1-Ohsr-300 +15
1-Ohsr-300 +15
                   W
             B3                                                                       D' = diameter of conical dome at any height h'
                                                                                      above base
                            p
                                              D'
                                                                      h0
                   q                     h'
B2
           q        =                 30       o
                                                      =                       0.524   c
               d           =                500 mm
                   d1         =                   410 mm
    MoI     =      PI/64 x500^4 +(m-1) x 7853.98x (410^2) / 8       =                     4.39E+09 mm4
Direct Stress in the Column
                   scc1                      =         1516853.14 / 259181.39                 5.85 N/mm2
Bending Stress in the Column
                   scbc1      =       ( 64180873.83 / 4388215888.44 ) x 250 =                 3.66 N/mm2
For Safety of Column
                   scc1 / scc + scbc1 / scbc < = 1
                        = ( 5.85 / 10 ) + (3.66/ 12.5 )                   =                  0.88
(Increase in permissible stresses 25 % )                                            Stresses are Within Safe Limits
Axial Load Carrying Capacity of Column
P        =         3000220.9842 N                   OK
Thus axial load capacity is greater than the maximum axial load on leeward column.
Tie Bars
Considering Diameter of link bars       =                 10 mm
Spacing of Link Bars
Least of
a. 16 times dia of main bar                     400 mm
b. 300 mm                                       300 mm
Spacing of Ties as per IS 13920 : 1993 (Code for Ductile Detailing of structures)
As per Clause 7.4 of the code special confining reinf. shall be provided at junctions of columns and braces
and also over a length L0 above and below the junctions.
Length L0 shall be the greatest of the following :-
a) larger lateral dimension of the member =                500 mm               Thus L0 =                  500 mm
b) 1/6 of the clear span of the member    =             360.00 mm
c)                                                         450 mm
Considering a spacing of 90mm, area of bar to be used as circular hoops is given by
     Ash   =       0.09 x S x Dk x fck/fy x [(Ag/Ak) - 1]
     where              Ash       =   area of the bar c/s
                            S      =     spacing of hoops
                            Dk     =     dia. of the core measured to the outside of hoop reinf. =            440 mm
                            Ag     =     gross area of column c/s
                            Ak     =     area of the concrete core =     p/4 x Dk x Dk
        Hence Ash =           75.06      mm2             which is lesser than area of 10 mm dia bar         OK
        Provide                10        mm              dia bar at            90        mm c/c at junctions
        Provide                10        mm              dia bar at           300        mm c/c for remaining Length
Design of Braces
        Maximum moment in the brace is governed by
                      tan(q + p / n )        =           (1 / 2)* cot( q)
                              q              =                    29.83 deg.
                      tan(q + p / n )        =                     1.72
                      (1 / 2)* cot( q)       =                     0.87
        Maximum Bending Moment in the Brace
           Brace No        Brace Level ht       Qw2            Qw1               h1           h2         B.M.
                             above G.L.
           from top                             (N)             (N)             (m)          (m)        (N-m)
                1             10.42 m           69949.92       83905.17         2.76         2.76      53093.02
                2             7.67 m            83905.17       97860.41         2.76         2.76      62724.50
                3             4.91 m            97860.41      111815.65         2.76         2.76      72355.97
                4             2.16 m           111815.65      125770.90         2.76         2.76      81987.45
                5             -0.60 m          125770.90      139726.14         2.76         2.76      91618.93
        Maximum Shear force in the Brace
        Shear force in the beam is calculated at the section q = p/n        =           3.14 / 6
           Brace No       Brace Level         Qw2             Qw1                h1           h2         S.F.
            from top    Ht, above G.L.        (N)              (N)              (m)          (m)         (N)
                1           10.42 m           69949.92        83905.17          2.76         2.76       24652.59
                2            7.67 m           83905.17        97860.41          2.76         2.76       29124.76
                3            4.91 m           97860.41       111815.65          2.76         2.76       33596.93
                4            2.16 m         111815.65        125770.90          2.76         2.76       38069.10
                5           -0.60 m         125770.90        139726.14          2.76         2.76       42541.27
        Maximum Twisting Moment in the Brace
        Twisting Moment considered as 5 % of the B.M.
           Brace No       Brace Level         Qw2             Qw1                h1           h2      B.M. at p/n Twisting M.
            from top     Ht,above G.L.        (N)              (N)              (m)          (m)         (N-m)       (N-m)
                1           10.42 m           69949.92        83905.17          2.76         2.76       53093.02        2654.65
                2            7.67 m           83905.17        97860.41          2.76         2.76       62724.50        3136.22
                3            4.91 m           97860.41       111815.65          2.76         2.76       72355.97        3617.80
                4            2.16 m         111815.65        125770.90          2.76         2.76       81987.45        4099.37
                5           -0.60 m         125770.90        139726.14          2.76         2.76       91618.93        4580.95
                                 ANALYSIS DUE TO EFFECT OF CONTINUITY
Membrane Deformations and Stiffness at edges
Top Dome                                                                                   All dimensions are in N & m
Slope at left edge           2*q*R*sin(a) / Et                                                  335666.67/E radians clockwise
Hor. Deflection at edges     q*R*R*sin(a)/Et*(1/(1+cos(a)-cos(a))                              -241688.44/E m (inward)
Parameter Lambda             (3*(R/t)^2)^0.25                                                           9.62
Parameter Kappa              1-cot(a)/(2*Lambda)                                                        0.94
Moment Stiffness             R*Et/(4*Lambda^3)*(k+1/k)                                             0.0007 E N-m / m per radian
Corr. Radial thrust          E t/(2*Lambda^2*k*sin(a))                                             0.0013 E N/m per radian
Thrust stiffness             E t/(Lambda*R*k*sin(a)^2)                                             0.0047 E N/m
Corr. Moment                 E t/(2*Lambda^2*k*sin(a))                                             0.0013 E N-m / m
Top Ring beam
Thrust stiffness             E* b*d/(R*R)                                                         0.0108 E N/m
Moment Stiffness             E*b*d^3/(12*R^2)                                                     0.0003 E N-m / m
Cylindrical wall
Parameter Mu                 (3/(R*R*t*t))^0.25                                                    1.0437
Parameter Z                  E * t^3/12                                                          0.0023 E
Moment Stiffness             2*Mu*Z                                                              0.0047 E     N-m / m
Corr. Thrust                 2*Mu^2*Z                                                            0.0049 E     N/m
Thrust stiffness             4*Mu^3*Z                                                            0.0102 E     N/m
Corr. Moment                 2*Mu^2*Z                                                            0.0049 E
Outward disp. of tank wall   p*R/E*t                                                         3119862.67 /E    m
Clockwise slope of wall      p*R/E*t*h                                                        917606.67/E     radians
Middle Ring beam
Thrust stiffness             E*b*d/R^2                                                            0.0347 E N/m
Moment stiffness             E*b*d^3/(12*R^2)                                                     0.0012 E N-m / m
Conical Dome
Hoop tension at top of dome                  T1 =                                             337194.46       N
Hoop tension at bottom of dome                T2 =                                            333167.82       N
Outward defl. At top       0.5*D*T1/E*t                                                       2707773.68/E    m
Outward defl. At bottom    0.5*dr*T2/E*t                                                      2170638.84/E    m
Slope at top               tan(a)*(2*T1-T0)/E*t                                              -1159992.45/E    radians
Slope at bottom            tan(a)*(2*T2-T0)/E*t                                              -1327160.52/E    radians
Parameters for Calculating Moment and Thrust Stiffness
Delta                      (12*cot(a)^2/t^2)^0.25                                                      2.29
l                          0.5*D/sin(a)                                                                7.50
l'                         l - (hc/cos(a))                                                             6.08
epsilon                    2*DELTA*l^0.5                                                              12.54
epsilon'                   2*DELTA*l'^0.5                                                             11.30
From Appendix D Table D2 of Jain / Jaikrishna we get the following parameters
K1                                                                                                  138.92
K2=K3                                                                                                31.64
K4                                                                                                    8.31
K1'                                                                                                 203.71
K2'=K3'                                                                                              28.73
K4'                                                                                                   8.12
Calculation of moment and thrust stiffness for conical dome
At Top Edge
Moment stiffness           E*t*K4*l/((K1K4-K2K3)*tan(a)^2)                                        0.2678 E
Corr. Thrust               E*t*K2/((K1K4-K2K3)*tan(a)*sin(a))                                     0.1923 E
Thrust stiffness           E*t*K1/((K1K4-K2K3)*l*sin(a)^2)                                        0.1593 E
Corresponding moment       E*t*K3/((K1K4-K2K3)*tan(a)*sin(a))                                     0.1923 E
At Bottom Edge
Moment Stiffness           E*t*K4'*l'/((K1'K4'-K2'K3')*tan(a)^2)                                  0.0393 E
Corr. Thrust               E*t*K2'/((K1'K4'-K2'K3')*tan(a)*sin(a))                                0.0324 E
Thrust stiffness           E*t*K1'/((K1'K4'-K2'K3')*l*sin(a)^2)                                   0.0534 E
Corr. Moment               E*t*K3'/((K1'K4-K2'K3')*tan(a)*sin(a))                                 0.0324 E
Bottom Ring Beam
Moment stiffness             E*b*d^3/(3*R^2)                                                      0.0028 E
Corr. Thrust                 E*b*d^2/(2*R^2)                                                      0.0060 E
Thrust stiffness             E*b*d/(R^2)                                                          0.0170 E
Corr. Moment                 E*b*d^2/(2*R^2)                                                      0.0060 E
Bottom Dome
Slope at left edge           2*q*R*sin(a)/E*t-w*R^2*sin(a)/E*t                               -1049814.29/E
                             q*R*R*sin(a)/E*t*(1/(1+cos(a)-cos(a))-p*R^2*sin(a)/(2*E*t)+
                             w*R^3*sin(a)(2*cos(2a)+cos(a)-3)/((6E*t(1+cos(a))
Displ. Of edges                                                                              -3410290.21/E
Lambda                       (3*(R/t)^2)^0.25                                                        7.113
Kappa              1-cot(a)/(2*Lambda)             0.903
Moment stiffness   R*E*t/(4*Lambda^3)*(k+1/k)   0.0025 E
Corr. Thrust       E*t/(2*Lambda^2*k*sin(a))    0.0046 E
Thrust stiffness   E*t/(Lambda*R*k*sin(a)^2)    0.0154 E
Corr. Moment       E*t/(2*Lambda^2*k*sin(a))    0.0046 E
Reactions due to continuity
a) Junction Between Top Dome Top Ring Beam and Wall
Let the net rotation of joint be "s" clockwise and net displacement be "x"
inward. Then the changes in slope and displacement from the membrane state
are as follows -
   Component                  Clockwise slope                           Inward Displacement
Top dome                      s - 335666.67/ E                            x -241688.44 / E
Top ring beam                         s                                            x
Tank wall                     s - 917606.67/ E                                     x
Multiplying the above changes of slope and deflections with the corr. stiffnesses, we can get the reactions
imposed by the joint on each member The top dome also imposes an outward horizontal thrust on the joint
equal to                    16340.24 N/m
The total reactions from the joint must balance among themselves. Taking clock-wise moment as +ve the
following table gives the reactions from the joint.
   Component               Clockwise Moment (M)                           Inward Thrust (H)
   Top Dome        0.0007 *s*E - 226.942 + 0.0013 *x*E - 0.0013 *s*E - 437.169 + 0.0047 *x*E -1143.25
                   314.77
Let the net rotation of joint be "s" clockwise and net displacement be "x"
inward. Then the changes in slope and displacement from the membrane state
are as follows -
   Component                   Clockwise slope                              Inward Displacement
Wall                           s - 917606.67/ E                               x + 3119862.67 / E
Ring beam                              s                                              x
Conical shell                 s+ 1159992.45/ E                                x + 2707773.68 / E
Reactions at the junction are given by
   Component              Clockwise Moment (M)                          Inward Thrust (H)
     Wall          0.0047 *s*E - 4309.74 + 0.0049 *x*E + 0.0049 *s*E - 4498.136 + 0.0102 *x*E
                   15293.66                              +31924.44
  Conical shell    0.2678 *s*E+ 310626.3 - 0.1923 *x*E - -0.1923 *s*E -223105.544 + 0.1593 *x*E
                   520795.91                             +431429.7
Balcony moment
                                   1815.00                                             -
 Water pressure
   on beam                                -                                        20400.00
   Thrust from
                                                                                   64492.45
   conical shell                          -
Displacement                x                     =                         -2444429.0 /E
Slope                       s                     =                         -952558.69 /E
Following table gives the final joint reactions for the members meeting there
Let the net rotation of joint be "s" clockwise and net displacement be "x"
inward. Then the changes in slope and displacement from the membrane state
are as follows -
  Conical Shell    0.0393 *s*E + 52198.09 + 0.0324 *x*E 0.0324 *s*E + 42956.7 + 0.0534 *x*E +
                   + 70257.88                           115856.7
Displacement                x                      =                       -215398.9 /E
Slope                       s                      =                     -2300842.69 /E
        Element                              Inward Thrust     Net hoop compression
                   Clockwise Moment                                  (-x*E*A/0.5*D)
Conical shell       24990.429500987                 72844.36                     33061.23 N/m
Ring beam            -5117.93553572                 10049.61              -               N/m
Bottom dome          -20027.1837922                -61518.63                     12523.19 N/m
Design of OHSR at Basant Vihar                                                                          Contract Package No. KOT/WS/06
Material
          Grade of Reinf.          fy                  415 N/mm2
      Grade of Concrete           fck                   30 N/mm2
Design Stresses And Design Constants
           sst    =                     230 N/mm2                    k =          0.28
           scbc   =                     10 N/mm    2
                                                             j =              0.91
            m      =                     9                   Q =              1.274
            Nominal Cover          =               50 mm
            S.B.C. of soil         =           113.75 kN/m2
Vertical Load from filled Tank and Columns                 =                               9101118.87 N
Weight of Water only                                       =                               2983343.15 N
Vertical Load of Empty Tank and Columns                    =                               6117775.71 N
Vmax due to wind load                                            =                         856280.917 N
Self Weight of Found    n
                                                                 =                         910111.887 N
( Assuming 10 % of the Super Imposed Load)
Total Load on Footing                                            =                         10011230.8 N
Area of The Foundation required                                   =                             88.011 m2
Radius of column circle                                           =                                 4.30 m
Let the inner radius of the annular raft be "b" and the outer radius of the raft be "a".  The raft shall be so
proportioned that the resultant of the upward pressure lies on the centerline of the column circle.
Assuming that area of raft provided shall be 7.5% more than area reqd.
Area of raft to be provided                                       =                              94.61 m2
Equating area of raft inside the column circle to half the area to be provided
Inner radius of annular raft required, "b"                        =                                1.85 m
Equating area of raft outside the column circle to half the area to be provided
Outer radius of annular raft required, "a"                        =                               5.79   m
Provide inner radius of raft "b"                                  =                               5.00   m
Provide outer radius of raft "a"                                  =                               9.60   m
Foundation width provided                                         =                               4.60   m
Inner Diameter of annular raft                                    =                              10.00   m
Outer Diameter of annular raft                                    =                              19.20   m
Area of Annular Raft provided                              =                                    210.99 m2
           Moment of Inertia of Slab about Diametrical Axis
          M.I. about diametrical axis                   =          6179.88 m4
          Total Load of Empty Tank
          (Empty tank + Columns + Self wt of Footing)
          Total Load of Empty Tank =                           7027887.599 N
          Stabilising Moment
          Stabilising Moment                            =      67467720.95 N-m
          Factor of Safety againest overturning
          F. S                      = 67467720.95 / 1788187.49   =                  37.73            Safe
          Base of Raft Below G.L. =                                     1.6 m
Moment of Wind Forces About Base
Sr. No      Wind Force                   Acting at level       Lever Arm      Moment
                  N                                                m            N -m
     1          66359.49 Tank                            -        19.30     1280738.2449
     2            3590.43 Ring Beam                      -        14.78         53066.51
     3          13955.24 Brace1 level                 10.42       12.02     167797.85156
     4          13955.24 Brace2 level                  7.67       9.27      129337.19962
     5          13955.24 Brace3 level                  4.91       6.51      90876.547685
     6          13955.24 Brace4 level                  2.16       3.76      52415.895747
     7          13955.24 Brace5 level                 -0.60       1.00      13955.243809
                                  Total Moment About Base                   =             1788187.49 N-m
Calculation of Gross Bearing Pressure
    A)    Super Imposed Load + Wind Load
          a. Tank full Condition
                            smax =            50226.805 N/m2
                            smin =           44671.1617 N/m2
           b. Tank Empty Condition
                            smax =            36087.025 N/m2
                            smin =           30531.3818 N/m2
Safe Bearing Capacity = 113750 N/m2 Hence Stresses are Within Limits
Design of Raft
           The raft slab shall be designed for a net upward pressure p1+0.5p2 where p1 is the upward pressure
           due to dead loads, and p2 is the pressure due to bending effects.
          Net upward pressure                =             44524.35 N/m2
          The design of raft as per IS 11089 is designed and appended
Design of Circular Beam of Raft
          The Design of Raft Ring beam is practically similar to the circular ring beam B 2 provided
          at the top of column
          Design load            =       204812.011 N/m
          Number of Columns Supporting the Ring Beam          =                16      Nos.
          Mean Diameter of ring beam: D      =                     8.6 m
          Mean radius of the ring beam R      =                    4.3 m
Analysis of ring Beam
           2q           =                22.5   o
                                                    =                 0.393 radian
            q      =             11.25 o   =                  0.196         radian
           Moment and Torsion Coefficients
           C1      =             0.089 (coeff. for suppt. BM)               Moment and Torsion coefficients are taken from
           C2      =             0.045 (coeff. for span BM)                 equations for curved circular beams supported on
           C3      =            0.0090 (coeff. for torsion )                columns as given in standard text book on
                                                                            Reinforced Concrete
            Fm          =               12.73   o
The annular raft with ring beam shall be designed according to IS : 11089 - 1984
Inner Dia ( 2b )
Outer Dia ( 2a )
                                                                                                                            32 of 40
Radial And Concentric Moments Acting on the Raft Slab
Distance                Bending moment in slab due to                   Net Bending moment                    Depth
from                     UDL               Concentric Loading                 UDL   - Con
centre       Circum         Radial         Circum       Radial          Circum      Radial              dreq     dprovided
                   Mt             Mr            Mt           Mr           Mt               Mr      depth for Max of Mt ,Mr
      5.000     899898.33                0 2457113.14 -210428 1557214.81 210427.6442                   1105.40             500
      5.200     865974.67 33111.51128 2355278.25 -167412 1489303.58                     200523.72      1081.03        514.54
      5.400     835688.93 60868.17529 2262450.67 -131184 1426761.73                     192052.12      1058.08        529.09
      5.600     808471.69 83899.54999 2177441.87 -100716 1368970.18                     184615.39      1036.43        543.63
      5.800     783851.88 102730.4819 2099259.46            -75160 1315407.58           177890.50      1015.96        558.18
      6.000     761437.30 117801.498 2027069.16             -53812 1265631.86           171613.50       996.55        572.72
      6.200     740899.43 129484.6942 1960165.13            -36083 1219265.70           165567.68       978.12        587.27
      6.400     721961.52 138096.2243 1897946.63 -21478.14 1175985.11                   159574.36       960.61             600
      6.600     704389.24 143906.1982 1839899.55 -9579.432 1135510.31                   153485.63       943.93           1100
      6.800     687983.18 147146.586 1785581.59 -32.07158 1097598.40                    147178.66       928.04           1100
      7.000     672572.91 148017.576 1734610.35 7466.441 1062037.44                     140551.14       912.88           1100
      7.200     658012.09 146692.7239 1686653.74 13175.09 1028641.65                    133517.64       898.41             600
      7.400     644174.58 143323.1483          1641422 17316.47 997247.43               126006.68       884.60        578.03
      7.600     630951.25 138040.9714 1598661.4 20082.61 967710.15                      117958.36       871.40        556.07
Reinforcement Required For Radial And Tangential Moments
Distance           Ast required for Circumferential Moments                    Ast required for Radial Moments
From                     N-m                         mm2                         N-m                          mm2
Centre       Circumferential Moment        Area of Steel req        Radial Moment                  Area of Steel req
       5.00           1557214.81                  14941.79                210427.64424556                    2019.10
       5.20           1489303.58                  13886.35                    200523.72                      1869.69
       5.40           1426761.73                  12937.37                    192052.12                      1741.46
       5.60           1368970.18                  12081.33                    184615.39                      1629.25
       5.80           1315407.58                  11306.03                    177890.50                      1528.98
       6.00           1265631.86                  10602.03                    171613.50                      1437.58
       6.20           1219265.70                   9960.58                    165567.68                      1352.58
       6.40           1175985.11                   9403.18                    159574.36                      1275.96
       6.60           1135510.31                   4952.48                    153485.63                      669.42
       6.80           1097598.40                   4787.13                    147178.66                      641.91
       7.00           1062037.44                   4632.03                    140551.14                      613.01
       7.20           1028641.65                   8225.02                    133517.64                      1067.61
       7.40            997247.43                   8277.07                    126006.68                      1045.85
       7.60            967710.15                   8349.11                    117958.36                      1017.71
Dia of bar to be ussed in Circumferential Direction =                            25 mm
Dia of bar to be used in Radial Direction             =                          20 mm
Distance     Spacing of Reinforcement required            Spacing of Reinforcement Required
from         Dia of Bar                 25 mm           Dia of bar               20 mm
Centre              In Circumferential direction                    In radial Direction
     m            Req                Provided                      Req                 Provided
       5.00           32.84             200                        #N/A                   150
       5.20           35.33             200                      167.94                   150
       5.40           37.92             200                      180.31                   150
       5.60           40.61             200                      192.73                   150
       5.80           43.39             200                      205.37                   150
       6.00           46.28             200                      218.42                   150
       6.20           49.26             200                      232.15                   150
       6.40           52.18             200                      246.09                   150
       6.60           99.07             200                      469.06                   150
       6.80         102.49              200                      489.16                   150
       7.00         105.92              200                      512.23                   150
       7.20           59.65             200                      294.12                   150
       7.40           59.28             200                      300.24                   150
       7.60           58.76             200                          0                    150
Moments in Raft as per IS 11089 - 1984 Practice for Design and Constructrion of Ring Foundation
             Distance                Moments
             From             Tangential      Radial
             centre            Mt( N-m)      Mr (N - m)
                       5.00   1418076.21    -210427.64
                       5.23   1340457.78    -199172.34
                       5.46   1269812.32    -189728.42
                       5.69   1205233.18    -181518.10
                       5.92   1145974.58    -174085.36
                       6.15   1091417.53    -167067.81
                                                                                                                                 33 of 40
                  6.38 1041044.01 -160175.76
                  6.61   994417.13 -153176.39
                  6.84   951165.83 -145881.75
                  7.07   910972.84 -138139.52
                  7.30   873565.20 -129825.83
                  7.53   838706.72 -120839.73
                  7.76   806191.95 -111098.75
                  7.99   775841.20 -100535.46
                  8.22   747496.65 -89094.69
                  8.45   721018.98 -76731.31
                  8.68   696284.74 -63408.44
                  8.91   673184.10 -49096.03
                  9.14   651618.94 -33769.67
                  9.37   631501.33 -17409.61
                  9.60   612752.19        0.00
Design Constants and Permissible Stresses
                 sst            =                  230
                 k              =                 0.28
                  j             =                 0.91
                 Q              =                 1.27
Section Requirements
           Bar dia to be used in tangential direction                   = 25 mm
           Bar dia to be used in radial direction                       = 20 mm
Distance             Moments                                Depth                                  Steel                     Spacing
from centre      Mt             Mr             dtang        drad        dprovided       Asttang         Astradial      Tangential
       5.00 1418076.21 -210427.64             1054.86       406.35     600.00                 11338.94 0E+00               43.27
       5.23 1340457.78 -199172.34             1025.58       395.33     612.26                 10503.68     1560.69         46.71
       5.46 1269812.32 -189728.42               998.19      385.84     624.53                   9754.62    1457.48         50.30
       5.69 1205233.18 -181518.10               972.48      377.40     636.80                   9080.13    1367.54         54.03
       5.92 1145974.58 -174085.36               948.27      369.59     649.06                   8470.60    1286.77         57.92
       6.15 1091417.53 -167067.81               925.42      362.07     661.33                   7917.66    1211.99         61.97
       6.38 1041044.01 -160175.76               903.81      354.52     673.30                   7417.96    1141.33         66.14
       6.61    994417.13 -153176.39             883.34      346.69     685.66                   6957.99    1071.78         70.51
       6.84    951165.83 -145881.75             863.92      338.33     698.13                   6536.48    1002.51         75.06
       7.07    910972.84 -138139.52             845.47      329.23     1100.00                  3973.17      602.49       123.48
       7.30    873565.20 -129825.83             827.93      319.17     1100.00                  3810.02      566.23       128.77
       7.53    838706.72 -120839.73             811.24      307.93     1100.00                  3657.98      527.04       134.12
       7.76    806191.95 -111098.75             795.36      295.26     698.13                   5540.21      763.48        88.56
       7.99    775841.20 -100535.46             780.25      280.87     685.66                   5428.60      703.45        90.38
       8.22    747496.65      -89094.69         765.86      264.41     673.60                   5323.92      634.56        92.15
       8.45    721018.98      -76731.31         752.17      245.38     661.33                   5230.61      556.65        93.80
       8.68    696284.74      -63408.44         739.16      223.06     649.06                   5146.67      468.69        95.33
       8.91    673184.10      -49096.03         726.79      196.28     636.80                   5071.72      369.89        96.74
       9.14    651618.94      -33769.67         715.06      162.78     624.53                   5005.70      259.42        98.01
       9.37    631501.33      -17409.61         703.93      116.88     612.26                   4948.37      136.42        99.15
       9.60    612752.19            0.00        693.41         0.00    600.00                   4899.57           0.00    100.14
Provided Section of Raft
            Radial steel is composed of two different set of bar diameters
            Running near to ring beam alon the pherifery S1         Bar dia                         20 mm
            Running total length of raft along the pherifery S2     Bar dia                         16 mm
Distance    Provided            Tangential Steel               Radial Steel
from centre    Total Depth     Spacing         Ast           S1             S2
        5.00          600.00         200   2454.36926                             150
        5.23          612.26         200   2454.36926                             150
        5.46          624.53         200   2454.36926                             150
        5.69          636.80         200   2454.36926                             150
        5.92          649.06         200   2454.36926                             150
        6.15          661.33         200   2454.36926                             150
        6.38          673.30         200   2454.36926             150             150
        6.61          685.66         200   2454.36926             150             150
        6.84          698.13         200   2454.36926             150             150
        7.07         1100.00         200   2454.36926             150             150
        7.30         1100.00         200   2454.36926             150             150
        7.53         1100.00         200   2454.36926             150             150
        7.76          698.13         200   2454.36926             150             150
        7.99          685.66         150   3272.49235             150             150
        8.22          673.60         150   3272.49235                             150
        8.45          661.33         150   3272.49235                             150
                                                                                                                                    34 of 40
8.68   649.06   150   3272.49235   150
8.91   636.80   150   3272.49235   150
9.14   624.53   150   3272.49235   150
9.37   612.26   150   3272.49235   150
9.60   600.00   150   3272.49235   150
                                         35 of 40
ng s/w of foundation)
                        36 of 40
Spacing
     Radial
      #DIV/0!
       201.19
       215.44
       229.61
       244.02
       259.08
       275.12
       292.97
       313.21
       521.17
       554.55
       595.78
       411.28
       446.37
       494.83
       564.09
       669.95
       848.91
     1210.41
     2301.72
        -
                37 of 40
Design of Staircase for OHSR
Stair supporting arrangement
The staircase is provided along the periphery of the staging. Landings are provided as slabs cantilevering from the
columns and the staircase waist slab spans between the landings as a continuous one way slab
Design of Flight
Design Data                                                     Design after preparation of GA
Maximum span of the staircase                       =            3.15 m
Average width of landing                            =           1000 mm
Width of staircase                                  =             750 mm
Rise of steps                                       =             150 mm
Tread of steps                                      =             250 mm
Imposed load considered                                 =            300 kg/m2
Concrete Grade                                          =             30 N/mm2
Reinforcement Grade                                     =            415 N/mm2
sst                                                     =            230 N/mm2
scbc                                                    =             10 N/mm2
modular ratio , m                                       =              9
Clear cover to reinf.                                   =             20 mm
Design Constants
         k                =                 0.28
          j               =                 0.91                       Q                       =          1.27
Load calculation
Let us assume thickness of stair slab                   =            150 mm
Selfweight of stair slab                                =            3.75 kN/m2
Selfweight on horizontal plane                          =            4.37 kN/m2
Selfweight of steps                                     =        1.875 kN/m2
Load due to railing, etc.                               =            0.15 kN/m2
Imposed load on stair                                   =              3 kN/m2
Total load intensity                                    =        13.15 kN/m2
Design
Udl. On 1.0 m width of waist slab                                =             13.15 kN/m
Maximum negative B.M. at support =                 w x l^2 /10   =         13046.315 N-m
Maximum positive B.M. at span     =                w x l^2 /12   =         10871.929 N-m
Effective depth reqd. from strength criteria           deff.     =             101.18 mm
Total depth provided                                             =             150.00 mm
Effective depth provided                                         =             124.00 mm           OK
Reinforcement reqd. for negative B.M                             =             504.77 mm2
Reinforcement reqd. for positive B.M                             =             420.64 mm2
Provide       10 mm dia bars at              150 mm c/c at top             Ast prov.           =        523.60 mm2
Provide       10 mm dia bars at              150 mm c/c at bottom          Ast prov.           =        523.60 mm2
Distribution reinf.
Providing          0.12% as distribution steel     As reqd.      =             180.00 mm2
Provide         8 mm dia bars at            200 mm c/c                     Ast prov.           =        251.33 mm2
Design of Landing
Load calculation
Reaction from adjacent flights                                   =              41.42 kN/m
Assuming landing slab to be                 150 mm thick
Selfweight of landing slab                                       =               3.75 kN/m
Total load intensity                                             =              45.17 kN/m
Design
Cantilever span                                                  =               750   mm
Moment at face of column                                         =         12703.183   N-m
Effective depth reqd. from strength criteria                     =             99.84   mm
Total depth provided                                             =               150   mm
Effective depth provided                                         =               124   mm          OK
Ast reqd. at top                                                 =             491.49 mm   2
Provide       10 mm dia bars at         150 mm c/c at top           Ast prov.                  =        523.60 mm2
These bars are to be anchored into columns for a length Ld (development length)
Distribution reinf.
Providing          0.12% as distribution steel     As reqd.      =             180.00 mm2
Provide        8 mm dia bars at              200 mm c/c at top             Ast prov.           =        251.33 mm2
Check for shear in landing slab
Shear at face of column                                          =              33.88 kN
Shear stress developed                                           =              0.273 N/mm2
                                                                                                                      40
For the reinf. provided at top,           pt   =   0.42 %
Corresponding permissible shear stress    Tc   =    0.284 N/mm2   Hence safe in shear
Axial force on column from landing slab
Force          =          33.88 kN
                                                                                        40
            Permissible Shear Stress In Concrete