0% found this document useful (0 votes)
67 views10 pages

GR 11 Memo

The document contains marking guidelines for the Grade 11 Mathematics Provincial Examination held in June 2023. It includes detailed solutions and marking criteria for various mathematical problems across multiple questions. Each question is broken down into parts with specific answers and methods for evaluation.

Uploaded by

admin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
67 views10 pages

GR 11 Memo

The document contains marking guidelines for the Grade 11 Mathematics Provincial Examination held in June 2023. It includes detailed solutions and marking criteria for various mathematical problems across multiple questions. Each question is broken down into parts with specific answers and methods for evaluation.

Uploaded by

admin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 10

PROVINCIAL EXAMINATION

JUNE 2023
GRADE 11
MARKING GUIDELINES

MATHEMATICS (PAPER 1)

10 pages
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

QUESTION 1

1.1 1.1.1 x {4 ; 5}  answer


 answer (2)

1.1.2 x {0 ; 3}  answer


 answer (2)

1.1.3 x {1 ; 2}  answer


 an wer (2)

1.2 1.2.1 3x2  4x  0


 x(3x  4)  0  factors
x 4
 0or  x   answers
3
NOTE: Any other valid method. (3)

1.2.2 3x – 14 = –6x2
 standard form
 6x2 + 3x – 14 = 0

 (3)  (3)2  4(6)(1 )


 x =  substitution
2(6)

 x = 1,29 or x = 1,79  answers (4)

1.2.3 ( x  1)( x  3)  12
x 2  2x  3  12
x 2  2x  15  0  standard form
( x  5)( x  3)  0 -3 5  factors

 x  5 or  x  3  answers
(4)

1.2.4 x2
2x x2
( 2  x )2  (x  2)2  squaring both sides
2  x  x2  4x  4
0  x2  3x  2  standard form
0 = (x – 2)(x – 1)  factors
 x = 2 ... or ... x = 1(NA)  answers with rejection (4)

2
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

1.2.5 x60
x6  value of x
x2y
362y  substitution
3
2y3
 3  value of y
y (3)
2

1.3 y – 1 = 2x
 y = 2x + 1 ………(1)  expr ssion r y
x2 + xy – 3x – y + 2 = 0 ………(2)
 x2 + x(2x + 1) – 3x – (2x + 1) + 2 = 0  substitution
x2 + 2x2 + x – 3x – 2x – 1 + 2 = 0
 3x2 – 4x + 1 = 0  s ndard form

(3x – 1)(x – 1) = 0
1
 x = ... or ... x = 1  -values
3
5
 y = ... or ... y = 3  y-values
3 (5)

1.4 x2  px  p2  2
 x2  px  p2  2  0
  b2  4ac
  ( p)2  4(1 ( p2  2)  substitute into 
  p2  4 p  8
 5 p2  8
 p2  0 p     5 p2  8
5 p 0 p 
 p2  0 , 5 p2  0 and
5 p  8  0
2
 5 p2  8  0

 roots are real and unequal. (3)

3
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

1.5 The 100 m fencing will make up three sides because


the existing wall will make one side.

Wall

fencing = 2x + y = 100
 y = –2x + 100
 A  xy  expression for y
A = x(–2x + 100)
A = –2x2 + 100x  expression or A
2
A = –2(x – 50x)
 A = –2(x2 – 50x – 625 – 625)  c mplete square
A = –2(x – 25)2 –625)

Maximum area: x  25  value of x

A  2(25)2  100(25)
 A  1250  value of A
1250  25 y
 y  50  value of y (7)
[39]

4
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

QUESTION 2

2.1 2.1.1
3n2.9n1
27n1
 32n2 and 33n3
3n2.32n2
33n3

33n4
33n3  33n 43n3
(3)
33n43n3  answer

37

2.1.2 x2
1x

(1  3)2  substituti n

11 3

12 33  simplifi ation


 2 3

42 3
 2 3

2(2  3)2  factorisation


 2 3

=2  answer (4)
5
2.1.3 (a2  b )  (a  b)
1
(a b) 2
5

(a  b)(a  b) 1 (a  b) 2
 (a  b) 2  factorisation
1 1 5

(a  b) 2 a  b) 2 1 (a  b) 2
 (a  b) 2  simplification
1 5
(a  b) 2  (a  b) 2
 simplification
(a  b) 3

a3  3a2b  3ab2  b3  answer (4)

5
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

2 8
2.2 RTP: – = 2
1 2 8

2 8
1 2 – 8

2 8  2 2
1 2 – 2 2

2(2 2 )  8(1  2 )
 2 2(1  2 )
 2 2(1 2)

4 288 2
 2 22 4

4 288 2
 2 24

4 28
 2 24
 simplificati n

4 22
 2 22
 factor s ion
 2
(4)

2.3

MK  LM   MK= 2
JM 2  (2  3)  22 pythag  substitution
JM  4  4 3  3  4  simplification
JM 2  3  3

JM  4 3  3  JM

1
A  (4) 4 3  3
 substitution into area formula
2
A  6,3 units2  answer (6)
[21]

6
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

QUESTION 3

3.1 T2  T1  T3  T2
4x  5  x  10x  5  (4x  5)  method
3x  5  10x  5  4x  5
3x  5  6x  10
 3x  15
x5  answer (2)

3.2 3.2.1  3n  20  106  equat ng


3n  126
 n  42 answer (2)

3.2.2  3n  20  0  T 0
20  3n
20
 n
3
n7  answ r (2)

3.2.3 Odd valued terms:


17; 11; 5; ………..  sequence
General term: Tn  6n  23  Tn
Tn  6(20)  23
Tn  97  answer (3)

3.3 3; a; 10; b; 21
 1st differences
a  3; 10  a; b 10; 21 b st
1 difference

nd
differences:

10  a  a  3  1  equating 2nd difference in


 2a  13  1 terms of a, then b.
 2a  12
a6
 value of a
and
21  b  b  10  1
 2b  31  1
 2b  30
b  15 (4)
 value of b
[13]

7
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

QUESTION 4

D(6 ; 7)

C(–1 ; 0) B
O x

A(2 ; y)

4.1 B(5; 0)  answer

NOTE: Must be in coordinate form. (2)

4.2 y  a(x  x1)(x  x2 )


7  a(6  (1))(6  5)  substitute roots and
7  7a point D(6;7)
a1  value for a
 y  1(x 1)(x 5)
y  x2  5x    y  x2  5x  x  5
 y  x2  4x  5
(3)

4.3 B(5 ; 0 C(0 ;  5)

50
mBC  0  5
5
mBC 
5  mBC
 mBC  1
 mh  1  mh
 y  y1  m(x  x1)
y  (1)  1(x  0) pt(1;0)
 y  x 1
 answer (3)

8
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

4.4 1x0  all critical values


(independent)
x5  answers

OR

x  [–1 ; 0] or [5 ; ]  all critical values


NOTE: Deduct 1 mark if brackets are incorrect in the (independent)
alternative solution.  answers (2)
[10]

QUESTION 5

5.1

 a ymptotes
2
 in ercepts
 hape

NOTE: If the candidate ca culates the intercepts and lists


the asymp otes but does not sketch the graph, award
2 mark (3)

5.2 tan 135 = –1  m  1


y – y1 = m(x – x1
y – (–1) = –1(x – 2))  subs. point (2;–1)
+ 1 = –x – 2
y = –x –  answer (3)

5.3 x  2  answer (1)

5.4 5.4.1 5 units right  answer

NOTE: Accept an answer of 5 units. (1)

5.4.2 3 units up  answer

NOTE: Accept an answer of 3 units. (1)


[9]

9
MATHEMATICS
MARKING GUIDELINES
(PAPER 1)

QUESTION 6

6.1 6.1.1 y  6  answer (1)

6.1.2 h(x)  3.2x  6

0  3.2x  6  equate to 0
6  3.2x
2  2x
x1  answer (2)

6.1.3 h(x)  3.2x  6


y = 3.2 – 6
y = –3  a swer (1)

6.1.4 x >1  answer (1)

6.2 y

 x-intercept
x
O  asymptote

–1  shape

(3)
[8]

TOTAL: 100

10

You might also like