 88.52 5.09 965.26 120.66 6.69
180 75 4 8 19.69 25.08 13.76 1212.50 134.72 6.95 920.91 122.79 6.06 1398.68 155.41 7.47
N.A.= Section is not available with the specified configuration.
54
BOLTS
ORDINARY BOLTS
HIGH STRENGTH BOLTS
ANCHOR BOLTS
55
m
Washer
ORDINARY BOLTS
e
r
Bolt Nut n
Head s
l1 b
Nut
k L
Bolt
Nominal Bolt Size M10 M12 M16 M20 M24 M27 M30
k mm 7.0 8.0 10.0 13.0 15.0 17.0 19.0
l1 mm 1.9 2.5 3.0 4.0 4.5 4.5 5.0
b mm 26.0 19.5 23.0 26.0 29.5 32.5 35.0
Bolt
n mm 2.2 2.5 3.0 3.5 4.5 4.5 5.0
Dimensions
r mm 0.5 0.6 0.6 0.8 0.8 1.0 1.0
s mm 17.0 19.0 24.0 30.0 36.0 41.0 46.0
emin. mm 18.7 20.9 26.2 32.9 39.6 45.2 50.8
m mm 8.0 10.0 13.0 16.0 19.0 22.0 24.0
Nut
s mm 17.0 19.0 24.0 30.0 36.0 41.0 46.0
Dimensions
emin. mm 18.7 20.9 26.2 39.5 39.6 45.2 50.8
Hole Diameter d1 mm 12.0 14.0 18.0 22.0 26.0 30.0 33.0
56
Grip Length
Bolt Length = L
Nominal
M10 M12 M16 M20 M24 M27 M30
Bolt Size
L Min.Grip Max. Grip Min.Grip Max. Grip Min.Grip Max. Grip Min.Grip Max. Grip Min.Grip Max. Grip Min.Grip Max. Grip Min.Grip Max. Grip
30 0 9 2 9
35 10 11 6 7
40 10 19 12 19 8 15 5 12 2 9
45 20 21 16 17 13 14 10 11 7 8
50 20 29 22 29 18 25 15 22 12 19 9 16 6 13
55 30 31 26 27 23 24 20 21 17 18 14 15
60 30 39 32 39 28 35 25 32 22 29 19 26 16 23
65 40 41 36 37 33 34 30 31 27 28 24 25
70 40 49 42 49 38 45 35 42 32 39 29 36 26 33
75 50 51 46 47 43 44 40 41 37 38 34 35
80 50 59 52 59 48 55 45 52 42 49 39 46 36 43
85 60 61 56 57 53 54 50 51 47 48 44 45
90 62 69 58 65 55 62 52 59 49 56 46 53
57
WASHERS FOR ORDINARY BOLTS
S1
Plain Circular Washer d2
D
Nominal
M10 M12 M16 M20 M24 M27 M30
Bolt Size
d2 mm 11 14 18 22 26 30 33
d2
D mm 21 24 30 37 44 50 56
S1 mm 8 8 8 8 8 8 8
e
For Channel Sections
c
0. 8
d2
r=
Nominal
M10 M12 M16 M20 M24 M27
Bolt Size
d2 mm 11 14 18 22 26 30 d2
b mm 22 30 36 44 56 56
c mm 2 2.5 3 3.5 4 4
e mm 3.8 4.9 5.9 7 8.5 8.5
f mm 2.9 3.7 4.45 5.25 6.25 6.25
d2
r=
Nominal
M10 M12 M16 M20 M24 M27
Bolt Size
d2 mm 11 14 18 22 26 30
d2
b mm 22 30 36 44 56 56
c mm 1.5 2 2.5 3 3 3
e mm 4.6 6.2 7.5 9.2 10.8 10.8
f mm 3 4.1 5 6.1 6.9 6.9
58
s1 m
Washer
D
LARGE DIAMETER
d2
ORDINARY BOLTS
e
r
Bolt Nut n
Head s
l1 b Nut Washer
k L
Bolt
Nominal Bolt Size M30 M33 M36 M39 M42 M45 M48 M52
k mm 19 21 23 25 26 28 30 33
l1 mm 30 33 36 39 42 45 48 52
b mm 4.5 4.5 5 5 5.5 5.5 6.3 6.3
Bolt
n mm 66 72 78 84 90 96 102 116
Dimensions
r mm 5 5 6 6 6.5 6.5 7.5 7.5
s mm 46 50 55 60 65 70 75 80
emin. mm 50.8 55.4 60.8 66.4 72.1 77.7 83.4 89
m mm 24 26 29 31 34 36 38 42
Nut
s mm 46 50 55 60 65 70 75 80
Dimensions
emin. mm 50.8 55.4 60.8 66.4 72.1 77.7 83.4 89
D mm 56 60 66
Washer
d2 mm 33 36 39 N.A.
Dimensions
s1 mm 8 8 8
Hole Diameter d1 mm 33 36 39 42 45 48 51 55
N.A. = Washer plates with appropriate thickness are used with these bolts size
59
HIGH STRENGTH BOLTS
F Man ufacture's
identification mark Transition Thread
thread length length
D
F
8S
5M
32
BOLT
W
W
3 3
8S 8S
NUT
DIMENSIONS
Heavy Hex Strucural Bolt
Heavy Hex Bolt or Nut Dimension Heavy
Thread Length
Nominal Hex Max. Max.
Bolt Across Flats Across Corners Nut Max. Head Bolt Bolt Transition
Size F or W F/ or W/ Height Height Lengths Lengths Thread
N H <100 >100 Length
Max. Min. Max. Min.
mm mm mm mm mm mm mm mm mm mm
M16 27 26.2 31.18 29.56 17.1 10.75 31 38 6.0
M20 34 33.0 39.26 37.29 20.7 13.40 36 43 7.5
M22 36 35.0 41.57 39.55 23.6 14.90 38 45 7.5
M24 41 40.0 47.34 45.20 24.2 15.90 41 48 9.0
M27 46 45.0 53.12 50.58 27.6 17.90 44 51 9.0
M30 50 49.0 57.74 55.37 30.7 19.75 49 56 10.5
M36 60 58.8 69.28 66.44 36.6 23.55 56 63 12.0
60
Grip Length
D
IN MILLIMETERS Bolt Length = L
Nominal
M16 M20 M22 M24 M27 M30 M36
Bolt Size
L
Bolt Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Length Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip
(mm)
45 14 26 23 20
50 19 31 14 28 25 24
55 24 36 19 32 17 29 29 25
60 29 41 24 37 22 34 19 34 30 27
65 34 46 29 42 27 39 24 39 21 35 32
70 39 51 34 47 32 44 29 44 26 40 21 37 31
75 44 56 39 52 37 49 34 49 31 45 26 42 36
80 49 61 44 57 42 59 39 54 36 50 31 47 24 41
85 54 66 49 62 47 59 44 59 41 55 36 52 29 46
90 59 71 54 67 52 64 49 64 46 60 41 57 34 51
95 64 76 59 72 57 69 54 69 51 65 46 62 39 56
100 69 81 64 77 62 74 59 74 56 70 51 67 44 61
110 72 91 67 87 65 84 62 84 59 80 54 77 47 71
120 82 101 77 97 75 94 72 94 69 90 64 87 57 81
130 92 110 87 107 85 104 82 103 79 100 74 97 67 91
140 102 120 97 117 95 114 92 113 89 110 84 107 77 101
150 112 130 107 127 105 124 102 123 99 120 94 117 87 111
61
Grip Length
MINIMUM AND MAXIMUM GRIPS
FOR HIGH STRENGTH BOLTS
IN MILLIMETERS
D
Bolt Length = L
Nominal
M16 M20 M22 M24 M27 M30 M36
Bolt Size
L
Bolt Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
Length Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip Grip
(mm)
160 122 138 117 135 115 132 112 131 109 128 104 125 97 119
170 132 148 127 145 125 142 122 141 119 138 114 135 107 129
180 142 158 137 155 135 152 132 151 129 148 124 145 117 139
190 152 168 147 165 145 162 142 161 139 158 134 155 127 149
200 162 178 157 175 155 172 152 171 149 168 144 165 137 159
210 172 188 167 185 165 182 162 181 159 178 154 175 147 169
220 182 198 177 195 175 192 172 191 169 188 164 185 157 179
230 192 208 187 205 185 202 182 201 179 198 174 195 167 189
240 202 218 197 215 195 212 192 211 189 208 184 205 177 199
250 212 228 207 225 205 222 202 221 199 218 194 215 187 209
260 222 238 217 235 215 232 212 231 209 228 204 225 197 219
270 232 248 227 245 225 242 222 241 219 238 214 235 207 229
280 242 258 237 255 235 252 232 251 229 248 224 245 217 239
290 252 268 247 265 245 262 242 261 239 258 234 255 227 249
300 262 278 257 275 255 272 252 271 249 268 244 265 237 259
62
WASHERS FOR HIGH STRENGTH BOLTS
B C S
C
21 NI 2 EPOLS
A
SREHSAW RALUCRIC NIALP U
SREH SA W ERAUQS DELLEVEB T
Metric Outside Diameter Hole Diameter Thickness Metric Width Hole Diameter Thickness
Bolt B (mm) A (mm) T (mm) Bolt C (mm) A (mm) S (mm) U (mm)
T (mm)
Size Max. Min. Max. Min. Max. Min. Size Max. Min. Max. Min. +0.5 +0.5
M16 34 32.4 18.4 18 4.6 3.1 M16 45 43 18.4 18 11.7 8 4.3
M20 41 39.4 22.5 22 4.6 3.1 M20 45 43 22.5 22 11.7 8 4.3
M22 44 42.4 24.5 24 4.6 3.4 M22 45 43 24.5 24 11.7 8 4.3
M24 50 48.4 26.5 26 4.6 3.4 M24 45 43 26.5 26 11.7 8 4.3
M27 56 54.1 30.5 30 4.6 3.4 M27 59 57 30.5 30 12.8 8 3.2
M30 60 58.1 33.5 33 4.6 3.4 M30 59 57 33.5 33 12.8 8 3.2
M36 72 70.1 39.5 39 4.6 3.4 M36 59 57 39.5 39 12.8 8 3.2
63
ERECTION CLEARENCES
FOR IMPACT WRENCHES
B
EXTENSION BAR
56
A
160 to 380
C
75 E
70
20° for 20
15°for 22,24
F
50
Minimum Clearences
64
ANCHOR BOLTS
EMBEDMENT LENGTH
A
A
R R
B
C
C
65
SAMPLE OF CORRUGATED SHEETS
66
SINGLE LAYER CORRUGATED STEEL SHEETS (St.52)
800 mm MODULE
67
SINGLE LAYER CORRUGATED STEEL SHEETS (St.52)
900 mm MODULE
Panel
Nominal Nominal Live Load (kg/m2)
Nominal Ix Sxt Sxb
Weight Area
Thickness 50 100 150 200
2 2 4 3 3
mm kg/m cm cm cm cm Allowable Purlin Spacing (cm)
0.5 4.99 6.36 4.05 2.15 4.97 265 185 150 130
0.6 5.99 7.63 5.13 2.96 6.3 310 220 180 155
0.7 6.99 8.91 6.15 3.64 7.61 345 240 200 170
68
SINGLE LAYER CORRUGATED STEEL SHEETS (St.52)
960 mm MODULE
Panel
Nominal Nominal Live Load (kg/m2)
Nominal Ix Sxt Sxb
Weight Area
Thickness
50 100 150 200
2 2 4 3 3
mm kg/m cm cm cm cm Allowable Purlin Spacing (cm)
0.5 4.68 5.96 4.47 1.39 7.79 215 150 120 100
0.6 5.62 7.16 6.19 2.07 9.74 260 185 150 130
0.7 6.55 8.35 7.57 2.84 11.76 300 215 175 150
69
SINGLE LAYER CORRUGATED STEEL SHEETS (St.52)
1000 mm MODULE
Panel 2
Nominal Nominal Live Load (kg/m )
Nominal Ix Sxt Sxb
Weight Area
Thickness
50 100 150 200
2 2 4 3 3 Allowable Purlin Spacing (cm)
mm kg/m cm cm cm cm
0.5 4.49 5.73 3.8 1.27 6.53 200 145 115 100
0.6 5.39 6.87 5.16 1.91 8.3 245 175 140 120
0.7 6.29 8.02 6.48 2.53 10.13 285 200 165 140
70
SINGLE LAYER CORRUGATED STEEL SHEETS (St.52)
1065 mm MODULE
Panel 2
Nominal Nominal Live Load (kg/m )
Nominal Ix Sxt Sxb
Weight Area
Thickness
50 100 150 200
2 2 4 3 3 Allowable Purlin Spacing (cm)
mm kg/m cm cm cm cm
0.5 4.71 6 4.86 1.82 6.91 245 170 140 120
0.6 5.65 7.2 6.45 2.59 8.66 290 205 165 140
0.7 6.59 8.39 7.75 3.38 10.35 330 235 190 160
71
SINGLE LAYER CORRUGATED STEEL SHEETS
1065 mm MODULE
72
SANDWITCH ROOF PANELS
30
72 69 72
T
26 167 177.5 177.5 177.5 177.5 188
Properties
Panel
Nominal Weight Ix Sx
Thickness (kg/m2) (cm ) 4
(cm3)
T (mm)
65 9.48 50.4 12
80 10.08 64.4 18.6
105 11.08 191.2 31
130 12.08 289.9 44.2
73
SANDWITCH SIDE WALL PANELS
T
26 167 177.5 177.5 177.5 177.5 188
1065
Properties
Panel
Nominal Weight Ix Sx
Thickness (kg/m2) (cm4) (cm3)
(mm)
35 8.74 30.5 17.3
50 9.34 64.4 25.3
75 10.34 144.9 37.9
100 11.34 257.9 50.6
Panel
Nominal Span in Meters
Thickness
(mm)
2.5 3 3.5 4 4.5 5
35 140 117 100 88 76 62
50 200 167 143 125 110 90
75 301 251 215 188 166 135
100 401 334 286 251 222 180
74
CORRUGATED STEEL DECKING
SHEETS FOR CONCRETE FLOOR SLABS
830
85
55
t 166
45
75
ACCESSORIES
76
ACCESSORIES*
100
60 40
20
250
150 200
50 150
25
25 1 58 1 58
29 .2
10
180
154,63
190
100 400 100
170
2 76
1: 10
103
25
30
30
70
15
35
50 250 50
15
150 30 50
60
60
200
25
25
40
410
50
40
19
50
37
120
89
19
25
89 120 50 40
25
145
12
30
15
70
40
FRAMED OPENING TRIM DRIP TRIM
112
30
29
,2
110
150
10 80
13 DOWN SPOUT
OASIS EAVE TRIM
78
CRANES
79
LIGHT CAPACITY
SINGLE GIRDER
200 mm
Wheel loads in kg
Span S 200 mm
X
g
a1 a2
H
1810
1135
1485
1800 for S<10m
2500 for S<16m
3150 for S<20m
1810
1135
1485
Wheel loads in kg
Capacity Wheel Span in Meters
ton Load 6 8 10 12 14 16 18 20
max. 650 750 800 850 900 950 1050 1150
0.5
min. 350 350 400 450 500 550 700 750
max. 800 850 900 950 1000 1050 1200 1200
0.8
min. 350 400 400 450 500 550 700 750
max. 950 1000 1050 1150 1200 1250 1400 1500
1.0
min. 350 400 450 500 550 600 750 800
max. 1200 1250 1300 1400 1450 1500 1650 1700
1.6
min. 400 400 450 500 550 600 800 850
max. 1500 1600 1650 1750 1850 1900 2050 2150
2.0
min. 450 450 500 550 600 650 850 950
max. 2200 2300 2400 2500 2600 2700 2800 2900
3.2
min. 600 600 650 700 800 900 1000 1100
max. 2450 2550 2650 2800 2850 2900 3100 3200
4.0
min. 600 600 600 650 800 900 1000 1150
max. 3000 3150 3300 3400 3500 3550 3750 3900
5.0
min. 750 750 750 750 850 950 1100 1300
max. 3600 3800 3900 4000 4100 4350 4400 4500
6.3
min. 800 800 850 900 1000 1100 1300 1500
80
LIGHT CAPACITY
SINGLE GIRDER
Dimensions
Capacity Hmax. S (up to) g a1 a2
ton m m mm mm mm
15.2 850 600 525
17.0 950 600 600
0.5 7.0
18.5 950 600 600
20.0 1050 775 775
14.3 850 600 525
0.8 7.0 17.0 950 600 600
20.0 1050 775 775
13.0 850 600 525
16.0 950 600 600
1.0 7.0
19.0 1050 775 775
20.0 1150 1000 1000
11.8 825 600 525
15.0 925 600 600
1.6 3.5
17.0 1025 775 775
20.0 1125 1000 1000
11.8 1000 650 600
1.6 7.0 17.0 1100 650 600
20.0 1200 800 800
12.0 1300 1000 1000
13.8 825 600 525
2.0 3.5
18.0 925 600 600
20.0 1025 775 775
12.0 1125 1000 1000
13.8 1000 650 600
2.0 7.0
18.0 1100 650 600
20.0 1200 800 800
10.7 1300 1000 1000
13.6 1000 650 600
3.2 3.5
16.4 1100 650 600
20.0 1200 800 800
9.7 1300 1000 1000
12.5 1200 850 700
3.2 7.0
14.4 1300 850 700
20.0 1400 850 800
9.7 1500 1050 1050
12.5 1000 650 600
4.0 3.5
14.4 1100 650 600
20.0 1200 800 800
9.4 1300 1000 1000
12.0 1200 850 700
4.0 7.0 14.8 1300 850 700
18.0 1400 850 800
20.0 1500 1050 1050
8.3 1375 900 800
10.9 1475 900 800
5.0 8.0 13.8 1575 900 850
17.0 1675 1050 1050
20.0 1775 1250 1250
8.3 1150 850 700
10.9 1250 850 700
6.3 3.5 13.8 1350 850 800
17.0 1450 1000 1000
20.0 1550 1200 1200
8.3 1375 900 800
10.9 1475 900 800
6.3 8.0 13.8 1575 900 850
17.0 1675 1050 1050
20.0 1775 1250 1250
81
NORMAL CAPACITY
DOUBLE GIRDER
b Span S b
gX
a1 a2
H
d1
L
e1
t
Wheel loads in kg
Capacity Wheel Span in Meters
ton Load 6 8 10 12 14 16 18 20 22 24 26 28 30
max. 1450 1550 1600 1750 1900 2000 2150 2250 2950 3050 3350 3600 3900
2.0 min. 450 500 500 600 750 800 950 1050 1700 1850 2100 2400 2300
max. 2050 2200 2300 2400 2550 2650 2850 3100 3600 3900 4150 4300 4600
3.2 min. 550 550 550 650 750 850 1000 1250 1750 2000 2250 2400 2700
max. 2450 2550 2700 2800 3000 3150 3350 3550 4050 4300 4600 4850 5150
4.0 min. 600 600 650 650 800 900 1100 1300 1750 2000 2250 2550 2800
max. 2900 3100 3250 3400 3550 3750 3950 4150 4650 4850 5200 5400 5750
5.0 min. 650 650 700 750 850 1000 1200 1350 1850 2000 2400 2550 2900
max. 3550 3750 3900 4100 4250 4450 4700 4900 5350 5600 5900 6150 6450
6.3 min. 750 700 750 850 950 1100 1300 1500 1900 2150 2400 2650 2900
max. 4600 4850 5050 5250 5450 5700 6050 6300 6550 6800 7100 7500 7800
8.0 min. 950 900 950 1000 1150 1300 1650 1800 2000 2250 2550 2900 3200
max. 5550 5850 6100 6300 6600 6850 7150 7450 7650 7950 8350 8650 8950
10.0 min. 1100 1050 1050 1150 1350 1500 1750 2000 2150 2400 2750 3050 3350
max. 6500 6900 7200 7500 7800 8100 8400 8650 9000 9300 9700 10100 10550
12.5 min. 1500 1400 1350 1450 1600 1750 1950 2150 2450 2700 3000 3400 3850
max. 8350 8800 9200 9700 9900 10350 10600 11000 11300 11700 12150 12600 13000
16.0 min. 1850 1600 1600 1800 1900 2050 2250 2550 2750 3100 3500 3900 4250
max. 10300 10850 11300 11700 12000 12350 12750 13150 13550 14100 14400 15250 1550
20.0 min. 2350 2100 2050 2050 2150 2300 2550 2850 3200 3650 3900 4650 4950
max. 11900 12900 13600 14150 14600 15150 15550 16000 16550 16950
25.0 min. 3950 3350 3050 2950 2950 3100 3250 3500 3900 4150
82
NORMAL CAPACITY
DOUBLE GIRDER
Dimensions
Capacity Hmax. S (up to) g a1 a2 e1 L d1 t x b
ton m m mm mm mm mm mm mm mm mm mm
12 0 750 750 2000 2470 250 1000 920 200
20 50 900 750 3150 3620 250 1400 920 200
3.5
25 -50 1100 750 4000 4560 400 2240 1040 200
30 -50 1100 750 4560 5210 400 2800 1040 200
2.0 12 150 750 750 2000 2470 250 1000 990 200
7 20 150 900 750 3150 3620 250 1400 990 200
25 50 1100 750 4000 4560 400 2240 1100 200
30 50 1100 750 4560 5210 400 2800 1100 200
12 150 750 750 2000 2470 250 1000 990 200
20 150 900 750 3150 3620 250 1400 990 200
3.5
25 50 1100 750 4000 4560 400 2240 1100 200
30 50 1100 750 4560 5210 400 2800 1100 200
3.2 12 300 750 750 2000 2470 250 1000 1055 200
7 20 300 900 750 3150 3620 250 1400 1055 200
25 200 1100 750 4000 4560 400 2240 1065 200
30 200 1100 750 4560 5210 400 2800 1065 200
12 150 750 750 2000 2470 250 1000 990 200
20 150 900 750 3150 3620 250 1400 990 200
3.5
25 50 1100 750 4000 4560 400 2240 1100 200
30 50 1100 750 4560 5210 400 2800 1100 200
4.0 12 300 750 750 2000 2470 250 1000 1055 200
20 300 900 750 3150 3620 250 1400 1055 200
7
25 200 1100 750 4000 4560 400 2240 1065 200
30 200 1100 750 4560 5210 400 2800 1065 200
12 350 750 750 2000 2470 250 1000 1115 200
16 350 750 750 2500 2970 250 1400 1115 200
5.0 8 20 350 900 750 3150 3620 250 1400 1115 200
25 300 1100 750 4000 4560 400 2240 1225 200
30 300 1100 750 4560 5210 400 2800 1225 200
12 200 750 750 2000 2470 250 1000 1050 200
16 200 750 750 2500 2970 250 1400 1050 200
3.5 20 200 900 750 3150 3620 250 1400 1050 200
25 100 1100 750 4000 4560 400 2240 1160 200
30 100 1100 750 4560 5210 400 2800 1160 200
6.3
12 300 750 750 2000 2470 250 1000 1115 200
16 300 750 750 2500 2970 250 1400 1115 200
8 20 300 900 750 3150 3620 250 1400 1115 200
25 200 1100 750 4000 4560 400 2240 1225 200
30 200 1100 750 4560 5210 400 2800 1225 200
16 100 750 750 2500 3150 400 1400 1165 200
20 100 900 750 3150 3800 400 1400 1165 200
3.5
25 100 1100 750 4000 4650 400 2240 1165 200
30 100 1100 750 4560 5210 400 2800 1165 200
8.0
16 450 750 750 2500 3150 400 1400 1355 200
12 20 450 900 750 3150 3800 400 1400 1355 200
25 450 1100 750 4000 4650 400 2240 1355 200
30 450 1100 750 4560 5210 400 2800 1355 200
16 200 750 750 2500 3150 400 1400 1225 200
20 200 900 750 3150 3800 400 1400 1225 200
4
25 200 1100 750 4000 4650 400 2240 1225 200
30 200 1100 750 4560 5210 400 2800 1225 200
10.0 16 450 750 750 2500 3150 400 1400 1355 200
12 20 450 900 750 3150 3800 400 1400 1355 200
25 450 1100 750 4000 4650 400 2240 1355 200
30 450 1100 750 4560 5210 400 2800 1355 200
14 -150 900 900 2500 3150 400 1400 1385 200
20 -150 900 900 3150 3800 400 1400 1385 200
4
25 -150 1000 900 4000 4650 400 2240 1385 200
30 -250 1100 900 4560 5350 500 2800 1485 200
12.5 14 50 900 900 2500 3150 400 1400 1500 200
6 20 50 900 900 3150 3800 400 1400 1500 200
25 50 1000 900 4000 4650 400 2240 1500 200
30 -50 1100 900 4560 5350 500 2800 1600 250
11 50 900 900 2500 3150 400 1400 1470 200
16.0 6 25 -50 900 900 4000 4790 500 2240 1600 250
30 -50 900 900 4560 5350 500 2800 1600 250
25 -50 900 900 4000 4790 500 2240 1600 250
20.0 6
30 -50 900 900 4560 5350 500 2800 1600 250
20 100 1350 1350 4000 4790 500 2240 1850 250
25.0 6
25 100 1350 1350 4000 4790 500 2240 1850 250
negative (g) dimensions = hook above crane rail
83
HEAVY CAPACITY
DOUBLE GIRDER
1800
1800
a1 a2
H
1450 1400
1400 1650
d1
e1
L
t
Wheel loads in kg
Capacity Wheel Span in Meters
ton Load 6 8 10 12 14 16 18 20 22 24 26 28 30
max. 13100 14300 15100 15800 16500 17100 17500 18200 1900 19900 21100 21800 22500
25
min. 4900 4200 3800 3600 3600 3700 3500 4000 4300 4900 5800 6300 6800
max. 15700 17100 18100 19000 19700 20400 21000 21700 22600 23700 24600 25300 26300
32
min. 5800 4800 4400 4200 4100 4100 4200 4500 5000 5700 6200 6600 7400
max. 18600 20300 21500 22600 23400 24400 25200 26100 27000 27900 28900 29700 30600
40
min. 7200 5900 5200 4900 4800 4900 5100 5500 5900 6400 6900 7400 8100
max. 23300 25500 27000 28300 29400 30400 31700 32400 33400 34300 35100 35900 37200
50
min. 9000 7200 6400 5900 5800 5800 6300 6600 6800 7200 7500 8000 9000
max. 28100 30900 32800 34300 35500 37000 38000 39000 40000 41000 42000 42900 44000
63
min. 10700 8700 7700 7100 6900 7100 7200 7700 7800 8200 8600 9200 10000
84
HEAVY CAPACITY
DOUBLE GIRDER
Dimensions
Capacity Hmax. S (up to) g e1 L d1 t X
ton m m mm mm mm mm mm mm
10 25 530 3950 5280 630 1800 2480
15 25 530 4500 5830 630 2800 2480
20 25 530 4850 6180 630 3150 2480
25
10 30 530 4500 5830 630 1800 2480
15 30 530 5500 6830 630 2800 2480
20 30 530 5850 7180 630 3150 2480
10 22 530 3500 4830 630 1800 2480
15 22 530 4500 5830 630 2800 2480
20 22 530 4850 6180 630 3150 2480
10 24 530 3950 5280 630 1800 2480
32 15 24 530 4500 5830 630 2800 2480
20 24 530 4850 6180 630 3150 2480
10 30 530 4500 5830 630 1800 2480
15 30 530 5500 6830 630 2800 2480
20 30 530 5850 7180 630 3150 2480
10 23 530 3500 4830 630 1800 2480
15 23 530 4500 5830 630 2800 2480
20 23 530 4850 6180 630 3150 2480
10 24 530 4500 5830 630 1800 2480
40 15 24 530 5500 6830 630 2800 2480
20 24 530 5850 7180 630 3150 2480
10 30 530 4500 5830 630 1800 2560
15 30 530 5500 6830 630 2800 2560
20 30 530 5850 7180 630 3150 2560
10 13 770 3500 4830 630 1800 2480
15 13 770 4500 5830 630 2800 2480
20 13 770 4850 6180 630 3150 2480
10 19 770 3500 4830 630 1800 2480
50 15 19 770 4500 5830 630 2800 2480
20 19 770 4850 6180 630 3150 2480
10 30 770 4500 5830 630 1800 2480
15 30 770 5500 6830 630 2800 2480
20 30 770 5850 7180 630 3150 2480
10 8 770 3500 4830 630 1800 2480
15 8 770 4500 5830 630 2800 2480
20 8 770 4850 6180 630 3150 2480
10 14 770 3500 4830 630 1800 2480
15 14 770 4500 5830 630 2800 2480
20 14 770 4850 6180 630 3150 2480
63
10 19 770 4500 5830 630 1800 2480
15 19 770 5500 6830 630 2800 2480
20 19 770 5850 7180 630 3150 2480
10 30 690 4700 6150 710 1800 2560
15 30 690 5700 7150 710 2800 2560
20 30 690 6050 7500 710 3150 2560
85
WELDING SYMBOLS
86
M.Korashy
BASIC wELD SYMBOLS
PLUG GROOVE DR BUTT
BACK FILLET DR FLARE
SLOT SQUARE V BEVEL u J FLARE V
BEVEL
� L CJ I I V V y � ,r If
SUPPLEMENTARY wELD SUMBDLS
\./ELD ALL *FIELD CONTOUR
AROUND \./ELD
FLUSH CONVEX
0 1 DJ
- �
NOTE
Size , welol syMbol, lenghth of welol o.nol spo.cing Must be reo.ol in tho.t oroler froM left to right a.long the refero.nce line.
87
WELDING SYMBOLS
D OUBLE-FILLET SYMBOL I SQUARE-GROVE WELD NG SYMBOL
I
SIZE(LENGTH OF LEG)
SPECI FICATION PROCESS.,}�
OR OTHER REFERENCE
8 7
'e� 306��l�iis°��
OOEN S BETWEEN ABRUPT
D
LD
CHAGES I N DIRECTION
OR f,S DIMENSIONED
OMISSION OF SIZE
N CATES COMPLETE JOINT
I DI
PENETRATION
_/
J}t'
I 8l__ ROOT OPENNI NG
STAGGERED I NTERMITTENT-FILLET WELDI NG SYMBOL SINGLE-V GROOVE WELDI NG SYMBOL INDICATING ROOT PENETRATION
LENGTH OF I NCREMENTS _;- GROOVE ANGLE
SIZE(LENGTH OF LEG) � DEPTH SIZE OF
------.., 2 80-200-pfTCH (DISTANCE BETWEEN PENTRATION
· 12� 80-200 CENTRES OF I NCRMENTS) �
/
EFFECTIVE THROAT------'
��
BEAD WELD SYMBOL I NDICATING BEAD lYPE BACK WELD D OUBLE-BEVEL GROOVE WELDI NG SYMBOL
OMISSI ON OF SIZE
DI MENSI ON I N DI CATES
A TOTAL DEPTH OF
50"
r ARROW POI NTS TOWARD
MEMBER TO BE CHAMFERED
I
/·
_o
/ � APPLICABLE SINGLE PENTRATION EQUAL L=ROOT OPENI NG
GROOVE WELD SYMBOL TO THICKNESS OF MEMBER 40" ---GROOVE ANGLE
D UAL BEAD WELD SYMBOL INDICATING BUILT-UP SURFACE PLUG WELDI NG SYMBOL
DEPTH OF FIWNG
NCLUDED ANGLE OMISSI ONINDICATES
SIZE (HEIGHT OF DEPOSIT) FIWNG I S COMPLETE
I
ORIENTATION,
/ LOCATIONAN OF COUNTERSINK 45•
IS D ALL
4 OO 12 1 150--PITCH (DISTANCE BETWEEN CENTERS OF WELDS)
DI
�� ;���l�� �� DIMENSI ONS OTHER �
"'
88
MISCELLANEOUS
90
AIRCRAFT HANGERS
Dimensions
L W H
TYPE OF AIRCRAFT
(m) (m) (m)
BOING 727-200 46.680 32.920 8.660
BOING 737-500 29.790 28.890 8.660
BOEING 747-400 COMBI 68.600 64.940 19.580
BOEING 757-200 47.320 38.049 13.564
BOEING 767-300 54.940 47.574 15.849
AIRBUS A340-200 59.422 58.640 16.918
AIRBUS A340-300 63.658 60.304 16.828
McDONNELL-DOUGLAS DC-8-70 57.125 45.237 12.929
McDONNELL-DOUGLAS DC-9-80 45.020 32.850 9.200
McDONNELL-DOUGLAS DC-10 55.499 50.934 17.704
FASLCON 900 19.550 19.330 7.550
LOCKHEAD C-5A GALAXY 75.540 67.882 19.850
LOCKHEAD C-130 HERCULES 29.794 40.411 11.659
LOCKHEAD -141 STRLIFTER 51.178 48.743 11.976
LOCKHEAD L-1011 54.178 47.346 16.866
CONCORDE 62.103 25.552 11.405
91
Common Conversion Factors
Mass per unit Length 1 lb./in. = 17.858 kg/m 1 kg/m = 0.056 lb./in.
1 lb./ ft. = 1.48816 kg/m 1 kg/m = 0.672 lb./ft.
1 lb./yd. = 0.496055 kg/m 1 kg/m = 2.016 lb./yd.
Mass per unit Area 1 lb./ ft.2 = 4.88243 kg/m2 1 kg/m2 = 0.2051 lb./ft.2
1 lb./ ft.2 = 4.88243 x10-4 kg/cm2 1 kg/cm2 = 2051 lb./ft.2
1 oz./ft.2 = 305.152 g/m2 1 g/m2 = 3.277X10-3 oz./ft.2
1 lb./in.2 = 703.0696 kg/m2 1 kg/m2 = 1.42X 10-3 lb./in.2
Torque or Moment of Force 1 pound-force foot = 1.355818 N.m 1 N.m = 0.737562 pound-force foot
1 pound-force inch = 0.112985 N.m 1 N.m = 8.850732 pound-force inch
Moment of inertia
a) second Moment of 1 in.4 = 416231.4 mm4 1 mm4 = 2.4 x10- 6 in.4
1 in.4 = 41.62314 cm4 1 cm4 = 0.024 in.4
Area 1 in.3 =16387.064 mm3 1 cm4 = 0.024 in.4
b) section Modulus 1 in.3 = 16.387064 cm3 1 mm3 = 0.061 x10-3 in.3
1 cm3 = 0.061 in.3
92
PROPERTIES OF GEOMETRIC SECTIONS
AND STRUCTURAL SHAPES
A = bd
d
c=
2
c
bd 3
I=
12
d
bd 2
S=
6
d
r=
12
b
RECTANGLE
bd
A=
2
c
c = 2d 3
d
bd 3
I=
36
bd 2
S=
24
d
r= b
18
TRIANGLE
93
d (b + b1 ) b1
A=
2
d (2b + b1 )
c=
3(b + b1 )
c
2
d 3 (b + 4bb1 + b1 )
I=
d
36(b + b1 )
d 2 (b 2 + 4bb1 + b12 )
S=
12( 2b + b1 )
d
r= 2(b 2 + 4bb1 + b12 )
6(b + b1 ) b
TRAPEZOID
π d2
A= = π R2
4
d c
c= =R R
2
π d 4 π R4
d
I= =
64 4
πd 3
π R3
S= =
32 4
d R
r= =
4 2
CIRCLE
94
π ( d 2 − d12 )
A=
4
c
d R
c=
2
d1
d
π ( d 4 − d14 )
I=
64
π ( d 4 − d14 )
S=
32 d
d 2 + d12
r= HOLLOW CIRCLE
4
A = πDt = 2πRt
c=R
c
I = π D 3t 8 R
S = πD 2 t 8
d
r=D 8
t
95
h = d + 2t
bo = a + 2b bo
b1
t
A1 = b1t
A = 2( A1 + A2 ) A1
b
[
I xx = 2 I xc + 1 h 3 − d 3
12
]
d
S xx = 2 I xx h
A2
h
rxx = I xx A
A1 2
b1 + 2 A2 ( x + a 2 )
2
I yy = 2 I yc +
6
S yy = 2 I yy bo if b1 < bo
b a x
S yy = 2 I yy b1 if b1 ≥ bo
ryy = I yy A
h = d + 2t
b1
A1 = b1t
a
A = 2( A1 + A2 )
I xx = 2 I xc +
b1 3
12
(
h −d3 )
S xx = 2 I xx h
rxx = I xx A A2 h
A1 2
d
b1 + 2 A2 (a 2 − x )
2
I yy = 2 I yc +
6
S yy = 2 I yy b1 if a < b1
S yy = 2 I yy a if a ≥ b1
x A1
ryy = I yy A
t
Note: Elements of the shape, which are shown in dotted outline, are continuous and if
disconnected the variable defining their size should be set equal to zero.
96
h = d − 2t
b
A1 = bt a
t
A2 = wh
A = 2( A1 + A2 ) A1
I xx =
1
12
{
b(d 3 − h 3 ) + 2 A2 h 2 } w
d
h
S xx = 2 I xx d
rxx = I xx A A2
c = a − 2w
I yy =
1
12
{
2 A1b 2 + h(a 3 − c 3 ) }
`
t
S yy = 2 I yy b
ryy = I yy A
b
h = d − 2t
t Y t
A1 = bt t
A2 = ht
A = 2 A1 + 3 A2
h
I xx =
1
12
[3 A2 h 2 + b ( d 3 − h 3 ) ] X X
d
S xx = 2 I xx d A2 t
rxx = I xx A
I yy =
1
{ }
2 A1b 2 + A2 t 2 + 2t[b 3 − (b − 2t ) 3 ] A1
12 Y
t
S yy = 2 I yy b
ryy = I yy A
Note: Elements of the shape, which are shown in dotted outline, are continuous and if
disconnected the variable defining their size should be set equal to zero.
97
A1 = bt
A2 = (d − w − 2t ) w 2 d
a b a
A3 = 2 A2 + w 2
A1
t
A = 4 A1 + 2 A2 + A3 t A2 t
a
E = d − 2t
Ix = Iy =
1
{
b(d 3 − E 3 ) + wE 3 + 2tb 3 + Ew 3 − w 4 }
b
d
12 A3
w
S x = S y = 2I x d
a
rx = ry = I x A
t
w
h = d − 2w
A2 = ht b
w
A = A1 + A2
1
x
I xx = 2I yc + A2 h 2 + 2 A1 (d 2 − x) 2
12
A1
S xx = 2I xx d A2
rxx = I xx A t
h
1 A1
I yy = 2I xc + A2 t 2
12
S yy = 2I yy
x
b
w
ryy = I yy A
Note: Elements of the shape, which are shown in dotted outline, are continuous and if
disconnected the variable defining their size should be set equal to zero.
98
A2 = bt bf
Y
A = 2 ( A1 + A2 )
t
A2
I xx = 2 I xI +
1
12
[
b ( d + 2t ) 3 − d 3 ]
A1
S xx = 2 I xx ( d + 2 t )
d
X X
rxx = I xx A
1 1
I yy = 2 I yI + A2 t 2 + A1 x 2
6 2
S yy = 2 I yy (x + b f ) if ( x + b f ) > b Y
t
x
S yy = 2 I yy b if ( x + b f ) ≤ b b
ryy = I yy A
b
d 0 = d + 2t b1
A3 = b1t
t
A = 2( A1 + A3 ) + A2
b1 3
A1 A1
I xx = 2 I x1 + I y 2 + (d 0 − d 3 )
12
S xx = 2 I xx d 0
do
d
A2
rxx = I xx A
A3 2
I yy = I x 2 + 2 I Y 1 + b1 + A1b12 2
6
S yy = 2 I xx b if b ≥ b1 A3
bf
t
S yy = 2 I xx b1 if b < b1
ryy = I yy A
Note: Elements of the shape, which are shown in dotted outline, are continuous and if
disconnected the variable defining their size should be set equal to zero.
99
1
h=d+ (b1 + w1 )
2
A ( d + w1 / 2) + A2 d / 2
y1 = 1 b
A1 + A2
y 2 = h − y1
w1
A = A1 + A2 A1
b1
I xx = I y1 + I x 2 + A1 ( y 2 − b1 / 2) 2
y2
S x1 = I xx y1
S x 2 = I xx y 2
h
N.A.
d
rxx = I xx / A A2
w
I yy = I x1 + I y 2
y1
S yy = 2 I yy / b
ryy = I yy / A
A = Ac + AI
b
w
do = d + w
AI d / 2 + Ac ( d 0 − x )
x
y1 =
y2
A
y 2 = d 0 − y1 N.A.
I xx = I xI + I yc + AI ( y1 − d / 2) 2 + Ac ( y 2 − x ) 2
do
d
S x1 = I xx y1
t
y1
S x 2 = I xx / y 2
rxx = I xx / A
I yy = I yI + I xc
S yy = 2 I yy / b
ryy = I yy / A
Note: Elements of the shape, which are shown in dotted outline, are continuous and if
disconnected the variable defining their size should be set equal to zero.
100