0% found this document useful (0 votes)
29 views12 pages

Combination - 1 - Solution

The document contains solutions for various physics problems related to units and measurements, motion, energy, and gravitation. It includes calculations for volume percentage, energy equations, projectile motion, and conservation of momentum. The solutions are presented in a step-by-step format, demonstrating the application of physics principles to solve complex problems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views12 pages

Combination - 1 - Solution

The document contains solutions for various physics problems related to units and measurements, motion, energy, and gravitation. It includes calculations for volume percentage, energy equations, projectile motion, and conservation of momentum. The solutions are presented in a step-by-step format, demonstrating the application of physics principles to solve complex problems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

Physics Private Tuitions

COMBINATION – 1 - SOLUTION

UNITS & MEASUREMENTS, SC & VC, M1D, MIP, LOM, WPE, CIRCULAR MOTION,
ROTATIONAL MOTION, GRAVITATION

1. 4) L x B x H = 5 mm x 10 mm x 5 mm
L. C. = 0.01 cm = 0.1 mm
 L B H 
 %V=    x 100
L B H 
 0.1 0.1 0.1 
 %V=    x 100
 5 10 5 
 0.2 0.1 
=  5  10  x 100
 
 0.4  0.1 
=  10  x 100
 
% V =- 0.05 x 100 = 5 %

2. 1) F  Energy  J
V  Velocity  m/s
T  Time  s
F N J
S.T. =  
L m m2
i.e. From options;
E J J
1  E1V–2T–2   
2 2 2
V T m 2 m2
  (s)
s

3. 3) Both bodies are dropped simultaneously; (u = 0)


They will fall through same distance, in 2 s & relative distance will remain same between the 2 bodies.

1
4. 4)
uy = 0
1 2
 sy = uy + uyt
2
1 2
 h= gt
2
 2h 
This is an example of horizontal projection & we know that for H.P. t = g 
 

5. 4)
VR
VBR
5 1 KM

Distance 1 Km
Speed =  VBR 
time  1 
 15x  hr
 60 
VBR = 4 Km / hr
& By Pythagoras,

VR = (5)2  (4)2 25  16
VR = 3 km/hr

6. 3) Here, H1 = H2
u12 sin2 1 u22 sin2 2
 
2g 2g
u12 sin2 2 sin2 (60)
 
u22 sin2 1 sin2 (45)
3
= 4 3
1 2
2

7. 4) At maximum height speed is; u cos 


 u cos  = u/2   = 600
u2 sin2  u2 sin2 (60)
 H= 
2g 2g

2
42 x (3 / 4) 3u2
= 
2g 8g
8. 1)

Here; T cos 60 = 40
 T = 80 N

V1sin 
V1 m
u1= V u2 = 0
m m 
9. 1) 
V1cos
V2
By LOCOE;
K.Ei = K.Ef m
1 1 1 1
m1u12  m2u22  m1v12  mv22
2 2 2 2
1 1 1
 m1v2  0  mv12  mv22
2 2 2
v2 = v12  v22

 v22  v2  v12

 v2 = v12 – v2

mv2
10. 4) C.P.F. =
r
2
 5
2000x  90 x 
=  18 
=
2000x 625
= 200 x 25
250 250
C.P.F. = 5000 N

3
11. 4)
P2

M
P1

P3
By LOCOM;
Pi = Pf
  
 P1  P2  P3  0
  
 P3  – (P1  P2 )
  
 P3  – (– 3P i  2P j )
  
 |P3 | |P1  P2 |

 P3  ( 3p)2  (2P)2

= 13 p

12. 1) m1 = m2 = m, u1 = V, u2 = 0
By LOCOM; P = mv1 = mv
m1u1 + m2u2 = m1v1 + m2v2
P = m (v1 + v2)
P
 V1 + v2 =
m
P
 V1= – v2
m
Now, B gives an impulse of J to A meaning;
Impulse = PB
 J = m (v2 – u2) = mv2
 V2 = J/m
J P
 (  v2 )
v2  v1 m m
Now, e = 
u1  u2 u1
J P J 2J P
 
= m m m= m – m
u1 P P
m m

4
2J
e= –1
p

13. 1) By LOCOM;
m1u1 + m2u2 = m1v1 + m2v2
 mu + 0 = 2 mv2
 u1 = 2v2  v = 2v2
v  v1
 e= 2
u1  u2
v2 1
 e= 
2v2 2
 = 0.5

14. 1) We know that


dp
dp x v
K = dv  dv 
v k
Now change in pressure for both the sphere will be same assuming they are at same depth in the ocean.
1
 dv 
k
Kbrass < ksteel  dvB > dvs

m(v  u)
15. 1) F = ma =
t
3(3.5  2)
 F=
25
3 x 1.5 3 x 15
F= 
25 25 x 10
9
F= = 0.18 in the direction
5 x10

16. 2) A = (2m, 3m, 4m)


B = (1m, 2m, 3m)
     
 Displacement = ( i  2 j  3 k)  (2 i  3 j  4 k)
   
x  – i  j –k

 w = F x
     
= (2 i  3 j  4 k)  ( i  j  k)
= –2–3–4=–9J
5
17. 4)

18. 3) w  uniform
dw
i.e.   =0
dt
  =I  =0

2 cos 
19. 4) w= and T = 2
T g
2 g
 w=  and cos = h
cos  cos 
2
g

g
w=
h

20. 2)

21. 4)

I2 I1 I3
ML2 ML2
Here I2 = I3 = and I1 =
3 12
 I2 = I3 > I1

5
22. 1) T.E. of particle performing vertical C.M. remains constant & T.E. = mgr
2

23. 3) to its plane = 2MR2 & M.I. of disc = g – 2Rcos2 ()

g = g – R cos 
2 2

g – g = R2cos2 

6
5MR2
24. 1) M.I. ring about tangent to its palne = 2MR2 & M.I. of disc about tangent into the plane =
4
I1 2MR2 8
 
2

I2 5MR 5
4

2
25. 3) w= = 2n
T
100 10
 w = 2 x 
60 3
 w = 10 x 60 = 600

26. 4)

mv2
27. 2) N at highest point is given by; N =  mg
r
If body loses contact N = 0
mv2
  mg w2r = g
r
g 10
 w 
r 3

28. 1) At top of loop;


mv2
N=  mg
r
50 x 250 x 250
= – 500
5000
= 600 – 500
N = 125 N

29. 1)
A

D
h
r
C

7
To complete the track BCD, Cart should have the critical speed at B = 5rg
 T . EA = r . F.B
1
mgh = mv2
2
5rg 5x3
 gh =  h= = 7.5 M
2 2

30. 4)

By LOCOE;
B.FH = K.FL
1 2
 mg  mv
2

 v= 2g
and
mv2 m(2g )  mg
TL =  mg 
r
T = 3 mg

31. 3) T  r3
3 3
 r   3r 
 T    =  
r r 
T  2T T  3 3 T

 GMm
32. 2) T.E. = –
2(R  h)

 6.67 x 1011 x 6 x 1024 x 103


 =
2(6400  3600)x 103
 6.67 x 6 x 1024 x 1011
=
2(10000)
= – 6.67 x 3 x 109
= – 20.01 x 109
T.E. = – 2.001 x 1010 J

8
GM
33. 3) g=
R2
M
Gx 
GMp
gp = 2  7
 2
Rp R
 
2
4
 gp = g
7
4
g
wp mgp 7
  
we mg g
4
 wp = x 3.5 = 2 kg wt.
7
Wp = 20 N

34. 2)

Here; IA = 1 x 0 = 0, IB = 0
Ic = 3 x (1)2, ID = 4 x (1)2
IT
 Radius of Gyration =
MT

7
= m
10

35. 2) K20  K2cm  R2

 K2cm  K20 – R2
 402 – 412 – 402
= 168 – 1600
K= 81
K = 9 cm

9
1
36. 3) K.E. = I2
2
1
 K.E. = I (22  12 )
2
1
500 = Ix [(2n2 )2  (2n1 )2 ]
2
1   240 
2
 60  
2
1000 = I x 4 2      
2   60   60  

1000
I x 16  1
4 2
250 50
I= = kg m2
15 2
3 2

  0 0  30
37. 1)   = 0.05
T 600
  I
= 1 x 0.05 = – 0.05
Now;
1
= 30 x 600 – x 0.05 x (600)2
2
= 18000 – 9000
 = 9000
work =  = 9000 x 0.05
= 450 J

38. 2) Lwax = Lsystem


Mvr = Is 
 ML2 L  
2
Mvr =   M   
 12  r  

L 1 1
vx  L2    
4  12 16 
v  28 
 L 
4  12 x 16 
7
v = L x
12
12 V
 =
7L

10
39. 1) M = 10 kg,  = 10 Nm
MR2 10 x (0.2)2
Idisc = 
2 2
Idisc = 0.2
10
 I   = 50
0.2
   0   t = 50 x 6 = 300 rad/sec

vi
40. 2) Here, vf =
27
4 4
  R13   R13 x 27
3 3
R1 = 3R2
2I 1
L = I = ,L 
T T
No external torque applied L is constant
I1 I
  2
T1 T2
2 2 2 2
MR1 MR2
5  5
T1 T2
2
1 24 8
 T2 =   x T1  
3 9 3

41. 2) When beads are at the end. The M.I. of system is given by;
2
m 2  
I=  2mb  
12 2
m 2 mb 2
I= 
12 2
By LOCOAM;
I1 1 + I2 2

m 2  m 2 mb 2 
   x 2
12  12 2 
 
60 x 2 x 40  60 x 2 190 x 2 
   x 2
12  12 2 
 
200 2 = 100 2 x 2
2 = 2 rad/s
11
  = 40 – 2 = 38 rad/sec
42. 2) By LOCOAM;
I1 1 + I2 2
 2n1   2n2 
I1   = I2  
 60   60 
I1 x 90 = (75% I1) n2
3
 90 = n2  n2 = 120 RPM
4

 
43. 4) Initially angular velocities of two wheels are 1 & 2
 Angular momentum are in opposite direction
L = – L1 + L2 = – I 1 + I 2
After coupling; L  2I
By LOCOM; L = L 
– I 1 + I 2 = 2I   2 =  2  1 
2 x 2  n = 2  (n2 – n1)
240  120
2n = = 60 rpm
2

44. 1) I1 = M.I. disc


I2 = M.I. of Blob
I2 = I1 + MR2
By LOCOAM;
I11  I22
I1 (2n1 )  (I2  MR2 )2n2
I1n1 = M1n2 + MR2n2
I1(n1 – n2) = 1.9 x 10–3 x (25)2 x 10–4 x 2
1.9x 625 x 10 4 x 10 3 x 2
I1 = = 2.375 x 10–7
(3  2)
I1 = 2.375 x 10–4 kg m2

45. 1)
At a given instant of time both front wheel and rear wheel will travel same distance;
distance, v x t  Vr = Vf

************

12

You might also like