Integrals Cbse
Integrals Cbse
sec2 x
16. Find the integral of with respect to x .
tan 2 x 4
17. Integrate e x sin x with respect to x .
1
18. Integrate with respect to x
1 cot x
EXERCISE – 2: Basic Objective Questions
Section–A (Single Choice Questions) dx
7. 02 1 sin x =
1 1
1. The value of sin 2 x cos2 x dx is: (a) 0 (b)
2
(a) sin 2 x cos 2 x C (b) 1 3
(c) 1 (d)
(c) tan x cot x C (d) tan x cot x C 2
cos 2 x cos 2 2 dx 2 dx
8. Let I1 and I 2 , then
2. cos x cos dx is equal to : 1
1 x 2 1 x
(a) 2 sin x x cos C (a) I1 I 2 (b) I 2 I1
(b) 2 sin x x cos C (c) I1 I 2 (d) I1 2 I 2
(c) 2 sin x 2 x cos C a
9. If a is such that 0 x dx a 4, then
(d) 2 sin x 2 x cos C
(a) 0 a 4 (b) 2 a 0
3. The value of (c) a 2 or a 4 (d) 2 a 4
sin x cos x 3 7 d
1 sin 2 x dx, 4 x 4 is equal to: 10. If
3x 2 sin x e x 6 x cos x e x , then the
dx
(a) log sin x cos x C (b) x C representation of the expression in the form of anti-
derivative is
(c) log x C (d) x C
(a) 3x sin x e x C (b) 6 x cos x e x C
4. The value of for which
3 x
(c) 6 x cos x e x C (d) 3x 2 sin x e x C
4x 4
dx log 4 x x 4 C is
4x x4
11. Evaluate:
x 3
1 x 2
dx
(a) 1 (b) log e 4 2
x x2
(c) log 4 e (d) 4 x3 x 2 x 4 x3
(a) xC (b) C
3 2 4 3
1 1
5. If dx sin 1 x C , then the value
23 x 4 x3 x4 x2 x
4 9x (c) 2 x2 C (d) C
4 3 4
of is :
e
x log a
12. Find ea log x e a log a dx .
(a) 2 (b) 4 x a 1 xa
(a) a x ax x C (b) a x xC
a 1 a
3 2
(c) (d)
2 3 ax x a 1
(c) a a x C (d) none of these
log e a a 1
y dt d2y 1
6. If x and y , then the value of
0
1 9t 2 dx 2
13. Evaluate: 4 9 x2 dx
3x
is equal to : (a) tan 1 3x C (b) tan 1 C
2
(a) 3 (b) 6 1 3x
(c) tan 1 C (d) none of these
6 2
(c) 9 (d) 1
dx
14. The value of x2 4 x 8 is cos x cos3 x dx is equal to:
20. 2
2
x 2
1 1 x2
(a) tan C (b) tan 1 C 4 1
2 2 2 (a) (b)
3 3
x 4 x3 1 8
(c) C (d) x 2 x C (c) (d)
4 3 6 5
dx
15. The value of 5 8x x2 is equal to: cos x dx is:
21. The value of 0
x4 (a) – 2 (b)
(a) log C
x4
(c) (d) 2
2
1 x4
(b) log C 3
2 21 x4 22. The value of sin x cos 2 x dx is ______
1 21 x 4 (a) – 1 (b) 0
(c) log C
2 21 21 x 4 5 5
(c) (d)
(d) none of these 6 3
1
Evaluate:
dx 23. The value of 1 x x dx is:
16. 2
3 2x x
(a) 0 (b)
x 1 2
(a) sin 1 C
2 1
(c) 2 (d)
x 2
(b) sin 1 C
2
x 1
24. Evaluate: 02 log tan x dx
(c) tan 1 C 1
2 (a) 0 (b)
2
(d) tan 1 x C 1
(c) 1 (d)
x 2
17. e sec x 1 tan x dx ________ C ?
sin
93
25. Evaluate: x x 295 dx
(a) e x sec x (b) e x tan x
ex
(c) (d) e x cos x (a) (b)
sec 2 x 2 2
4 4
18. If 1 f x dx 4 and 2 3 f x dx 7, then (c) (d) 0
1
the value of 2 f x dx is 1 89
(a) 5 (b) – 1
26. Evaluate: 0 x(1 x) dx
(c) – 6 (d) – 5
1 1
(a) (b)
3
sin x 810 8190
19. If 02 3 sin x 3 cos x dx a 2 , then a is equal to:
(a) 1 (b) 2 1 1
(c) (d)
792 910
3 1
(c) (d)
2 2
Case Study–3 Reason: If f is an odd function, then
30. The given integral can be transformed into a
f ( x)dx
another form by changing the independent variable
f x dx 0.
a
x to t by substituting x g (t ) . (a) Assertion is correct, reason is correct; reason is a
Consider I f ( x ) dx correct explanation for assertion.
(b) Assertion is correct, reason is correct; reason is
dx
Put x g (t ) , so that g '(t ) not a correct explanation for assertion.
dt (c) Assertion is correct, reason is incorrect.
We write dx g '(t )dt (d) Assertion is incorrect, reason is correct.
Thus, I f ( x ) dx f g (t ) g '(t ) dt . 33. Assertion: If the derivative of function x is
Based on the above information, answer the d
x 1, then its anti-derivatives or integral is
following questions. dx
(i) 2
1)dx ______ . d x n 1
2 x sin( x dx x C . Reason: If
dx n 1
n
x , then the
(a) cos( x 2 1) c (b) cos( x 2 1) c
corresponding integral of the function is
(c) 2 cos( x 2 1) c (d) 2 cos( x 2 1) c n x n 1
x dx
n 1
C , n 1.
sin(tan 1 x) (a) Assertion is correct, reason is correct; reason is a
(ii) 1 x 2 dx is equal to correct explanation for assertion.
(b) Assertion is correct, reason is correct; reason is
(a) sin(tan 1 x) c (b) cos(tan 1 x) c not a correct explanation for assertion.
(c) tan x c (d) None of these (c) Assertion is correct, reason is incorrect.
(d) Assertion is incorrect, reason is correct.
(iii) tan xdx is equal to 34. Assertion: The value of the integral
(a) sec x c x 2 x
(b) cot x c e tan x sec x dx is e tan x C
(c) log | x | c (d) None of these Reason: The value of the integral
2x e x f x f ' x dx is e x f x C.
(iv) 1 x 2 dx is equal to (a) Assertion is correct, reason is correct; reason is a
2 2
correct explanation for assertion.
(a) 1 x c (b) log 1 x c (b) Assertion is correct, reason is correct; reason is
not a correct explanation for assertion.
2 (c) Assertion is correct, reason is incorrect.
(c) log c (d) None of these
1 x2 (d) Assertion is incorrect, reason is correct.
b b
Section–C (Assertion & Reason Type Questions) 35. Assertion: The value of f t dt and f u du are
a a
equal
31. Assertion: x sin x cos2 x dx sin x cos
2
x dx
0
2 0 Reason: The value of definite integral of a function
b b over any particular interval depends on the function
ab
Reason: xf x dx 2 a
f x dx and the interval and not on the variable of
a integration.
(a) Assertion is correct, reason is correct; reason is a (a) Assertion is correct, reason is correct; reason is a
correct explanation for assertion. correct explanation for assertion.
(b) Assertion is correct, reason is correct; reason is (b) Assertion is correct, reason is correct; reason is
not a correct explanation for assertion. not a correct explanation for assertion.
(c) Assertion is correct, reason is incorrect. (c) Assertion is correct, reason is incorrect.
(d) Assertion is incorrect, reason is correct. (d) Assertion is incorrect, reason is correct.
2
1 x
32. Assertion: log 1 x dx 0.
2
EXERCISE – 3: Previous Year Questions
1 x3
1. Find the antiderivative of 3 x . (Delhi 2014) 19. Find: x 4 3x 2 2 dx (AI 2014C)
x
1 3x 1
2. Evaluate: cos sin x dx (Delhi 2014) 20. Evaluate: x 12 x 3 dx (Delhi 2013C)
dx
3. Evaluate: sin 2 x cos2 x (Foreign 2014)
3x 5
21. Evaluate: x3 x2 x 1 dx (Delhi 2013C)
4. Evaluate: 1 x xdx (Delhi 2012)
8
3 22. Evaluate: x 2 dx (AI 2013C)
5. Write the value of ax b dx (AI 2011) x 2
4
x3 x 2 x 1 23. Evaluate:
2
dx (Delhi 2012)
6. Evaluate: dx (Delhi 2012) 1 x 1 x 2
x 1
sin 6 x 2 x dx
7. Find: cos8 x dx (AI 2014C) 24. Evaluate: (Delhi 2011)
x 2
1 x2 3
x cos 6 x
8. Write the value of 3x 2 sin 6 x dx (AI 2012C)
25. Given x x
e tan x 1 sec xdx e f x c Write
1 5
15. Evaluate: sin 4 x sin 2 x cos2 x cos4 x dx 31. Evaluate: x
2
3 dx as limit of sums.
2
(AI 2014)
(Delhi 2012C)
6x 7
16. Evaluate: x 5 x 4 dx (AI 2011) 4
x
2
32. Evaluate: x dx as limit of sums.
1
2
x
17. Find: x4 x 2 2 dx (AI 2016) (AI 2012C, Delhi 2010)
2
x dx 3x
2 2
1 x2 4 33. Evaluate: 2 dx as limit of sums.
18. Find: (Foreign 2016) 0
x 2
3 x 2
5
(AI 2011C)
1 /2
1 dx
34. Evaluate: dx (AI 2014C, 2011C) 50. Evaluate: (Delhi 2015C)
2 1 tan x
0 1 x 0
2 4
x3 1
35. Evaluate: dx (Delhi 2011) 51. Evaluate: 0 x x 2 x 4 dx (Delhi 2013)
1
x2
5
3
1 52. Evaluate: x 2 x 3 x 5 dx (Delhi 2013)
36. Evaluate: dx (Delhi 2012) 2
2
x
2
1
2
4 x dx 2
53. Evaluate: 1 esin x dx (Delhi 2013)
37. Evaluate: (AI 2012) 0
0
x
38. Evaluate:
1
dx
(Delhi 2011C)
54. Evaluate: 1 sin x dx (AI 2012C, Delhi 2010)
2 0
0 1 x
1
1
/2
2
x sin x dx
55. Evaluate: log x 1 dx (AI 2011)
39. Evaluate: (Delhi 2014C) 0
0
1 4 3
x 1 1
56. Evaluate: 1 dx (AI 2011, Delhi 2007)
40. Evaluate: x2 1 dx (AI 2011C)
tan x
0
6
4 x
41. Evaluate: 2 2
dx (AI 2011C) 4
x 1 Evaluate:
57. x 1 x 2 x 4 dx (Delhi 2011C)
1
e2
dx
42. Evaluate: . (AI 2014) 2 x3
x log x 58. x e dx equals (AI 2020, Delhi 2020)
e
1 4
2
x 59. Find the value of x 5 dx. (AI 2020, Delhi 2020)
43. Evaluate: xe dx (Foreign 2014)
1
0
1 x
tan 1 x 60. Find x 2 3x 2 dx. (AI 2020)
44. Evaluate: 2
dx (AI 2014C)
0 1 x
2 1 1 2x
ex 1
61. Evaluate 1 x 2 x2 e dx (Delhi 2020)
45. Write the value of dx (Delhi 2012 C)
0 1 e2 x
1
n
Evaluate:
/4 sin 2 d 62. Find the value of x 1 x dx. (Delhi 2020)
46. 0 sin 4 cos4
(AI 2013C) 0
/4 e x 1 x dx
sin x cos x 63. is equal to (AI 2020)
47. Evaluate: dx (Delhi 2014C)
0
9 16 sin 2 x
cos 2 xe x
/4
64. Evaluate: 4 x 3 x dx (Delhi 2020)
48. Evaluate:
tan x cot x dx 2.
2
0 dx
65. Find: 9 4 x2 (AI 2020)
(Delhi 2012)
2
3 66. Find: 1 sin 2 xdx, x (Delhi 2019)
49. Evaluate: x x dx. (Delhi 2016, AI 2012, 2011) 4 2
1
cos 2 x 2 sin 2 x
67. Evaluate: dx (2018)
cos 2 x
cos( x a )
68. Integrate with respect to x (AI 2019)
sin( x b)
sec 2 x
69. Find: dx (Delhi 2019)
tan 2 x 4
dx
70. Find: (AI 2019)
5 4 x 2 x2
3x 5
71. Find: 2
dx (Delhi 2019)
x 3x 18
EXERCISE-1:
Basic Subjective Questions
3 5
2 2 2 2 3x 1 1
1. x x C 2. tan x C 20. sin 2 x sin 4 x C
3 5 8 4 32
3. e4 e 1 4. log 2 a b
21. log x x a x b C
x
2
5. 6. e cot x C
2 22. 2 x tan 1 x log 1 x 2 C
1 cos 3x
7. 3cos x C 8. log sec x C
4 3 23. 24. e 2
4
9. 2 tan x 3sec x C 10. 2cosec x C
1 5 15 1 15
1 25. log
11. log 2 12. x log x x C 5 5 15 1 15
2
e2 1 1 1 1
13. a 2 14. 26. log x 1 log x 1 tan 1 x C
2 4 4 2
15. 0 112
27.
3
16. log tan x tan 2 x 4 C
1 x 1 4
28. log C
ex 2 x 1 x 1
17. sin x cos x C
2
29. 5 x 2 4 x 10 7 log x 2 x 2 4 x 10 C
x 1
18. log sin x cos x C
2 2 1
x x 4
30. cos tan 1 x 4 C
19. log e e C
EXERCISE-2:
Basic Objective Questions
11. (a) 12. (c) 13. (c) 14. (b) 15. (c)
16. (a) 17. (a) 18. (d) 19. (d) 20. (a)
21. (d) 22. (b) 23. (a) 24. (a) 25. (d)
31. (c) 32. (a) 33. (a) 34. (a) 35. (a)
EXERCISE-3:
Previous Year Questions
x2 1 x 27 x 5
1. 2 x x 1 C 2. x C 18. x tan 1 log C
2 2 4 3 3 8 5 x 5
3 5
2 2 2 2 1
3. tan x cot x C 4.
3
x x C
5 19.
2
2 log x 2 2 log x 2 1 C
4
5.
ax b C 6.
1 3
x xC
x 1 1
20. 2 log C
4a 3 x 3 x 1
1 7 1 x 1 4
7. tan x C 21. log C
7 2 x 1 x 1
1
8. log 3x 2 sin 6 x C x2 1 x
6 22. log tan 2
4
2
x 4 2
9. 3log sin 2 C
sin 2 1
23. log x 1 log 1 x 2 tan 1 x C
2
10. x cos 2a sin 2a log sin x a C
1 x2 1
3
24. log 2 C 25. f x sec x
1 x 2 1 x 2
2 x 3
11. tan 1 C 12. sin C
4 4 3 a 1 2
1 5 3 41 3
13. log sin x cos x sin 2 x C 26.
2
4 3x 2 x 2 2 x x
4 2 4 16 4
1 tan x cot x 205 4x 3
14. tan 1 C sin 1 C
2 2 64 2 41
1 tan x cot x 1 2
x 2 3 4x x2
15. tan 1 C
3 3
27.
3
3 4x x2 3
2
9 7 x2
16. 6 x 2 9 x 20 34 log x x 2 9 x 20 C sin 1 C
2 2 7
1 x 1 2 x x 3
17. log tan 1 C 28. 1 x 2 sin 1 x 1 x 2 C
6 x 1 3 2 2 2
3 3
23
1 x 2 1 2 x2 1 2 x2 1 2 56. 57.
29. log 2 C 12 2
3 x 2 x 3 x2
1 3 15
58. e x C 59.
4 2 3 2
30. x
x cos 1 x
sin 1
x x 1 x C x 1
60. log x 2 3x 2 3log C
27 x2
31. 48 32.
2 e2 e2 2 1
61. 62.
33. 4 34. 4 n 1 n 2
2
12 x
3 63. tan xe x C 64. C
35. 1 36. log log12
2
1 2x
37. 38. 65. tan 1 C 66. cos x sin x C
4 6 3
3 4 67. tan x C
39. 2 40.
6 68. cos a b log sin x b x sin a b C
1 17
41. log 42. log 2 69. log tan x tan 2 x 4 C
2 5
1 2 1 2
43. e 1 44. 70. sin 1 x 1 C
2 32 2 7
13 14
45. tan 1 e tan 1 1 46. 71. log x 6 log x 3 C
4 9 9
1 11 1 1
47. log 3 49. 72. x sin 2 x 1 4 x2 C
20 4 2
1 x 1
50. 51. 20 73. 1 x 2 tan 1 x C 74. log 2
4 2 2 2
23 1 1 2
52. 53. 75.
2 n 1 n 3 n2
54. 55. 0