0% found this document useful (0 votes)
75 views12 pages

Surds Worksheet

The document is a mathematics worksheet focused on surds, containing various types of questions including single answer, multi-answer, reasoning, comprehension, and matrix matching types. It covers topics such as the order of surds, radicands, irrational numbers, and rationalizing factors. Additionally, it includes exercises for simplifying expressions and identifying properties of surds.

Uploaded by

vanukamesh2011
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
75 views12 pages

Surds Worksheet

The document is a mathematics worksheet focused on surds, containing various types of questions including single answer, multi-answer, reasoning, comprehension, and matrix matching types. It covers topics such as the order of surds, radicands, irrational numbers, and rationalizing factors. Additionally, it includes exercises for simplifying expressions and identifying properties of surds.

Uploaded by

vanukamesh2011
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

SURDS MATHEMATICS

WORK SHEET - 1

Single Answer Type


1. The order of surd 6
7 is
1) 4 2) 5 3) 6 4) 7
2. The radicand of the surd 3
2012 is
1
1) 3 2) 1/3 3) 2012 4)
2012
3. Surd of order 3 is called
1) Quadratic surd 2) Cubic surd 3) Biquadratic surd 4) Non original
surd
4. 2 3
2
1) 6 2 2) 6 2 3) 3
2 4) 2
2
5. Which of the following is not a surd ?
1) 3
4 2) 2
3 3) 2
10 4) 3
27
6. 5
1024 simplified
1) 2 2) 4 3) 6 4) 8
7. Which of the following is true
1) 10
34255 2) 10
34255 3) 10
34255 4) 10
34255
8. If x  8 7, y  4 7, z  2 7 then the ascending order of the variable is
1) z,x,y 2) z,y,x 3) x,y,z 4) y,z,x
9. Pure surd among the following is
1) 3 6 2) 5 3 7 3) 4 3 15 4) 7
10. Which of the following is trinomial is
1) 5  6 1 2) 2
3  5 7  9 11 3) 7  11  13 4) 2  2012 2
11. Which of the following is an irrational number
1) 121 2) e 3) 22/7 4) 3.24317
12. The union of Rational number and irrational number is
1) Whole numbers 2) Complex numbers
3) Real numbers 4) Imaginary numbers
13. The value of 6
12 ÷ 3 3 2 is

1 1
1) 3 2) 3
2 3) 4) 3
2 3

IX Class - Maths 6
MATHEMATICS SURDS

1
14. The value of 294 - 3 -5 6 + 252 is
6

12 6  3 7 3 6  12 7
1) 2) 3) 6 4) 3
2 2

 4  
4x +7 2x +7
5 11
15. If = 64 , then the value of x is
1) 2 2) – 2 3) 3 4) – 3

Multi Answer Type


16. Which of the following is true
1) 2 3,5 3, 6 3 are similar surd 2) Every surd is an irrational

3) 3  7 is mixed surd
4) The product of two similar quadratic surds is a Rational number
17. 4
81  8 3 216  225  15 5 32
1 0
1) 0 2) 24 0 3) 4)
0 1
18. 4
2 x  4  a and 3
3 x  4  b where x=3 then a  b is

1) 4
235 2) 4
235 3) 3
245
4

4)   2  5
3

Reasoning Answer Type
19. Statement I : 8 and 5 2 are similar surds

Statement II : If a b  x  y then a b  x y
1) Both Statements are true 2) Both Statements are false
3) Statement I is true, Statement II is false.
4) Statement I is false, Statement II is true.

Comprehension Type
Writeup - 1
Find the simplified forms of the following using laws of surds
20. If 5  20  45
1) 2 5 (b) 4 5 (c) 6 5 4) 8 5

21. If 48  72  27  2 18
1) 2 2) 3 3) 5 4) 7

7 IX Class - Maths
SURDS MATHEMATICS

22. If A  2 3  5 3 and B  5 3  2 3 then the value of A2  B 2 


1) 256 2) 252 3) 120 4) 242
Writeup - 2
A surd having unity as its rational factor and the other factor being irrational
is called a pure surd
23. Express 2012 4 2011 as pure surd

1) 4
2011 2012 2) 4
 2012 
4
 2011 3) 4
 2012  4  2011 4) 4  2012 2   20112
2011
24. Express 5 5 as a pure surd
625

2011 2011 3 2011


1) 5 2) 5 3) 5
2011 5 4) 5
625 625 5

2010
25. Express 5 as a pure surd
125

2010 125 2010 402


1) 2) 3) (d) 10
25 2 5 25

Matrix Matching Type


26. Matrix match Type
Column-I Column-II
1) 2
3 3 4 (1) 5
5
2) 5
30  5 6 (2) 6
5

3) 2 3
5 (3) 6
27 / 4
2
3
4) 3 (4) 6
432
2
27. Column-I Column-II
1) The greater among 3
3, 4 5 is (1) 3 4

2) The greater among 3


3, 4 4 is (2) 4
4
3) The lesser among 4
3, 3 4 is (3) 4
3
4) The lesser among 4
3, 6 10 is (4) 4
5
(5) 6
10
IX Class - Maths 8
MATHEMATICS SURDS

28. Column-I Column-II


1) Simple surd (1) 2009  3 2010  13 2012
2) Mixed surd (2) 2009  2011

3) Compound surd (3) 2011


2012
4) Dissimilar surd (4) perfect square

(5) 2008, 3 2011, 4 4 2012

Integer Answer Type


29. Simplity 8 3  4 75  3 300  9  x 3 then x =

30. 2 3 5
32  6 x ; Then x =

31. The value of 3


54  33  22  15 3 4k then k 
32. Mixed surd form of 5400  30 k then k 

SYNOPSIS - 2
Conjugate surds: The binomial surds of the form a  b , a  b are called
conjugate surds.
Here, each surd is called the conjugate of the other.
The sum and the product of conjugate surds are rational numbers.
Example: 7  8, 7  8 are two conjugate surds.

   
Sum = 7  8  7  8  14 which is rational number.

Product =  7  8  7  8   41 which is rational number.

Rationalising Factor: If the product of two surds is a rational number, then


each of them is called a rationalising factor of the other. The rationalising
1
1
factor of n
a is given by a n .
Example: Rationalising factor of 8 is 2.
Rationalising factor of 2 is also 2.
Note: The R.F. of a given surd is not unique. A surd has infinite number of R.F.’s.
Example: 2 2, 3 2, 4 2 ........ are R.F.’s of 5 2

If m
a n is a surd then its R.F. m
a mn .

9 IX Class - Maths
MATHEMATICS SURDS

a b c d  x y z
By squaring both sides, and comparing rational and irrational parts on
either sides, we get, x  y  z  a.

1 bd 1 bc 1 cd
x ,y  andz 
2 c 2 d 2 b
Example
1. Find the square root of 7  4 3.

Let 74 3  x  y
Squaring both the sides,
7  4 3  x  y  2 xy
 x  y  7and xy  2 3  xy  12
By solving, we get x = 4 and y = 3
x  y  4  3 2 3
2. Find the square root of 10  24  60  40.

Let the given expression be equal to a  x  y  z.


As per the method discussed,
a  10, b  24, c  60andd  40
1 bd 1 24  40
x  2
2 c 2 60
1 bc 1 24  60
y  3
2 d 2 40
1 cd 1 60  40
z  5
2 b 2 24
Alternative method

 10  24  60  40

 10  2 6  2 15  2 10

  2  3  5   2 2  3  2 3  5   2 2  5 

 
2
 2 3 5

 2 3 5

11 IX Class - Maths
1+ 2 1- 2
4. The value of + correct to three places of decimal is
5+ 3 5- 3

SURDS Q 5  2.236, 6  2.449  MATHEMATICS


1) 0.213 2) –1 3) –0.213 4) 2

7 3 2 5 3 2
5. The value of - - is
10 + 3 6+ 5 15 + 3 2

1) 0 2) 1 3) 3 4) 3

6. A rationalizing factor of 3  2 is

12  8
1) 3 2 2) 32 3) 4) none
2
1
7. A rationalizing factor of
3
25  3
 1 is
25
1 1 1 1 1 1
1) 5 3  5 3 2) 5 3  5 3 3) 25 3  25 3 4) none

3 1
8. x then 4 x 3  2 x 2  8 x  7 
2
1) 0 2) 8 3) 9 4) 10

26  15 3
9.
5 2  38  5 3

1 1
1) 2) 3 3) 2 3 4)
3 2 3

IX Class - Maths 12
of decimal is

MATHEMATICS SURDS

10. If 23  x 10  18  5 then x 
1) 2 2) 3 3) 5 4) 6
11. 3
2 5 3
1) 15
864 2) 5
24 3) 3
250 4) 15
648

3 6
12. 
75  48  32  50
1) 2 2) 3 3) 3 2 4) 3 2
13. If x  1  x  1  1 then x 
1) 5/2 2) 4/5 3) 5/4 4) 2

Multi Answer Type


14. A rationalizing factor of 3
16  3 4  1 is
1 1 1 1
1) 2) 3) 16 6  1 4) 16 6  1
43 1 43  1
15. A rationalizing factor of 4  5 is

64  80 16  20
1) 4 5 2) 3) 4) 4 5
4 2

16. 4
17  12 2
1) 2 1 2) 4
4 1 3) 2 1 4) 6
8 1

17. If 19  4 x  12  7 then x 
1) 21 2) 42/2 3) 441 4) 20

1 2 3
18.
  
15  4 14 12  2 35 13  4 10

1) 2 5 2) 0 3) 3 7 4) 1  20120

13 IX Class - Maths
SURDS MATHEMATICS

Matrix Matching Type


19. Column-I Column-II

27
1) The value of 4
28 4 (1) 12
2
2) The value of 6
46 4 (2) 5
177147

3) The value of 5
33  5 34  5 36 (3) 20
2592
4) The value of 4
2 5 3 (4) 5
1594323
(5) 1
20. Column-I Column-II
1
1) If x  5  2 6 then x 
2
(1) 2 7
x2

5  21 1
then x  2
2
2) If x  (2) 8
2 x

 1
3) If x  2 2  7 then  x   (3) 7
 x

x2  1
4) If x  4  15 then (4) 40 6
x
(5) 23
21. Column-I Column-II

1 2
1) If  a  b then (a,b) (1) (1,3/4,7/3)
3 2 2
4
2) If  a  b  c then (a,b,c) (2) 1
2 3  7

5
3) If  a  b then (a,b) (3) (5, 30)
6 5
1 1
4) If a then a  (4) (9,5)
2 2 2
(5) (1,4/3,7/3)

IX Class - Maths 14
MATHEMATICS SURDS

Reasoning Answer Type


22. Statement I : The rationalizing factor of 9
102 is 9
107

Statement II : If a n is a surd, then its rationalizing factor is m a m  n (m > n).


m

1) Both Statements are true 2) Both Statements are false


3) Statement I is true, Statement II is false.
4) Statement I is false, Statement II is true.
23. Statement I : The resultant after dividing 6
12 by 3  3 2 and simplified is

1
3 .
3
Statement II : The Rationalizing factor of 2 is 3 2 . 3

1) Both Statements are true 2) Both Statements are false


3) Statement I is true, Statement II is false.
4) Statement I is false, Statement II is true.
24. Statement-I: Rationalizing Factor of 4
2  4 3  4 8  4 12  4 18  4 27
Statement-II: Rationalizing Factor of 4
a  4 b  4 a 3  4 a 2b  4 ab 2  4 b3
1) Both Statements are true 2) Both Statements are false
3) Statement I is true, Statement II is false.
4) Statement I is false, Statement II is true.

Comprehension Type
WRITEUP-1
If m
a n is a surd, then its rationalizing factor is m
amn .

25. Rationalizing factor of 7


93 is

1
1) 9
73 2) 7 3) 7
94 4) 9
37
94

26. Rationalizing factor of 11


127  510 is

1
1) 12
117  5 2) 11
124  5 3) 12
711  5 4) 11 5
124

27. Rationalizing factor of 15


2311  210  513 is

1) 15
234  25  52 2) 15
235  24  52 3) 13
1511  25  55 4) 23
1510  25  53

15 IX Class - Maths
SURDS MATHEMATICS

WRITEUP-2
If a,b, a 2  b are positive rational numbers and b is a surd then

a  a2  b a  a2  b
a b  x  y , where x  ,y 
2 2

28. 52 6 
1) 3  2 2) 3 2 3) 3 2 4) 3 4

29. 13  120 
1) 10  3 2) 10  3 3) 10  3 4) 10  3

30. 3 8 
1] 2  1 2] 2  1 3] 1  2 4] none
WRITEUP-3
If ‘a’ is a rational number and b , c , d are surds, and if

a  b  c  d  x  y  z , then

1 bd 1 bc 1 cd
x ,y ,z  ,x y z  a
2 c 2 d 2 b

31. 10  2 6  2 10  2 15 

1) 3 5 2 2) 2 3 5 3) 2 3 5 4) 3 5 2
32. 21  4 5  8 3  4 15 
1) 5 22 3 2) 5  4  12 3)  5  4  12 4)  5  4  12

33. 
Square root of 25  2 35  2 91  2 65  is

1] 13  7  5 2] 13  7  5 3] 13  7  5 4]  13  7  5

IX Class - Maths 16
MATHEMATICS SURDS

KEY & HINTS

WORK SHEET – 1 (KEY)


1) 3 2) 1 3) 2 4) 2 5) 4

6) 2 7) 2 8) 3 9) 4 10) 4

11) 2 12) 3 13) 4 14) 2 15) 1

16) 1,2,3,4 17) 1 18) 1 19) 1 20) 3

21) 2 22) 3 23) 2 24) 3 25) 3

26) A-4 27) A-4 28) A-3 29) 2 30) 2


B-1 B-3 B-2
C-2 C-1 C-1
D-3 D-5 D-5

31) 5 32) 6

1. c
2. a
3. b
4. b
5. d
6. b
1 1 1
7. 310 , 2 4` ,55
L.C.M. of 10, 4, 5, is 20
20 20 20
 101   14   15 
3  , 2  , 5 
     
32 , 25 , 54
9 < 32 < 625
10 3 < 4
2 < 5
5
Ans: (b)

19 IX Class - Maths
MATHEMATICS SURDS

x  2
31. 5  3  3 584  15. 3 20
K  5
32. 5400  6  900  30 6
K  6

WORK SHEET – 2 (KEY)


1) 3 2) 2 3) 1 4) 3 5) 2

6) 3 7) 2 8) 4 9) 1 10) 4

11) 1 12) 2 13) 3 14) 3 15) 1,2,3

16) 1,2,4 17) 1,2,3 18) 2,4 19) A-5 20) A-4
B-5 B-5
C-4 C-1
D-3 D-2

21) A-3 22) 1 23) 3 24) 1 25) 3


B-5
C-4
D-2

26) 2 27) 1 28) 3 29) 2 30) 1

31) 4 32) 2 33) 1

1 1
1. 5 4 12  2 11  5 4  11  1
Ans: (3)
2. By using formula
Ans: (2)
3. Ans: (1)

4.
1
2

1 2  5  3  1 2    
5 3 

1
5  3  10  6  5  3  10  6 
2
 5 6

23 IX Class - Maths

You might also like