0 ratings 0% found this document useful (0 votes) 91 views 70 pages STLD Unit4
The document discusses sequential circuits, highlighting their dependence on both current inputs and past states, contrasting them with combinational circuits that rely solely on present inputs. It explains various types of sequential circuits, including latches and flip-flops, and their operational characteristics, such as synchronous and asynchronous behavior. Additionally, it covers the design complexities and applications of these circuits in data storage and processing.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save STLD unit4 For Later ee MIA AL TT ICuInS ate me
Me SEQUENTIAL ciRcullS —L
SS —____ pe evs
S
=
>
—>
obtal cireutts ave, those — ocho output |
levels at = any Snatant time = ave deperseot
act only on the levels present at the
fnputs ot tat time, buf also “on the
stote of the ctreurt.
teed back
“The Post history fs provided by
bock 48 the Snput
from the output
Sequential cireutts are thus made of
aod menor} elements.
combinahonal circufts
outputs
soputs
menor ss
elemnek®
Bleck diageam of sequential circuit
Sequential cfreutts ore +
counters, Shift veoisters , Serial adders,
Seqpence geraoters , logic fang ton generate.>The efor” Shore Gy Ee” memes ele,
at cae’ Given me defines -the. presedt « Ste.
oF the sequential ctreut& -
ae ‘the present state and the external Toputs
determine the autputs and the next atake of
the seqweotial — cfreutt-
Comporisan between Combfoaional and Sequential
CiveuteES
Combinational ctreufts
combinational
output voriables at-
any of -time ave
dependent only on the
Present fopect vaxtables .
‘Io ctreufts,
the
fostant
2 Memory untt is not
fa combfnationo-L
requtred
ctreutts -
5» Combinational etreutts are
faster bemuse the delay ‘lw
the fnput and -the cutput
is due -to propagation deloy
of gates cola
sequen tial — ctreuk tS
sequential etreufts ,
the output variables depe-
ndent not ooly 09 present
Soput uorfables, but also o0
the present state, ie on
the past history of the
To
—] Syst
Store the past histosy
to
of the Yoput uariables TO
Sequential ckreutts.
|3- Sequential circuits are
slower than combinational
circuits.
7.Yes combinational dreutks axe
L
casy to design
4. sequential civeutts @
axe Compara tively
harder tp design
Claset-tications of ie Dequential ctreusts ee
Synchronous —> depend'4 09 clock
“The = maximum operating
stgrols
elements Upon actuation
of clock Sigal.
a- Agyne brooous — > doesn't depends on clock.
Synchronous A synchronous
i Prout ol circuits
Sequential circu s Sequentio} frou |
+ Io Synchronous ctreuttS , ||. In ronoS — Rreults,
snerrory elements are ee elements are either
Gnitehed FFS (time delay
clocked FE fe-
elements:
= eveusts ,
hn synehncneus ctreu 2. fo asynchronous cXyveutt
ic
+the change ‘in Top Chonge $n input signals
can atfect memor
J con affect —memasy elements
ot an fagtant of téne.
3. Because of the absente
of the clock , asynchronous
eed OF thy
Spee. a lock, clepery cfreutts — can operate —aster
on tne delays Fnvolved
than Syochsonous cfreuttS
ae lection
Easier an decian
fy Mann letrewteve i
'
Ee eee coon tee
hatch: An unclecked flep-Hop ts called @ lateh ,
fs mame %s because the cukpuly of the
unclecked flip. top lakehes on to a | or 2° :
Immediately after the fnputs 15 applied
SHR Lateh : (WoR- gate SR Lotch (acktve-hiqn) ]
fs called
> “the Simplest type of {lip-tlop
an S-R Latch.
re SR Latch has two joputs Sand R
end — 00 outputs Q@ and @B.
=> ft con be constructed using either soo
cross~ coupled — NAND gates or == two cross coupled
NoR. gptes-
> vsing +wo NOR getes , eo acttve — Wian sR
latch Com be constructed and using +0
NAaND gates an active —Low s-R latch can
be constructed »
> The came of the latch S-R (6©) SET-RESET)
85 dexived -From the ames of Its Topubs.: aa ant
@
a | ee gs 26
ope 7 alos -
Logic symbol c Qs
Ss a State Lape diagraro
iS O ue ==
o/o ' 1
of) ° oO Reset
ol1 1 oO
,]o oO 1 set
1 {0 ' 1
1 1,0 Je nualid
! TONG
10 4 | x
Truth table ¢
SET=.0, RESET=0 2 “This is “the normal ell
state of the NOR latch and ‘it hos no cHfeck
on the output state. Qand | wit
wemoiN {in
whatever State they were prior to the occurence
of this Goput: conditton .
SET=0, RESETSI 2 This will alwayg¥eet Q= 0
SET=1, RESET=0: “this wll alway ~wset G=e)
SeT=!., RESET=) 4 Q= g=0 so the
~esulting — oubput State fs Unpredictable.1 Pe
NAND qete SR. lolch Cactive-low SR latch) «
Ss a feT=LS [ee state]
ofo ' J}
oa a o]) ° ! gek
Q of) ) 1 |
- 2, t /o ° iB Reset
fo I oO
hes diagraso uly 0 0 a
1 1 } i
-truth table
> “the operation of this latch %s -the reverse
operation of the Nor gate latch
of ‘the
discussed conifer. “that fs hy ft ts called
an octive -loo «= S-R_ latch
> the SET orl RESET fnputs are Sorerally
fn the HIG state ond one of them
xesgting
J
went to
ortl be pulsed low , whenever we
change the lotch outputs .‘Gated Sr PRE
f *Goted Latches C clocked Fp ~ Flep) : : 7
TUtp. Flop ~—
> A tip flop fs the basic memosy element used
to Store one bit of foformations Tt con Store
a 0°er al. “the mame flip-flop fs because
this circuit —shtfts back = and fort, bekseen Fs
too stable states upon application of propey
Foputs» or we can soy -Hlip- flop is a Simp
logte cfreure +
> Flip-flops ore beste butldtog blocks for
| sequential ctrcutkes
as a
> A lp-tlop , hnoon more formally
bistable multtvibrator, has tenn Stable stotes -
Tt's skates can be changed by applying
the proper trig qe "4 signal .
> Applications
2 Data Storage
° counting i
© Troster of data data cooversion: etc,
® frequency diviston
« posallel-to-sertat ¢
Serial — to — poxalled<<<
Goted S-R late
desextbed earlier,
> In -the — latches the dubpute
Lime “the Topit condition,
can change state
are changed. go, “thay ore called asyochnopous
tatches.
ant
>A gated
Foput-
-the
SR etch requires an EWABLE (EN)
its S and R_ frputs — will control
of the only when the
is HIQH-
—+ wheo the
State Flep--Hop
ENABLE
ENABLE Ys low
, othe foputs become
fnettective and
0 change of stote con tabe
Place.
“The . ENABLE foput way be a clekh. so, a
gated S-R latch {fs also called a
elecked
e-R latch or
eee eae
synchronous 'g-R Lotchy
Stoce this type of tlip-Hop responds
to the Changes fo fnputs only as long ag
the clock fs Hiatt, “these types of Flip-flops
one called leve| triggered tlpdlops.Seo
: 4
EN =a
hee —_len ar
R : —._ *
Logie dtagra> Logic syrokol.
EN |S|R an av] State
T éfo | oO [ o
r fofo] 4 \ Nc
t Ol oO oO
1 foludiu 3 (fReset
I tlo oO ¢
i 1 }o 1 | set
' to :
; i elt - Genolid
e o | x/x[o 0 ie
o_| xix] 4 | :
seve forms “Trath ‘oble
L A ae a I
] “lo | ae | i
‘ ; Prey aia 7
See eee
: ‘0 0 '
: : 7 : rt! ©
Eg i 5
° Moa
: TmGoted p= lateb =
oD
EN
wane forms ¢
—— ESS
eo ee eee
_ eN—| Gq
: LS a g
se
Logic diagraro Logie Bee)
En | D | 80. [Gori] state
t ° oO 0
1 fo fi p_| Rese
I 1 ‘fo YT ce
{ ij | i
© |.% 7},O ]? Joe |
} elapeee
J x i |
| a ales
of
|
A 4
Ee fi. + Edge - Tetagered Plip- Flops -_ ©
—_“C =Sh— =
system fs dttficult to
> An: asynchronous
desigo and trouble shoot -
~~ To Synehrono4ss systems >. the exact Hemes at
which ony output can change states ~ are
determined by signal commonly colled tte
clock. i
m be © posrttve sedge a
> clocked flép-tlops
posttive.
“eiggered Or negative edge triggered :
edge triggered Http Hop & rane be are those
Sy which: State trans%tions ’ take place only
at the — posftive— going edge of the check pulse,
and negative : edge tigger Slipdtleps are
those fn. ‘which \ state transitions! rtatee. place:
ool at the negative — going e age of clock signal
=> Postitve ~ edge tetggerion fs %ndteated by @ triagg)
at the clock terminal of he flip-flop .
2 megatteve. — edge triggering 13 fndvcated by a ‘triangle
wth bubble at the clock. terminal ofthe PF
Ex 3
Sk, Sab
ate fas RK gppt tp-tlop
Edge — gered Sue fle 5
aoa" uf cls] R]Gn/ S| ste B
g BP eyo fefo] pe
—-+>c ea n o|o \ \
8
R A” of1 0 o ew
«| ol bf jee
n t}o jo ! get
a 1 ]0o t t
Ml fae fou} x uid
soo!
* Sefel: |e xX ui
° Oo |0
x 1x Nc
o1 y Lit
logic diagrar Froth table
yoave forms chara cleus. Lqpatto
now ao
x j fr My FT Ss oO
oT ALAA, 5 Haas
\ a = 1 ut / -
fee tej tia ts sy,
' i Peete x
R feel i Ly, Gort = S-&
re | | 1 tof Pot S+R4n
! - 1
Oh! we \ y
eee 1 ci Gort = St R Oy
- >
can ieee
! 4 >ti Pdge~ “tg eve D flip—tlo o (Cp means Datel’) 6
ete ek —fog-
are tis
rm el gle
2|
|
RRye SPS ee
and _ also
> The s- -flip-flep fs - very vergattle
the most widely used +
> The functioning of the sth -flep-flop fs
SR $Utp-Flop , except |
fdeotical to that of ‘the
line thot of |
that §t has no ‘ovalid state
the SR -fltp—tloP. |
OS Aart
Codie. Sgrote A
&
fey d fog rar eT
‘Tut Table ¢
cw | 3_| Gn| Gav Stole chovacteristie, 29°
4 |lolo Tolls oO, ae = Es
a}oli |e@]o °
: : c Leg
ate [i fo} ee’ | carl et
A-| 1 [2 lo ie set
a” t_ {0 I! 1 T@pa1 3h + kGq
oti ryt o 1] x oaahe
A tf{etis}o von
x |x o ° 1
2 viw ! 1 NcEde. triggered To liptlep ;-
> A T--ANtptlop bas a single control Foputy,
labelled T ~for toggle .
> phen TT ts HIGH, the Hip-tlop — toggles on
every new clock pulse»
+> when T fs Low, the Hip-Slop remains in
whatever state 7b was.,betore.
31.8 ne
rite Cc act = oC a be
ih
Lexie Sqerbol
le T Bq att | state chooacte istic. EgP
Q 0 oO o
*\o }1 |
» \ D 1
% \ \ °
®|x]° ° Ine Bn = T8ot+T Sy
0 x I l
“ruth table,>
Asyrelnonous — Yoput’s
The s-R,D and J-K inputs ore SY rebronous
they edfect on the flip-flop
‘inputs , because
ouput fg, sycchoniaed wrth, the Clock Fnput -
Most Te -ftip-flops also have one or more
aasqnchroneus Fopuks -
“These asyoebronous fnputs oftect — the -Llip- flop
output Yodependently oF the Synchronous Yoputs ond
the — clock input -
“These asynchroneus Fnputs can be used na SET
the flip-fep te» the! stoke or Reset the
sip top e the 0 State at any time svegasdless
of the — conditions ‘ok the other = tops»
> “the fsypehrrenous ‘inputs oormatly labelled.
PRESET @) SET and CLEAR @D) RESET.
> gf the asyochronoug Fnputs are active —Low ,
the game __ 1S indicated ae PRE and ak.
PRE Zn.) FF Operation
oO Oo NOT
cut 7 a
i ° =
° ! @=!
\ |
| decked operatcre
Logic dia gro of a baste 3-K -faptlep with achive.
low PRESET and ecLEAR
PRE
i. PRE
0
a] 8 °
—_orc a- V
rt — Ore ‘
CLR Truth table
logic sqrobol .
TE Fhp_ttop with active uray PRESET and
CLEAR 31g nalsKace around condition +
> Er sh Flip-flop width of pulse fg
+o tong » for g=n=1 the state of +tlip-tiop
will keep on chong ing arom 0 1 1 to 0,
Otol and so on, at the end of the
Cock pulse ts state wilt be vncertain,
This phenomenon fs called the Yace around
comikton -
—> the oubpuls Q ond SG will chorge on thely
>
>
>
=>
own tf the deel pulse width tp fe too
. e es % 50) ve ¥
tora ompored with the propagation celoy *.
of eh AAND qe:
To overcome this problem Master-slave
Miptlop', ave Jnbrodueced.
“The waster —Slave + lip—tHop cetuollay contains
eno feep-ftopS — a master -ftpflop and a slave
Flip—tlop -
Comtrol inputs ove applied +o master ~SUp-tlop.
On the Yising edge of the clock pulse, the
level © the control Inputs axe used +t°. + deberentae the output of the emater - ©
> On the falliog edge ot the clock Pulse, the
state of the master is transferred to the sbve,
whose outputs OC & and @:
S-
Master— slave 3% flip-flop >wone-forms “—
SS = *
Far] 7
| i 5 L a
wet i ho BOLE gto
2 of i A a i ‘ od
BQ) | i —o |
ley a +
an ry |
i.
& | = b nd oo?
oi ft ieee
.
o F clyenee
ey ar | : 7
| eee- Filip: Flop Esecttatton Tables -- ©
—> -for. design of _ Sequential elreuk bs _22citakion
tobles of __ Sup Hops are required. hate
> Bxtitatlen table of a tUp—flop "ean be obtained
rom its -trth table.
> 3 indicates’ the ‘oputs reputed to be applied
to the 4tip-flep jo take tt from “the Presen
state -o the neat state»
3-R flip-flop
r ‘ , 7
ets] 5 | R | @n'| Soe
a” \ oo o | o +
~ |O{o°] 1 1
a | oU oO. o 4
a _|oe}L \ O-
vy ft po ° foo
epee eee:
ay o oid
7 te eeepc)
aright ExcPoation table
S=0, R= either o oT!
SoR=xTHe table
oe Flep-ftop
lt
Eacitahon table .
Excitotion toble ._ + Coovession f ltp- Flops *—
Soneinen’, of | Pip PkPs
> ourfte down treth -toble of oequtred flip-flop
excitoabtons OF actuod-
aod write down
tep-flop -froc ‘oubpuls of peas aunts
Block dragramof cooversiod 0f-flip-Hop
to Yh fliptlop “- |
Nes : :
tlip- flop
Ont) scpues,
S eee)
0 ° x
T x 6
0 ° xX
© ® \
1 | Oo
! x LO |
\ \ 7
° } Pe 11 ;
0
\
|
rooversian ane) Conversion of S-R D -ftip-Hop
ce eo eee
= =
Bxterned
TP's-p
7 @
comvlersion table,
an : an
o\_o o\_o.
eee o] 1]
. |e! a© comersion of 0 Hip Tee
Bates | Ps | nes] PUpHop Ps]
amen 89 Qari D
0 fe e = i
o lo ' : t
of 2 2 :
or : o ®
1 lo ° ; :
\ 1 t
ie [
1 ' e. -
ida x 7
G
Litt S
34 R89
Lo gi ee doagran :@
(3
#
f
&
Ww
ih
A
Externod PS Nes fuptlop ilpls
tres
dD ao Sn x 5
° 0 Oo Qe x
) ° cy (
t oO 4 { x
! | \ x [Oo |
Logic dagran, !© DP Fep—ftop to THe flip-flop 7_
_ ee eS
External PS 1 Nig! -PUp--tlop .
TUpls ‘pls
,
7. ‘| 2 80 Qn) ©
To Jo ° 6 ° \ °
I
0 D0 \ |
o oO © 5 \
°o ) ' e °
4
=f © ,
4 t o i 1
t )
Lo ci cf dkeagras@: Fw ftlop-Hlop to T_tlp-tlop -_
. = Sa
V Bxternol ps Nes f -Flip-flop,]*
FUP TS . ipls
=e an Snr | > K
oO © o i= 2
oO: ‘. i aes
ee 1 |x
\ | 0 :
conversion “table .BDeoovert D--flip- flop +o 7 flip-flop -
7 4 | Gon | © J
0 [e} Oo oO
0 | \ \
; oO \ 1 A
1 1 o °
conversiontable
a 7 &n
e
Bn
Logic a fe :
@) comere TF -fip— 1 ftip—Hop bo
Qnvi
a
D
5
-Hup—lop :
Komp
-\oa
Cc
- -|ooSHIFT, REGISTERS:
s A xegistey fs a set ‘of Flip- Flops used to Store
binary data.
> “The storage capacity of register is the
eae ta
number of bits (Sand os) oF digital dot
Tt con yetain.
Te hesaira of data in registers ¢ rod be sevial
or Ppodallet.
—> In sexfot leading » data ts +trangfered Tato the
~vegister fo sextal -torm ie, one bft at a beme,
> Faq ponallel \eading , the data fg transttered
Foto the — yegister fn pasallel for mn wading
thot all the FFS ave “triggered fnto -thery
new stakes at the Same fre.
“> shift registers ore a | type of logte cfreutts
closely xelaked to Counters.
> they one ose. Lasfcally for the stmage and
transfer of — digitcl date.—> “The
> A shtft registey fsa “very Senportank digital.
burldeng bloc» TE has Sqnumerable applicalon®
basie difference bekween shett register
and counter 7g thot, a shift seqistey hes 79
Specttied Sequnce of states
except fn certain
Specialized
very applications , whereas a counber
has a spectteed sequence of Stakes.
Rutter Register -—
er es Te
>
=|
=>
>
Some
vrepisters do ating more thon storing @ \btoory
word -
The butler regishes ts “the stmplest of — vegisters.
Be Stmply stores the Hnasy word -
The buffer mou be a comtolled buffer. Nast
of +he butter registers use 0 Ftep—tlop.a.
Yo %
aude [
a Ds 4,
xe
D3 G3 Ds |
Fr en. | FFs Fry
ee
Logie diagsaro of a 4-bte bulferseqisters
84934.8, = Ry kz kr,
os
7» “Cootrolled Bulter Register so
OkD
Logie diagram of a 4-bit controlled butler gona
—a
> when cIR=0 all the PRs ore RESET and the oukpul-
becomes @ =0000 :
= wheo cR=1 the register is ready for action,
> wpAd fs the control input - when — LoAD is HIGH
the dota brts xX cas reach the Topuss of
EFS.
> when LoAD is LOW , -the x-brtsS cant ~ A number of FFs connected ether such
that data way be shifted . @ato and shifted
cut of them ts called a - shift register...
> ‘Thee axe oer basic types of ehitt ~registe
(> Seviol-tn, gextol-out shift ~regisber :
® sexiot 1 serfol
goo IP : + Pe Re dota
olP
Sexfal-in, seviat-out , Shift sught,
shift aegistey
x seria
aes ap
“Qe 4, 4, bs Sa——os_g/—Jou 8
FF, | PRS Pay
L
om
Be ge
4-bit sexfat-in, sextal-out , shift - ought,
gist ore tae oe“© sextot-t ‘
alin, sevfal-out, shifb-left shitk neqistey
gecto’
gore poe Sexfot
ged t+
oueeee ae Joka TIP
-—— |
cqvol-ouk, shiftclett shift
G-b?t = Sevfat-fo ,
Zl megister
extol —¢
Sevfol in, Ponallelout ¢hift _seqistor:
aes of
o
aK
shitt xeqiste
L-BE Sevfal-to , pevallel—oubRN ete?
| © Panallel-ta , Berialcovk shite nego"
eee
sb
J
J
gee
@_ — Porallelin , Porctletoouk ahift ouegisters
Poroblel dete tp
© — Retate- ough
©
Retote- lef — Shift regis kes
E Ponallet fo, Panoliesouk shitt segister -
shift mr|gister :. Bidirectional shift meqistey ——
oo Ee oo THY
ouk—
eb + re 19
1 A bid trecktonal.
in—4
ook} Sp
shift nregistey
data bits
is one fo
which the
can be
shifted from
left +o née
he or from suighk to left.
~The “follewing Hiqure Shows the logie diagrarn
of AE
serfat-tn, Seefal-out , bidtveetionall
ohitt megister:
Right | ete es the ede
signal. .
4
sgplee = : { |
Gy Gr Kad Gd
D 3, eo 38, ie, 83 Dy Sy
a
FF FPL FFs FR,
Ae [| |
oo
Logie ltagraen of g-bit biditechonal vegisier -> when Right | cert isat, the logic CiveutE*
Werks ag a shift register -
—s when Right | TIE is ao, ft wos aso shifb-
left shift negister-
&
Unt versal ‘Shite ‘Register L
—~ The register has the capability of
beth shifts CRieht g left) and — posallel load
iS enlled: a5 untversal Shift —megisters.
—> “The most general shitt register has “the
pole” Copo. bilikies,
tA clear central. to clear = -the vegtotex +p 0.
ee A clack fnpat toy Synchronige the eperations,
3B. Shif- aught cestrol to enable -the shift -
aight operation and sertal ‘iopae and
1
outpub — lines associated with the shift- sug
Ge A Shift- left control to enable the shitt—lesk
operattoo and the — gertal Topa and oukpu-
Itnes assocfated witth the shift —left.S- A parallel — lead control +o enable a fonallel
stanley and the n iopuk lines assoctaked wt
“the fomallel tranerfer.
G- 9 Pesallet output lines.
+. A control state thet leaves the Gerfoxmation
io the wegister unchanged an the presence oF
the clock.
> A universal shit negistev mao be oo
vtog multiplexers
—> The 4b%t universal shift register having
four roulkipleyers, have +80 * Comenon Selection {Ip'
S, and S&.
— > “the selection fnputS control the mode of
operatio 9 of
function
— wheo
Fnformnation
trane-fhenned
Slectioo fnpuks
on the Ponatlet ‘opuke
the negistes according oe... the
entries -
SiS0= 11 the binary
lines 7S
to the
regi Stey Simultaneously
dusting “the next clock edge.p>.
when 33200 , there is no change 19 “the
daka. q
aN
when SiSoz0l, terminat 1 of the coultt plexey
of the
o
inputs have a path 4o the D foputs
Fuip—flps- This causes a shtft- ought operaho
% wht the Serfal foput trans ferred tote +Uip-flopery,
wh s =
eX SiS0=10, Qg ghefe- lett operation wesults
Tt
wrt the otter — sexfal foput 979 foto lip-flop FF,
ponallel ops
Ay Ao
ro
cleot FRY q ERs en, |
a goed [Lg
serel
fox Sit
ett
Ppurollee spl.
4-bit Goiversal Shift owaister -: - “Afunctenal eee ies
oO
Mode contro! Registev
operation
No change
Shtet aight
Shift left
S\
Paallel load
: shift
O “Time delays.
servtat | Ponallet dota conuersion
Be mo4 counters -
a Unfuersal asynchronous ee
-transmnitter (UART).
Mi cro procerroy
device syste :COUNT ERS
—> A digital counter is & set of Flip-dlops
whose States chonge in -vespoose to pulses
to the counter:
2 ale FFs are — fntexconnected such that
a - | deme 1s the
ok the fetal number of
upto that me,
oppied at the — foput
their combined
binary equivalent
pulses that hove occured
= The counter 75 Used to count pulses.
counters oat be
(2) Asypersso7e gs cornters
pubromUs — CoH ters,
@
= Asyochronous couoters algo called as
ripple — eer :
wotey - (OY) Serves Counters
PP pe a
= Synchronous awenters a
ve clocked a
ch that
coch FR in “RA
Gere fe ‘triggered ak
thre Saene time._
Comparigon of
Counters
Syochrosous
Sa
A synchyonous counters
this
connected
that the
FF dyives
the
Of the
of the
| In Counter
i> Sach
output of tix
the clock -for
ted
Q- All the
clocked
FFS axe nok
Simultaneously c
3: Design ond fmplement-
akon is very sieople
even for more number of
States.
Gs Hatin drawback of these
counters fg their low speed
as the
‘through
before
cleek is Peopegated
Q& number of pes
tt yveaches the
last Re
FFs are
& way
Second FE, the output]
Second the clock
ard so on.
Synchronous counters
In this +yPe of
there
connection between the
outpur of -fersk FF
counter fs 90
st
and — clock input of next
FF and so on.
2. all the
clocked
FFs are
Simultaneously
3. Design and implement—
akon becomes tedious
as the
states
and — complew
of
increases,
ounber
G. Stoce elects 19
to all the FFs simultenecusl
the otal Propogation detoy
applied
Ts
equal to the
Propogahion delay oF only ore
ER. ipere thea ave -faster,> Design oF mod-6 asypchrencus counter using
>
> these tree
a |
A mod-6 counter has six states 000, GOI, O10,
ON, 100, and IDI. when the sixth Pulse is
applied , the counter tem porori ly qoes to \lo. tote,
bub Tenmediotty wesets tO 000 because Of the
feedback provided.
Zt ts a Sdivide- by-6 counter’ y Jo the sense
that Tk divides the foput clock Frequnocey
by G-
Tt xcequives 3 Fp feps.
Possible
cut of — which only Six ave ubliaed.
tp flop's hove Cteht
States ,
and the Femadoing two States MO and Il ave
‘ovalfd »‘Desige of a mod-10 asynchronous counter Using,
T FES?
A med-l0 counter 18 @ decade couoter.
TE Ss also called a Bcd countey or a
divide —by- lo counter:
Tt veqplres our PFs -
So, these ore 16 possible stated, oub of uhich
ten ave valid and -rempining six ave tovolid.
> The ceuoter has lo stable states , 0000 throug’ (00h
ce Tt couots fee o+09.
rn
\ aster putse couot— k p fos R
\ 84 83%98 eo
ooo) iN to
q oe ee] GSI oe v 3 =
‘ oo 0} oo
> © Oo 10 al o= a! ¢
3 0}
4 9.4} e 13[——t3]
© 1 98 ol xt be PEEL XT
S oO 10} & 3] ul
6
o 1 to
e
oud)
8 1 © 0 ©
9
‘o , oo | R Bu Qa
0 © 0 064
i, =| 3 @s * 4]
PRL PEs Fe |
ae ee oe |
ft
Logic eda ”
a
Asypetwenais shedeo coneter sing Tee
Dypebronars | Cousters - |
> Synchronous counters axe counters fy which
all the FFs are ‘niggexed Simul taneously by
the cloch - fnput pulses.
> 54 the - synchronous counter 18 a — shortend -
medulus countey FE sutfey trom the
Problem of leck-owk. “That fy
» the counter
not = gelf- Start - ~~
> #& set —- Saal counter 15 one that worl
eveotually enter ‘Hs Proper Sequence of states
vyegacdle ss of Sts initial state.—> The counter can be made setf- Starting by
So destaning f+ that it goes to a iculax '
ang 8 panki
state wherever %t enters an fnvalid state.
> th same Procedne can be used “for counkey S$
ot any number of bits and ony ovbt brary
Sequence .
The. only vestriction on the sequence is thok-_,
Ft cannot contain. the Same stake more than
ence within one complete cycle before repeatig
Stself.
SS
Design of Sypchrooeus counters +
le
Q:
a
ae) ieee
number of flip-flops + Sased on the desesption
of the problem , determine the requixed number
ot -tlip=Hops
state - diagram Drow the stake diagram Showing
all the possible States
choice of tlip-flops and éxcftation tables .
Minimal Eupressions for excitations.
Logic diagram.pa , DESaN of @ Synchronous Mad-6 Counter
“using Ie FFs z
SEPIL The number of flip-flops +3
for med-6 counter the Sequence Ts 000,
001, O10, ott, 100, lol, O00----
Stepa ° Stete diagraes
(oo
oe (08)
CD)
(Om
19)
SEP 3s Type of Flep—flop ‘nd the gxeftation
stable:
} aA ae Required excttation ")
Bs 6, Sil 85 GS hha Bk sy [
Oo. 0 0 Oo oO ! ox ox \x
oo 1 oto ox 1x KI
ot 0 o1 | ox xO VX
ou} en \x xl x)
109 ,o!l \xo ox 1x
ro t foood |X¥t = ox xl
Cucttotion “able.Step 4s mfinienal Exe pressions K-mnaps -for exci babory
Tg, Ks ) Ty ke, Tam hy =
6" @9 |
op or iN lo Qs \_00, 01 1
ar Oo] ot laa) 1
} o}| x{[x[x)L*
t
Seppe] = LEG!: Sees: ae diagraco
38
> Desfan of a Synchronous a-bit up-down
counter gsing Ts FPS |
StEPLD = Number of Flip-Flops vequired a .
10, 1) aad
% states (000,001,010, O11, 100,101,
alt the states ore ualid.
and down
oY mode signal M fs vequtved -
when Mz=i Fb counts Up.
when M=0 if counts down.
medes , a control
> Foy Selecking up
SEP 27 State diagram.@
Ole ie x -- kw yp Hom eK MAK
Slaton. x ot ex 2 -¥ ¥-- x,
5
a
thes ex = og — Mm RT RO-
Ol] pl-o On MX Ke KH OO KKM KE
|
el os -
aS Xe KR KK RK KX -— GD ODDAP
wl 9 SP 999 KX KR KEK?
Sy 7887-8 o--00--o¢
S| #f*o°0-9- -0 -o0-0--¢
wee OLChlUlLDeLLhlC LF
uy
ee el
x —~9-0- 5-9-
" L* 1 aul a -7-9007°
gloo- - © 2°
d eo e777 9908 ATT
gle ° [=]
HW O10 a
gjeo2°0o ©
-+—!at
Be -ol__tt 1a, att
Tt aS yoo},or to
= 3 1 3 2
al sla é oof {It x my
ol t alee :
=] 1% CU Ee Dae Pas
px [Kk % 2] F3aff 13]P vy]
8 q 1 2 :
10 x Kw Kw & q 7
10
T= 9, t 29M hg = Q,6,M + @,9.N
K-Map fos Ta g- feMop fol ae
1
2
xK-map for T,
QS
"0 ot
ogy at z
off [1 Te :
q s "I oT)
oft ay t RPK* Design of a synchronous BCD Countey a
“Toh_PFs
3-6 PF
Steptz “The number of flip-flops 4:
BeD counter fs cothi bul a ned op
counter. TE is a decade counter. Tt has
to stake& (e000 trough toot).
stepay state dia.gran :
-
ou: The tyre of Hip-Hop | and excttatioo fable:
PS N.S Required excitations ]
Bu 83 O29, 84939281 | 7 Ky Sky ke SH
omotodo o-oo] os ox OX aX
coe! oc ue oY OX 1k XI
eo e oo | ox ox xO {Lyx
oO 1! © to od oO x 1X xl ef
ie Ge Gy re
Gio | Ol | oO ox 0 i. ST
G61 | oO oO | Va 0.x XO “oO ty
ee Ce et Xl XT
\ Deo 0 lik 0 Oy Oy Ix
ro ! O00 0 0 x | OX Ox x|k-maps ter
Sine a Mintmal xpressions :
ae @ Qo?!
er OA\ oo Ol tt _ tp
Sy to OO eal
ae eg te] Tall *) a ‘ai
x |X es
oo| ae aif €
aq o ol x ep xe] oe x [ey | X
o) TI], Wy A ory y
=P sh, wi% xf pe fv) « pe tp | x
eee a-a} ble ya
Fa |] to 1} XTX | we x 1%
wo |x x L =
= 8 Tg= 9
Jy = Gs 8,8, Ry : . '
or ot LL Lo
Qk) —2 4 3 2
00 7 K \I%
ul|s aly «¢
o1 i KUL
D 3 5 \y
y |X px K
o n to}
1D : x %Stepas ke emap’S
@e\ io oft
as i = 2 ays 3 oe
oo] * {|X y 2 ae ee 7
ci 6 s 7
ol SNe offi sf x | x |
<5 my 8] sf a
nb ely ety Toa def x x
ay yf a Ve
v0 x {ibd mye sl ‘
be = ed dhe
2 Q, agree OL Lu 10,
a Z
oo} [|X . l 7 ®\
t nyt
of [xe it Lad
|
Steps s: tegic diagram .> pesign of synebronous Modulo- 6 Gray Sede. -
=~ oe —— = ‘
countey :
COUNLEY 5
Number of -Ftip-Hops 24
StePI.
of modulo—6@ Gray
the Coe sequence
code coudtey $$ 000, OO!, OI!) 10, 10, Tl.
SEEPR? state diagram
cay
000,
PS NS ] Required excitations T
G3 8291 8368.8, | T30de wl
ro 0 © oo} o oO i
GO) ol) o : oO
oO. o10 oO oO I
or OJ 11 ® \ o (oO
ve OF tr 0 6
tt 1) oo0 \ \ iSepa Mininal Expsessions
\e8 ae a
oo a4 oO. Wy 10
a o 6! “
oO
xu
Na 83+ 929+
BL8,
Steps Logic diagraro
O29)
“ B39) =_ ) Pa
oN BS > ash
i 5H —— Ups
3 2
wm pe
eae rp PG ae
Si- ie :
__toe ‘Register Counters
m4 shett wegistey counters axe obtained from
serfal-in, serial- oul shift vreqisters by
Providing ~feedbock trom the out pu of the
last FR to the ‘input of “+he _-tivet FF-
+> these devices ove called counters becouse
they exhibit a dpecthied Sequence of
States .
> “The most widely used shite reqioter counte
is the slog counter as well as the twisted
a) counter -
“Rig Counter ; _—
> The FFs ove amanged 08 to @ normal
shift nati te the Q@_ outpub of each
Shoge connected to the D fopat of
the ext Stoge » but the @ output of the
lost EF is connected back to the D foput-
of the erst FR such That the array
of Fro ts aeworged to 9 vind, therene,
the came sing counter .a ‘ a counter
rege diagrarn of a 4-bit sing Couns
dee a
ising Br 4lp--Hlops
] ' C
fs, 3 {88 3, 8, 5 Bul
fh ee C4 FP rep FF
oe Or feat] Pe Ray Sa ilaal
fe =y
S
Owe
bogie chagrarm ot a g-bk ae countey
using Sq flip-flop
”
2
:
3
o
2
2
1000
State d iagran
oO
oO
\
oO
oO
oO
1
oO: ted xing counter Ciohm 309 counter . a
SSS
> Ris counter fg obtained = from a Serial -fo
gexial- out shift neq ister by Providing
feedbacks from the Soverted output of the
lst fF to the D Sopuk- of he fysk FR
> The Q@ ottpul of each stage is connected
to -the op foput of
@Q outpuk of the last stage
to the D iopuk of first stag?, therefore ,
eounokey -
the name esisted wi
us
bogie diagroo of 4-bit rO7
usin
DOA Logic diagra of Gb wing count
using 3-6 -tiip- Hep.
- aa8.9.93 84
“Renin diagracn ot a_4-bit “twhsted
x ng countey-3ya) design a countey with the following wepeated
binaa sequence + 0, 2%) 6. osin O- FIipFlo
4 q 3 PFlop
Step :- Wo: of flipflops: the counter has 5 stable
States O214,6 (ooo, C01, oto, 100, 110), St sequires
3 FlipFlops which has eight States in which yemMaini
3 are onused stotes- These unused “states MUSE go to
00 apes the nee cloch pulse- go, no dort coxes-
step &:- State Diagzam A
step 3 ¢ The type of = flipflop and excitation “Table
Ps NS Requized Excitations
@® % % a Og By 9,
o0o°0 o Oo} O° ro) '
oo | o 1 90 oO | oO
Oo 1 6 1o°0 \ oO oO
Oo 1 | oOo 0 oO Oo °
{oo tae) } | Oo
( 01 | 000 ° Oo oO
no) 0° 0 Oo ° °
o °9O °Step Wi- The Minimal Expressfons 4-
fox D3 for Og
ahs 8)
AY" 00 1 aN bo, 01 uo
° °
-
° oy of lat] 2[*
Tia Ss Fl 6 im! =] APs
D3 > Q, 8,8 + 9, @,@, Dy = 9, 2, + @% @ @,
fox p, these fs no minimization possible
$, > B38,
Step st dogic — Biagzam :-Write , deginitions of teuth table, State toble, Excitationtable
‘chowactesi stic Table a .
Tsuth+table t- The tsuth table of gq logic system descuibes
the Outputs of the System for
a given dnputs: The Anput s
and utputs axe Sed +0 abel the columns
of teuth table,
Inputs +o the ciraxit
With —wWWs representing all possible
ond — the cosxesponding — ©utputs
State igble~ A table descaibing the behaviour of a Sequenti
-al — ctreutt aos a function of stable Snternat conditions-
States— and dnput variables -
Excitation Table 8- An , Excitation table Shows the minimum
necessary to generate
state = when the current State is
input that aze Q particulad neat
Known.
characteristic tables- The characteristic table hag the Contso)
4mput CD os T) as the first column, the cussent state
as the middie caluma, and tne Nexvt State as the
last © coloumn. 44° usuatty tetls how the
Control bit ePpect,
the cussent State to ptoduce the
Next State.
write the diggevences, between catch and Pip-#lop
no | Paxometex |__FUtprtop Latch N
1) | Basic principte Flipelop Utilizes | atch follows a 7
an edge ty(qq- devel triggering
ji Approach.
ering approchSNO Parameter Flip flop datch
a) clock signal The cloc The clock
Signal 1S signal fs
present absent~
ou i
3) pesigned using you . on 4 can design
design * fk using
using Latches sogic gates:
along with
clocts
4H has compara-
é hos O
4) Operating at :
a 4 fost
speed stow — opesatting ar
speed Opesating Speed
5) sor King FlIpFlops worls atotches operate
using the onty using
binosy Sle binary a(pic
and clock
signas
8) Types F-Wjs+e, 0,7 Ty $-8,0) T
Flip Flops catcher
4) Fauttt FlipFlops stay tthe Latches
protected agaist ave vesponsit
to
ANY -foutt any.
Occuryin 9
foull on
enable pin.Te 1414 & Lom etipeter)
at at ee Cla PRs 1 Qa :Q,
yt |B 12 _ vol [a :
t
gf
~@ Z
1} 18} 13] Ls sfleJ/ i
cig; = Ol cis) PR, @ GaN
Tc 1u76 s+ (3-¥ Hiprlor)
Ik 1@) (@ GND aw
QQ aq. at
te] [es] [a | | ig] [1] [0
4 — HL
LI (I |
Uy ¢cIR \Q| 7 PRG
an I |] le
ia t 7 a
I =a ——
' | a 3 | y =] 2] 4 L
fas (PRC =
Vee Adlh AcIk APRTc 1415 8- 4 BH Bt-stable datch Te
1@ ag BG 1-2 GND 39 30, HO
wi fs| [ul fal [al [ud] el 19
SS Le
pale a
Wo ic
ably Lh
ih | art all)
{= ee
del 2l@IEsl cs 7]
(110. 9D. (3MC | Mec 13D GD. . Le
Te WGI s- Y- bit wvipple- type decade counter
anges ne On Q@® ae a Qe
ty [re fro 4 g
' |
Ldn Sa Rp a Q Li |
A ,
B
Ali) _2ol2) cn ¥
7 |
( al 3 q | 5 6
| j
Inpuk Ret) RAY NO Vee Rg td &y (a)
&Ic 1493 g- Y-bit Binasy Counter efscutt-
Tp
a Me On Ro cen
fi Ju Tio |
Sp
Te 1u93
( 8
ie Is? fea
RM) RQ) Ne Vee Ne fc
Te 74lal s- Monostable muttivibrator usithy schmitt - trigger tles