WPP3
WPP3
BY KAUSHIK MOHANTY
WPP - 00
03
KAUSHIK MOHANTY
SUNDAY
27 DEC, 2024
TIME
08:00 PM
TICKET PRICE
$ 50.00
Get this
course
SADHANA:
Practice Batch
For Bank Exams
2025 (Pre + Mains)
Get this
course
SAMBHAV:
Foundation Batch
For Bank Exams
2025 (Pre + Mains)
Get this
course
Courses
Important Features
Target Exams:
of the Batch:
Click Here to
Visit Our Website
Connect with
Kaushik Mohanty on :
Any Error or Doubts Found
Please mail us :-
teamcareerdefiner@gmail.com
TABLE OF CONTENTS
Serial no. Topic Page no.
1) Simplification 02 – 05
2) Approximation 05 – 08
5) Quadratic Equation 15 – 16
7) Solution 29 – 60
Page | 1
SIMPLIFICATION
1) (25% 𝑜𝑓 800) ÷ 4 + 15 × 3 − √49 = ?
a) 66
b) 77
c) 88
d) 99
e) None of these
Page | 3
a) 48
b) 56
c) 64
d) 72
e) None of these
1 2 3
11) 2 × (3 + 1 ) − √49 = ?
2 5 10
a) 3(1/2)
b) 4(3/4)
c) 2(1/4)
d) 1(1/2)
e) None of these
1 2 1
12) 4 ÷ (2 × 1 ) + 25% 𝑜𝑓 80 = ?
3 5 6
a) 18(23/42)
b) 20(25/42)
c) 19(31/42)
d) 25(29/42)
e) None of these
1 2 1
13) 3 × (1 ÷ 2 ) − √121= ?
5 3 10
a) -8(29/63)
b) -7(29/63)
c) 7(29/63)
d) 8(29/63)
e) None of these
Page | 4
e) None of these
APPROXIMATION
16) (49.8% 𝑜𝑓 799.9) ÷ 4.1 + 15.2 × 3.9 − √48.6 = ?
a) 153
b) 149
c) 147
d) 154
e) 157
Page | 6
24) √80.5 + (44.9 ÷ 8.9) × (24.8% 𝑜𝑓 199.2) − 29.7 = ?
a) 219
b) 229
c) 239
d) 249
e) 259
Page | 7
d) 29
e) 35
Page | 8
33) 242 200 162 128 98 ?
a) 80
b) 82
c) 76
d) 72
e) None of these
34) 12 24 41 72 133 ?
a) 225
b) 249
c) 219
d) 115
e) None of these
35) 12 14 17 27 42 ?
a) 65
b) 64
c) 60
d) 68
e) None of these
Page | 11
47) 8 17 26 45 80 147
a) 45
b) 80
c) 147
d) 26
e) None of these
49) 42 43 47 56 75 97
a) 75
b) 56
c) 43
d) 97
e) None of these
55) 15 21 33 39 51 60
a) 33
b) 60
c) 39
d) 51
e) None of these
60) 2 5 8 19 34 72
a) 72
b) 8
c) 19
d) 34
e) None of these
Page | 14
QUADRATIC EQUATION
In each of these questions, two equations (I) and (II) are given. You
have to solve both the equations and answer the following questions.
इनमें से प्रत्येक प्रश्न में दो समीकरण (I) और (II) ददए गए हैं । आपको दोनोों
समीकरणोों को हल करना है और दनम्नदलखित प्रश्नोों के उत्तर दे ने हैं ।
a) x > y
b) x < y
c) x ≥ y
d) x ≤ y
e) x = y or cannot be determined
61) x² + 11x = - 28
y² + 19y – 92 = 0
62) x² + 31x + 58 = 0
y² - 13y +36 = 0
65) 2x² - 6x – 80 = 0
3y² - 54y + 240 = 0
Page | 15
68) x² - 36x + 323 =0
y² - 6y – 91 = 0
71) x² − 4x – 96 =0
y² + 7y – 60=0
72) x² + x – 56 = 0
y² − 17y + 70 = 0
73) x² − 19x + 78 = 0
y² − 25 = 0
74) x² + 9x − 22 = 0
y² − 11y + 24 = 0
75) 2x + 3y = 13
8x − 6y = 4
Page | 16
MAINS SPEED MATHS
Find the value of x and y in the given series and answer the following
questions.
दी गई श्रोंिला में x और y का मान ज्ञात कीदिए और दनम्नदलखित प्रश्नोों के उत्तर
दीदिए।
5 5 3 1 7
76) x = ( ) + ( ) − ( ) + ( ) − ( )
8 6 4 3 10
5 11 9 1
y=( )− ( )+ ( )− ( )
12 14 15 12
a) x > y
b) x ≥ y
c) x > y
d) x ≤ y
e) x = y or No relation can be formed
1
(3) 2
77) (85184) − √961 ∗ 𝑥 + ( ) 𝑜𝑓 375 – 48 = 22
5
5
6 % 𝑜𝑓 9600 + (1425 ÷ 25 ÷ 3] = 127 + 𝑦
8
Find the value of (y - x³).
(y - x³) का मान ज्ञात कीदिए।
a) 424
b) 464
c) 444
d) 484
e) None of these
Find the approximate value of x and y in the given series and answer
the following questions.
दी गई श्रोंिला में x और y का अनुमादनत मान ज्ञात कीदिए और दनम्नदलखित प्रश्नोों
के उत्तर दीदिए।
Page | 18
(x – y) का मान ज्ञात कीदिए।
a) 118
b) 116
c) 114
d) 112
e) 110
Page | 19
c) 1764
d) 1936
e) 2304
86) I. 5x + 2y + 3z = 128
II. 2x – 7y + 4z = - 35
III. 6x – 4y – 6z = - 48
a) x < y = z
b) x = y > z
c) x < y < z
d) x > y < z
e) x < y > z
Page | 20
e) p² + 15p – 20 = 0
88) Below is a quadratic equation and find the roots of the equation. The
larger root is ‘a’ and the smaller root is ‘b’.
Quadratic equation: x² − 40x + 399 = 0
(i) Subtract 11 from ‘a’ and then substitute the resultant number as x
in the LHS of the equation to get the value of ‘m’
(ii) Add 1 to ‘b’ and then substitute the resultant number as x in the
LHS of the equation to get the value of ‘n’
What is the value of ‘m – n’?
88) नीचे एक दिघात समीकरण ददया गया है और समीकरण की िडें ज्ञात कीदिए।
बडी िड ‘a’ है और छोटी िड ‘b’ है ।
दिघात समीकरण: x² − 40x + 399 = 0
(i) ‘a’ से 11 घटाएँ और दिर पररणामी सोंख्या को समीकरण के बाएँ पक्ष में x के
रूप में प्रदतस्थादपत करें तादक ‘m’ का मान प्राप्त हो सके
(ii) ‘b’ में 1 िोडें और दिर पररणामी सोंख्या को समीकरण के बाएँ पक्ष में x के रूप
में प्रदतस्थादपत करें तादक ‘n’ का मान प्राप्त हो सके
‘m – n’ का मान क्या है ?
a) 112
b) 102
c) 120
d) 90
e) 100
89) Below is a quadratic equation, find the roots of this equation in which
the larger root is ‘a’ and the smaller root is ‘b’.
Quadratic equation: x² − x − 870 = 0
(i) Subtract 12 from ‘a’ and then substitute the resultant number as x
in the LHS of the equation to get the value of ‘m’
(ii) Add 4 to ‘b’ and then substitute the resultant number as x in the
LHS of the equation to get the value of ‘n’
What is the value of ‘m + n?
Page | 21
89) नीचे एक दिघात समीकरण ददया गया है , इस समीकरण की िडें ज्ञात करें
दिसमें बडी िड ‘a’ है और छोटी िड ‘b’ है ।
दिघात समीकरण: x² − x − 870 = 0
(i) ‘a’ से 12 घटाएँ और दिर पररणामी सोंख्या को समीकरण के बाएँ पक्ष में x के
रूप में प्रदतस्थादपत करें तादक ‘m’ का मान प्राप्त हो सके
(ii) ‘b’ में 4 िोडें और दिर पररणामी सोंख्या को समीकरण के बाएँ पक्ष में x के रूप
में प्रदतस्थादपत करें तादक ‘n’ का मान प्राप्त हो सके
‘m + n’ का मान क्या है ?
a) -725
b) -645
c) -784
d) -894
e) -781
90) The table below contains columns I and II. Column I has rows A, B, and
C, and Column II has rows D, E, and F. Which parts of Column I match
correctly with Column II?
नीचे दी गई तादलका में स्तोंभ I और II हैं । स्तोंभ I में पोंखियाँ A, B और C हैं , और
स्तोंभ II में पोंखियाँ D, E और F हैं । स्तोंभ I का कौन सा भाग स्तोंभ II से सही ढों ग से
मेल िाता है ?
Equation Condition
D. Sum of the roots is the square of a
A. x² + 6x – 315 = 0
number
B. y² - 11y – 350 = 0 E. Difference between two roots is 6
F. One of the roots is the square of a
C. z² - 49z + 580 = 0
prime number
a) Only AE
b) Only BF
c) Only CD and AE
d) Only BF and CD
e) None of the above
Page | 22
91) The table below contains columns I and II. Column I has rows A, B, and
C, and Column II has rows D, E, and F. Which parts of Column I match
correctly with Column II?
नीचे दी गई तादलका में स्तोंभ I और II हैं । स्तोंभ I में पोंखियाँ A, B और C हैं , और
स्तोंभ II में पोंखियाँ D, E और F हैं । स्तोंभ I का कौन सा भाग स्तोंभ II से सही ढों ग से
मेल िाता है ?
Equation Condition
A. 3x² + 7x – 20 = 0 D. One of the roots is a prime number
E. Difference between the square of
B. 2y² - 17y + 35 = 0
one of the roots and 35 is 46
F. Difference between the cube of one
C. z² - 5z – 36 = 0
of the roots and 27 is 35
a) Only CE
b) Only BD and AF
c) Only AF
d) Only BD, CE
e) Only BD, CE and CF
93) I. x² - ax + (b – 3) = 0
II. y² - (a + 1) y + b = 0
III. z² - 10z + 21 = 0
Note:
i) The root values of I are p and 4
ii) The root values of II are p and 5
Find which of the following statement is/ are correct.
1. One of the roots of III is equal to the value of p
2. Product of the roots of II is less than the product of the roots of III
3. One of the roots of III is greater than (b – a)
नोट:
i) I के मूल मान p और 4 हैं
ii) II के मूल मान p और 5 हैं
दनम्नदलखित में से कौन सा कथन सही है /हैं , यह पता लगाएों ।
1. III की एक िड p के मान के बराबर है
2. II की िडोों का गुणनिल III की िडोों के गुणनिल से कम है
3. III की एक िड (b – a) से बडी है
a) Only 1
b) Both 1 and 2
c) Only 3
d) Both 1 and 3
e) All 1, 2 and 3
94) In the following questions, a series is given in which one term is wrong
with which another series is started. Find the 5th term of the new
series so formed. Both series follow the same pattern.
Page | 24
दनम्नदलखित प्रश्नोों में एक श्रोंिला दी गई है दिसमें एक पद गलत है दिसके साथ दू सरी
श्रोंिला शुरू की गई है । इस प्रकार बनी नई श्रोंिला का 5वाँ पद ज्ञात कीदिए। दोनोों
श्रोंिलाएँ समान पैटनग का अनुसरण करती हैं ।
2 10 30 106 322 970
a) 2590
b) 2410
c) 2280
d) 2640
e) None of these
95) Analyze the pattern of the series given below and answer the
following questions. Series II follows the pattern same as Series I.
नीचे दी गई श्रोंिला के पैटनग का दवश्लेषण करें और दनम्नदलखित प्रश्नोों के उत्तर दें ।
श्रोंिला II, श्रोंिला I के समान पैटनग का अनुसरण करती है ।
Series I: 8, 10, 17, 31, x, 88
Series II: a, b, c, (x+3), d
Find the value of (d+a).
d+a का मान ज्ञात कीदिए।
a) 154
b) 184
c) 114
d) 94
e) None of these
96) There are two number series with missing terms and both series
follow different patterns. Read the question carefully and answer
accordingly.
दो सोंख्या श्रोंिलाएँ हैं दिनमें लुप्त पद हैं और दोनोों श्रोंिलाएँ अलग-अलग पैटनग का
अनुसरण करती हैं । प्रश्न को ध्यान से पढें और उसके अनुसार उत्तर दें ।
Series I: 25 32 71 220 x 4442
Series II: 20 102 411 1238 2483 y
Find x + [(y/2) + 13]/12.
Page | 25
x + [(y/2) + 13]/12 ज्ञात कीदिए।
a) 992
b) 972
c) 994
d) 996
e) None of these
97) There are two number series with missing terms and both series
follow different patterns. Read the question carefully and answer
accordingly.
दो सोंख्या श्रोंिलाएँ हैं दिनमें लुप्त पद हैं और दोनोों श्रोंिलाएँ अलग-अलग पैटनग
का अनुसरण करती हैं । प्रश्न को ध्यान से पढें और उसके अनुसार उत्तर दें ।
Series I: x 19 34 93 356 1755
Series II: 10 15 30 75 225 y
Find (x² + 2y - 75) /4.
(x² + 2y - 75) /4 ज्ञात कीदिये।
a) 425
b) 475
c) 575
d) 525
e) 450
98) There are three series I, II & III are given, you have to find the wrong
number in these series which is represented by x, y and z respectively
and established the relationship between x, y and z.
तीन श्रोंिलाएँ I, II और III दी गई हैं , आपको इन श्रोंिलाओों में गलत सोंख्या ढू ों ढनी
है दिसे क्रमशः x, y और z िारा दशाग या गया है और x, y और z के बीच सोंबोंध
स्थादपत करना है ।
Series I: 243 81 54 60 70 120
Series II: 70 71 67 76 60 84
Series III: 80 40 45 60 120 300
a) x > y > z
b) x = y = z
Page | 26
c) x > y < z
d) x < y > z
e) x < y < z
99) Two series I and II are given below with the missing term 'J' in series
I and the missing term 'W' in series II.
Series 1: 500, 379, 265, 164, 82, J, 13
Series II: W, 577, 773, 954, 1118, 1263
Which of the following statement/s is/are False?
(i) Both J and W are prime numbers.
(ii) One among J and W is a perfect square and the other is a perfect
cube.
(iii) Any one of J and W has a value of 368.
नीचे दो श्रोंिला I और II दी गई हैं , दिनमें श्रोंिला I में लुप्त पद 'J' और श्रोंिला II में
लुप्त पद 'W' है ।
श्रोंिला 1: 500, 379, 265, 164, 82, J, 13
श्रोंिला II: W, 577, 773, 954, 1118, 1263
दनम्नदलखित में से कौन सा कथन गलत है ?
(i) J और W दोनोों अभाज्य सोंख्याएँ हैं ।
(ii) J और W में से एक पूणग वगग है और दू सरा पूणग घन है ।
(iii) J और W में से दकसी एक का मान 368 है ।
a) Both I and III
b) Both I and II
c) Both II and III
d) All I, II and III
e) Only I
100) Two series I and series II are given. Which of the following is correct
about the relationship among the missing numbers in the following
series?
Series I: 128, 64, 96, 240,840, (T + 2756)
Series II: 329, (W + 114), 289, 458, 97, 938
(i) The LCM of these two terms T and W is 7168.
Page | 27
(ii) The absolute difference between these two terms T and W is 700.
(iii) The Sum of these two terms T and W is divisible by 12.
दो श्रोंिला I और श्रोंिला II दी गई हैं । दनम्नदलखित श्रोंिला में लुप्त सोंख्याओों के बीच
सोंबोंध के बारे में दनम्नदलखित में से कौन सा सही है ?
श्रोंिला I: 128, 64, 96, 240,840, (T + 2756)
श्रोंिला II: 329, (W + 114), 289, 458, 97, 938
(i) इन दो पदोों T और W का LCM 7168 है ।
(ii) इन दो पदोों T और W के बीच का पूणग अोंतर 700 है ।
(iii) इन दो पदोों T और W का योग 12 से दवभाज्य है ।
a) Both I and III
b) Both I and II
c) Both II and III
d) All I, II and III
e) Only I
Page | 28
SOLUTION
1) Answer
(25% of 800) ÷ 4 + 15 × 3 - √49
? = (200) ÷ 4 + 45 - 7
? = 50 + 45 - 7
? = 88
2) Answer
5 × (8 + 12) ÷ 2 - √81 + 10% of 500
= 5 × 20 ÷ 2 - 9 + 50
= 100 ÷ 2 - 9 + 50
= 50 - 9 + 50
= 91
3) Answer
(18 ÷ 2) × 7 + √64 - (30% of 300)
= 9 × 7 + 8 - 90
= 63 + 8 - 90
= -19
4) Answer
√121 + 25% of 160 - (45 ÷ 5) × 3
= 11 + 40 - 27
= 51 - 27
= 24
5) Answer
6 × (15 ÷ 3) + 10% of 400 - √36
= 6 × 5 + 40 - 6
= 30 + 40 - 6
Page | 29
= 64
6) Answer
(40 ÷ 8) × (25% of 200) + √100 - 15
= 5 × 50 + 10 - 15
= 250 + 10 - 15
= 245
7) Answer
√144 ÷ 3 + 30% of 150 - (20 ÷ 4) × 2
= 12 ÷ 3 + 45 - 10
= 4 + 45 - 10
= 39
8) Answer
(50 ÷ 10) × √49 + 15% of 600 - 20
= 5 × 7 + 90 - 20
= 35 + 90 - 20
= 105
9) Answer
√81 + (45 ÷ 9) × (25% of 200) - 30
= 9 + 5 × 50 - 30
= 9 + 250 - 30
= 229
10) Answer
(30% of 90) ÷ 3 + 20 × √16 - 25
= 27 ÷ 3 + 20 × 4 - 25
= 9 + 80 - 25
= 64
Page | 30
11) Answer
2 1/2 × (3 2/5 + 1 3/10) - √49
= 5/2 × (17/5 + 13/10) - 7
= 5/2 × 47/10 - 7
= 235/20 - 7
= 11 15/20 - 7
= 4 15/20 = 4 ¾
12) Answer
4 1/3 ÷ (2 2/5 × 1 1/6) + 25% of 80
= 13/3 ÷ (12/5 × 7/6) + 20
= 13/3 ÷ 14/5 + 20
= 13/3 × 5/14 + 20
= 65/42 + 20
= 20 25/42
13) Answer
3 1/5 × (1 2/3 ÷ 2 1/10) - √121
= 16/5 × (5/3 ÷ 21/10) - 11
= 16/5 × 50/63 - 11
= 800/315 - 11
= 2 170/315 - 11
= -8 145/315 = -8 29/63
14) Answer
√196 × (25% of 160) ÷ 4 - 12
= 14 × 40 ÷ 4 - 12
= 560 ÷ 4 - 12
= 140 - 12
= 128
15) Answer
Page | 31
(15% of 200) × 2 + √81 ÷ 3 - 5
= 30 × 2 + 9 ÷ 3 - 5
= 60 + 3 - 5
= 58
16) Answer
(49.8% of 799.9) ÷ 4.1 + 15.2 × 3.9 - √48.6
≈ (50% of 800) ÷ 4 + 15 × 4 - √49
= 400 ÷ 4 + 60 - 7
= 100 + 60 - 7
= 153
17) Answer
4.9 × (8.3 + 11.7) ÷ 2.1 - √80.9 + 9.8% of 502
≈ 5 × (8 + 12) ÷ 2 - √81 + 10% of 500
= 5 × 20 ÷ 2 - 9 + 50
= 50 - 9 + 50
= 91
18) Answer
(17.6 ÷ 2.4) × 6.9 + √63.9 - (29.5% of 300)
≈ (18 ÷ 2) × 7 + √64 - (30% of 300)
= 9 × 7 + 8 - 90
= 63 + 8 - 90
= -19
19) Answer
√120.9 + 24.8% of 159.9 - (44.9 ÷ 4.8) × 3.1
≈ √121 + 25% of 160 - (45 ÷ 5) × 3
= 11 + 40 - 27
= 24
Page | 32
20) Answer
5.8 × (14.7 ÷ 3.1) + 9.9% of 399.9 - √35.8
≈ 6 × (15 ÷ 3) + 10% of 400 - √36
= 6 × 5 + 40 - 6
= 30 + 40 - 6
= 64
21) Answer
(39.6 ÷ 7.8) × (24.8% of 199.7) + √99.9 - 15.2
≈ (40 ÷ 8) × (25% of 200) + √100 - 15
= 5 × 50 + 10 - 15
= 250 + 10 - 15
= 245
22) Answer
√143.8 ÷ 3.1 + 29.7% of 149.8 - (19.6 ÷ 3.9) × 2.1
≈ √144 ÷ 3 + 30% of 150 - (20 ÷ 4) × 2
= 12 ÷ 3 + 45 - 10
= 4 + 45 - 10
= 39
23) Answer
(49.6 ÷ 9.9) × √48.9 + 14.8% of 599.3 - 19.9
≈ (50 ÷ 10) × √49 + 15% of 600 - 20
= 5 × 7 + 90 - 20
= 35 + 90 - 20
= 105
24) Answer
√80.5 + (44.9 ÷ 8.9) × (24.8% of 199.2) - 29.7
≈ √81 + (45 ÷ 9) × (25% of 200) - 30
= 9 + 5 × 50 - 30
Page | 33
= 9 + 250 - 30
= 229
25) Answer
(29.7% of 89.8) ÷ 3.1 + 19.7 × √15.9 - 24.7
≈ (30% of 90) ÷ 3 + 20 × √16 - 25
= 27 ÷ 3 + 80 - 25
= 9 + 80 - 25
= 64
26) Answer
3.1 × (1.6 ÷ 2.1 + 3.9) + √119.7 - 18.2
≈ 3 × (2 ÷ 2 + 4) + √121 - 18
= 3 × (1 + 4) + 11 - 18
= 3 × 5 + 11 - 18
= 15 + 11 - 18
=8
27) Answer
2.9 × (4.8 ÷ 3.2 + 3.1) - √80.2 + 20.4
≈ 3 × (5 ÷ 3 + 3) - √81 + 20
= 3 × (2 + 3) - 9 + 20
= 3 × 5 - 9 + 20
= 15 - 9 + 20
= 26
28) Answer
√49.7 × (24.9% of 100) ÷ 4.81 - 14.1
≈ √49 × (25% of 100) ÷ 5 - 14
= 7 × 25 ÷ 5 - 14
= 175 ÷ 5 - 14
= 35 - 14
Page | 34
= 21
29) Answer
√195.9 × (24.8% of 160) ÷ 4.1 - 11.9
≈ √196 × (25% of 160) ÷ 4 - 12
= 14 × 40 ÷ 4 - 12
= 560 ÷ 4 - 12
= 140 - 12
= 128
30) Answer
(14.9% of 199.7) × 1.9 + √80.1 ÷ 2.9 - 4.9
≈ (15% of 200) × 2 + √81 ÷ 3 - 5
= 30 × 2 + 9 ÷ 3 - 5
= 60 + 3 - 5
= 58
31) Answer
5²+2=27
6²+4=40
7²+6=55
8²+8=72
9²+10=91
10²+12=112
32) Answer
23²+23=552
24²+24=600
25²+25=650
26²+26=702
27²+27=756
28²+28=812
Page | 35
33) Answer
2*(11²) =242
2*(10²) =200
2*(9²) =162
2*(8²) =128
2*(7²) =98
2*(6²) =72
34) Answer
12 24 41 72 133 249
12 17 31 61 116
5 14 30 55
9 16 25
35) Answer
14-12=2 = (1²+1)
17-14=3=(2²-1)
27-17=10=(3²+1)
42-27=15=(4²-1)
68-42=26=(5²+1)
36) Answer
31 * 1 – 1 = 31 – 1 = 30
30 * 2 – 2 = 60 – 2 = 58
58 * 3 – 3 = 174 – 3 = 171
171 * 4 – 4 = 684 – 4 = 680
680 * 5 – 5 = 3400 – 5 = 3395
37) Answer
212 + 1³ = 212 + 1 = 213
213 + 2³ = 213 + 8 = 221
Page | 36
221 + 3³ = 221 + 27 = 248
248 + 4³ = 248 + 64 = 312
312 + 5³ = 312 + 125 = 437
38) Answer
34 * 1 + 1 = 34 + 1 = 35
35 * 2 – 2 = 70 – 2 = 68
68 * 3 + 3 = 204 + 3 = 207
207 * 4 – 4 = 828 – 4 = 824
824 * 5 + 5 = 4120 + 5 = 4125
39) Answer
235 + 5³ = 235 + 125 = 360
360 + 6² = 360 + 36 = 396
396 + 7³ = 396 + 343 = 739
739 + 8² = 739 + 64 = 803
803 + 9³ = 803 + 729 = 1532
40) Answer
120 263 458 713 1036 1435
12²-1 14²-1 16²-1 18²-1 20²-1
41) Answer
81 * 0.5 + 0 = 40.5 + 0 = 40.5
40.5 * 1 + 1 = 40.5 + 1 = 41.5
41.5 * 2 + 2 = 83 + 2 = 85
85 * 4 + 3 = 340 + 3 = 343
343 * 8 + 4 = 2744 + 4 = 2748
42) Answer
(114 + 6) * 2 = 120 * 2 = 240
(240 + 6) * 2 = 246 * 2 = 492
Page | 37
(492 + 6) * 2 = 498 * 2 = 996
(996 + 6) * 2 = 1002 * 2 = 2004
(2004 + 6) * 2 = 2010 * 2 = 4020
43) Answer
140 * 2 + 2² = 280 + 4 = 284
284 * 2 + 3² = 568 + 9 = 577
577 * 2 + 4² = 1154 + 16 = 1170
1170 * 2 + 5² = 2340 + 25 = 2365
2365 * 2 + 6² = 4730 + 36 = 4766
44) Answer
90 + 2²+ 2 = 90 + 4 + 2 = 96
96 + 3² + 3 = 96 + 9 + 3 = 108
108 + 5² + 5 = 108 + 25 + 5 = 138
138 + 7² + 7 = 138 + 49 + 7 = 194
194 + 11² + 11 = 194 + 121 + 11 = 326
45) Answer
219 + 144 = 363
363 + 144 = 507
507 + 144 = 651
651 + 144 = 795
795 + 144 = 939
46) Answer
12 25 51 90 142 207
+13 +26 +39 +52 +65
47) Answer
8 15 26 45 80 147
7 11 19 35 67
Page | 38
4 8 16 32
48) Answer
1372 196 98 14 7 1
÷7 ÷2 ÷7 ÷2 ÷7
49) Answer
42 + 1² = 43
43 + 2² = 47
47 + 3² = 56
56 + 4² = 72
72 + 5² = 97
50) Answer
2 12 63 319 1600 8006
*5+2 *5+3 *5+4 *5+5 *5+6
51) Answer
26+6*7 = 68
68+5*6 = 98
98+4*5 = 118
118+3*4 = 130
130+2*3= 136
52) Answer
512 128 64 48 48 60
*1/4 *2/4 *3/4 *4/4 *5/4
53) Answer
(1³+2) = 3
(2³+4) = 12
Page | 39
(3³+6) = 33
(4³+8) = 72
(5³+10) = 135
(6³+12) = 228
54) Answer
1 2 8 43 305 2750
(1*1)+1 (2*3)+2 (8*5)+3 (43*7)+4 (305*9)+5
55) Answer
5* 3 = 15
7 * 3 = 21
11* 3 = 33
13* 3 =39
17* 3 = 51
19* 3 = 57
56) Answer
11³ + 19 =1350
12³ + 19 = 1747
13³ + 19 = 2216
14³ + 19 = 2763
15³ + 19 = 3394
16³ + 19 = 4115
57) Answer
51² + 2 = 2601 + 2 = 2603
53² + 4 = 2809 + 4 = 2813
55² + 6 = 3025 + 6 = 3031
57² + 8 = 3249 + 8 = 3257
59² + 10 = 3481 + 10 = 3491
61² + 12 = 3721 + 12 = 3733
Page | 40
58) Answer
12³ * 2 +1 = 1728 * 2 +1 = 3457
10³ * 2 + 1 = 1000 * 2 +1 = 2001
8³ * 2 + 1 = 512* 2 +1 = 1025
6³ * 2 + 1 = 216 * 2 +1 = 433
4³ * 2 + 1 = 64 * 2 +1 = 129
2³ * 2 + 1 = 8 * 2 +1 = 17
59) Answer
9 * 5 – 5 = 45 – 5 = 40
40 * 5 – 5 = 200 – 5 = 195
195 * 5 – 5 = 975 – 5 = 970
970 * 5 – 5 =4850 – 5 = 4845
4845 * 5 – 5 = 24225 – 5 = 24220
60) Answer
2*2+1=5
5*2–2=8
8 * 2 + 3 = 19
19 * 2 - 4 = 34
34* 2 + 5 = 73
61) Answer
From (I)
x² + 11x = - 28
x² + 7x + 4x + 28 = 0
(x + 7) (x + 4) = 0
x = -7, -4
From (II)
y² + 19y – 92 = 0
Page | 41
y² + 23y – 4y - 92 = 0
(y + 23) (y - 4) = 0
y = -23, 4
Thus, x=y or no relationship can be established
62) Answer
From (I)
x² + 29x + 2x + 58 = 0
(x + 29) (x + 2) = 0
x = -29, -2
From (II)
y² - 9y – 4y + 36 = 0
(y - 9) (y - 4) = 0
y = 9, 4
Thus, x < y
63) Answer
From (I)
5x² + 18x = 35
5x² - 7x + 25x - 35 = 0
x (5x – 7) + 5(5x – 7) = 0
(5x – 7) (x + 5) = 0
x = + 7/5, - 5
From (II)
2y² + 21y + 55 = 0
2y² + 10y + 11y + 55 = 0
2y (y + 5) +11(y + 5) = 0
y = – 5, – 11/2
Thus, x ≥ y
64) Answer
From (I)
Page | 42
2x² + 31x - 51 = 0
2x² + 34x – 3x – 51 = 0
2x(x + 17) – 3(x + 17) = 0
x = - 17, 3/2
From (II)
y² - 40y + 144 = 0
y² - 36y – 4y + 144 = 0
(y – 36) (y – 4) = 0
y = 36, 4
Thus, x<y
65) Answer
From (I)
2x² - 6x – 80 = 0
2x² - 16x + 10x - 80 = 0
2x(x - 8) + 10(x - 8) = 0
x = 8, - 5
From (II)
3y² - 54y + 240 = 0
3y² - 24y – 30y + 240 = 0
3y(y - 8) - 30(y - 8) = 0
(3y – 30) (y - 8) = 0
y = 8, 10
Thus, x≤y
66) Answer
From (I)
x² - 31x +198 =0
x² - 22x - 9x + 198 = 0
(x - 22) (x - 9) = 0
x = 22, 9
From (II)
Page | 43
y² + 35y + 124 = 0
y² + 31y + 4y +124 = 0
(y + 31) (y + 4) = 0
y = -31, -4
Thus, x > y
67) Answer
From (I)
x² + 57x - 2x - 114 = 0
(x + 57) (x - 2) = 0
x = -57, 2
From (II)
y² - 15y + 11y - 165 = 0
(y - 15) ( y + 11) = 0
y = 15, -11
Thus, x=y or no relationship can be established
68) Answer
From (I)
x² - 19x - 17x + 323 = 0
(x - 19) (x - 17) = 0
x = 19, 17
From (II)
y² - 13y +7y - 91 = 0
(y - 13) (y + 7) = 0
y = 13, -7
Thus, x > y
69) Answer
From (I)
x² + 48x – 153 = 0
x² + 51x – 3x - 153 = 0
Page | 44
(x + 51) (x - 3) = 0
x = -51, 3
From (II)
y² - 23y +132 = 0
y² - 11y – 12y + 28 = 0
(y - 11) (y - 12) = 0
y = 11, 12
Thus, x < y
70) Answer
From (I)
x² - 37x - 4x + 148 = 0
(x - 37) (x - 4) = 0
x = 37, 4
From (II)
y² + 29y - 9y - 261 = 0
(y + 29) (y - 9) = 0
y = -29, 9
Thus, x=y or no relationship can be established
71) Answer
From (I)
x² − 4x − 96 = 0
x² − 12x + 8x – 96 = 0
(x −12) (x + 8) = 0
x = 12, − 8
From (II)
y² + 7y – 60 = 0
y² +12y − 5y – 60 = 0
y(y + 12) − 5(y + 12) = 0
(y + 12) (y − 5) = 0
y = − 12, 5
Page | 45
Thus, no relationship can be established
72) Answer
From (I)
x² + x − 56= 0
x² − 7x + 8x – 56 = 0
x(x − 7) + 8(x − 7) = 0
x = 7, − 8
From (II)
y² − 17y + 70 = 0
y² − 7y − 10y + 70 = 0
y(y − 7) − 10(y − 7) = 0
(y − 7) (y − 10) = 0
y = 7, 10
Thus, x ≤ y
73) Answer
From (I)
x² − 19x + 78 = 0
x² − 13x − 6x + 78 = 0
x(x − 13) − 6(x − 13) = 0
(x − 13) (x − 6) = 0
x = 13, 6
From (II)
y² − 25 = 0
y² = 25
y = ±5
Thus, x > y
74) Answer
From (I)
x² + 9x − 22 = 0
Page | 46
x² + 11x − 2x – 22 = 0
x(x + 11) − 2(x + 11) = 0
(x + 11) (x − 2) = 0
x = − 11, 2
From (II)
y² − 11y + 24 = 0
y² − 3y − 8y + 24 = 0
y(y − 3)− 8(y − 3) = 0
(y − 3) (y − 8) = 0
y = 3, 8
Thus, x < y
75) Answer
(I) * 2 ----> 4x + 6y = 26
(II) --------> 8x − 6y = 4
12x = 30
x = 5/2
Substitute x = 5/2 in (I)
2(5/2) + 3y = 13
5 + 3y = 13
3y = 8
y = 8/3
Thus x < y
76) Answer
Quantity I:
(5/8) + (5/6) - (3/4) + (1/3) - (7/10)
(15*5 + 20*5 - 30*3 + 40 - 12*7)/120
= (75 + 100 – 90 + 40 - 84)/120 = 41/120
Quantity II:
(5/12) - (11/14) + (9/15) - (1/12)
(35*5 - 11*30 + 28*9 - 35)/420
Page | 47
= (175 – 330 + 252 - 35)/420 = 62/420
Quantity I > Quantity II
77) Answer
44 - (31*x) + (2/5)*375 – 48 = 22
44 – (31*x) + 150 – 48 = 22
44 + 150 – 48 – 22 = (31*x)
124 = (31*x)
X = 124/31 = 4
(53/800)*9600 + ((1425/25)/3) = 127 + y
636 + 19 – 127 = y
y = 528
Now,
528 – 43 = 528 – 64 = 464
78) Answer
55 % of 200 + 85% of 140 + x = 160 % of 240
110 + 119 + x = 384
x = 155 (y ÷ 133) * (√361 ÷ 357) = (12 ÷ y) * (1 /√289)
y / 7 * (1/357) = (12/y) * (1/17)
y2 = 1764
y = 42
√(2x – 3y - 15)
√(155*2 – 3*42 – 15)
√169
13
79) Answer
88.88 % of 387 + 14.28 % of 280 = x + 23 * 8
8/9 * 387 + (1/7) * 280 = x + 184
344 + 40 = x + 184
x = 200 60% of 740 + 98% of 1200 - √784 % of 800 =y
Page | 48
444 + 1176 – 224 =y
1396=y Now,
(2y - 7x)
2792 – 1400
1392
80) Answer
249.87*24.83 + x² * 119.81 + 16.11*14.13 = 14153.91
250*25 + x² * 120 + 16*14 = 14154
6250 + x²*120 + 224 = 14154
6474 + x²*120 = 14154
x² *120 = 7680
x² = 64
x=8
89.71% of 199.83 + 75.11% of 559.97 – 190.19 = y
90 % of 200 + 75 % of 560 – 190 = y
180 + 420 – 190 = y
410 = y Now,
(410+30)/8 = 55
81) Answer
59.73% of 359.86 + 30.13% of 239.81 – 24.87% of 399.93 = x
60% × 360 + 30% × 240 – 25% × 400 =x
(60/100) × 360 + (30/100) × 240 – (25/100) × 400 =x
216 + 72 – 100 =x
x = 188
(1234.83 ÷ 18.91) * (434.17 ÷ √960) = y * 12.98
(1235 ÷ 19) * (434 ÷ √961) = y * 13
65 * 14 = y * 13
y = 70
Now,
188 – 70 = 118
Page | 49
82) Answer
79.88% of 239.81 + 24.93% of 144.11 – 39.87% of 219.97 = x
80 % of 240 + 25 % of 144 – 40 % of 220 = x
192 + 36 – 88 = x
x = 140
15.91% of 349.81 + 27.99% of 124.83 – 455.93 ÷ 19.11 = y
16% of 350 + 28% of 125 – 456 ÷ 19 = y
56 + 35 – 24 = y
y = 67
Now,
140/2 – 67 = 70 – 67 = 3
83) Answer
61.89% of 300.11 + 130.97 = x % of 79.88 + 111.99
62% of 300 + 131 = x % of 80 + 112
186 + 131 – 121 = x * 80/100
x = 245
59.81% of 44.93% of 400.11 + (2/7) of 104.83 = y
60% of 45% of 400 + (2/7) of 105 = y
108 + 30 = y
y = 138
Now,
(245 – 138) = 107
84) Answer
44.98% of 239.81 – 23.86% of 549.87 = x - √1445
45% of 240 – 24% of 550 = x - √1444
-24 + 38 = x
x = 14
√170 * √63 - √730 * √145 = √3026 * 1.97 – y
√169 * √64 - √729 * √144 = √3025 * 2 – y
Page | 50
104 – 324 = 110 – y
y = 330
Now,
((8*14 – 330/6) – 12)2 = 45*45 = 2025
85) Answer
14.182 × 6.81 of 29.87% of 839.98 ÷ 20.83 = x × 783.87
142 × 7 of 30% of 840 ÷ 21 = x × 784
196 × 7 × 30/100 × 840/21 = x × 784
x = 21
36.13% of 349.81 + (575.78 ÷ (479.93 ÷ 11.97)) * 4.83 = y
36 % of 350 + (576 ÷ (480 ÷ 12)) * 5 = y
126 + (576 / 40) * 5 = y
126 + 72 = y
y = 198
Now,
(y - 14)/(x + 2)
(198 - 14)/(21 +2)
184/23 = 8
86) Answer
5x + 2y + 3z = 128 ---------- equation 1
2x – 7y + 4z = - 35 ---------- equation 2
6x – 4y – 6z = - 48 ---------- equation 3
Divided by 2 in Equation 3
3x – 2y – 3z = - 24 ---------- equation 4
After solving equations 1 and 4, we get
x = 13
Substitute x = 13 in equation 1 and equation 2,
We get,
2y + 3z = 63 ------------- equation 5
-7y + 4z = - 61 ------------- equation 6
Page | 51
After solving equations 5 and 6
y = 15
Substitute y = 15 in equation 5, we get
z = 11
= 13 < 15 > 11
=x<y>z
87) Answer
³√27x² - √1156x + (7 * 13) = 0
3x² - 34x + 91 = 0
3x² - 13x – 21x + 91 = 0
x (3x – 13) – 7(3x – 13) = 0
(x – 7) (3x – 13) = 0
x = 7, 13/3
From(II)
2y² - 37y + (5³ + 18) = 0
2y² - 37y + (125 + 18) = 0
2y² - 37y + 143 = 0
2y² - 11y – 26y + 143 = 0
y (2y – 11) – 13(2y – 11) = 0
(y – 13) (2y – 11) = 0
y = 13, 11/2
The larger roots of equation I and II = 7, 13
Option a)
p² - 20p + 91 = 0
p² - 13p – 7p + 91 = 0
p (p – 13) – 7 (p – 13) = 0
(p – 7) (p – 13) = 0
p = 7,13
88) Answer
x² − 40x + 399 = 0
Page | 52
x² − 21x – 19x + 399 = 0
x(x – 21) – 19(x – 21) = 0
(x – 21) (x – 19) = 0
The roots are 21 and 19
Larger root = a = 21
Smaller root = b = 19
(i) Subtract 11 from ‘a’ and then substitute the resultant number as x
in the LHS of the equation to get the value of ‘m’.
a – 11 = 21 – 11 = 10
LHS of equation ‘x² − 40x + 399 = 0’
10² − 40 * 10 + 399 = 99
So, m = 99
(ii) Add 1 to ‘b’ and then substitute the resultant number as x in the
LHS of the equation to get value of ‘n’.
b + 1 = 19 + 1 = 20
LHS of equation ‘x² − 40x + 399 = 0’
20² − 40 * 20 + 399 = -1
So, n = − 1
m – n = 99 – (− 1) = 100
89) Answer
x² − x − 870 = 0
x² − 30x + 29x − 870 = 0
x(x – 30) + 29(x – 30) = 0
(x – 30) (x + 29) = 0
The roots are 30 and − 29
Larger root = a = 30
Smaller root = b = − 29
(i) Subtract 12 from ‘a’ and put the resultant number in LHS of
equation to get value of ‘m’
a – 12 = 30 – 12 = 18
LHS of equation ‘x² − x − 870 = 0’
Page | 53
18² − 18 − 870 = − 564
So, m = − 564
(ii) Add 4 to ‘b’ and put the resultant number in LHS of equation to get
value of ‘n’
b + 4 = − 29 + 4 = − 25
LHS of equation ‘x² − x − 870 = 0’
25² − (−25) − 870 = − 220
So, n = − 220
Let
m + n = − 564 – 220 = − 784
90) Answer
A. x² + 6x – 315 = 0
x² - 15x + 21x - 315 = 0
x (x – 15) + 21 (x – 15) = 0
(x + 21) (x – 15) = 0
x = -21 (or) x = 15
So, none of the options - follows
B. y² - 11y – 350 = 0
y² + 14y – 25y – 350 = 0
y (y + 14) – 25(y + 14) = 0
(y – 25) (y + 14) = 0
y = 25 (or) y = -14
So, (F) One of the roots is the square of a prime number - follows
C. z² - 49z + 580 = 0
z² - 29z – 20z + 580 = 0
z (z – 29) – 20 (z – 29) = 0
(z – 20) (z – 29) = 0
z = 20 (or) z = 29
So, (D) Sum of the roots is the square of a number - follows
91) Answer
Page | 54
A. 3x² + 7x – 20 = 0
3x² + 12x – 5x – 20 = 0
3x (x + 4) – 5(x + 4) = 0
(3x – 5) (x + 4) = 0
x = 5/3 (or) x = - 4
So, none of the options follows
B. 2y² - 17y + 35 = 0
2y² - 10y – 7y + 35 = 0
2y (y – 5) – 7(y – 5) = 0
(2y – 7) (y – 5) = 0
y = 7/2 (or) y = 5
So, (D) one of the roots is a prime number - follows
C. z² - 5z – 36 = 0
z² - 9z + 4z – 36 = 0
z (z – 9) + 4 (z – 9) = 0
(z + 4) (z – 9) = 0
z = -4 (or) z = 9
So, (E) Difference between the square of one of the roots and 35 is 46
– follows
92) Answer
To find ‘a’:
2x² - 10x + 8 = 0
2x² - 8x – 2x + 8 = 0
2x (x – 4) – 2 (x – 4) = 0
(2x – 2) (x – 4) = 0
x = 1 (or) x = 4
a = (1 + 4)² = 5²
a = 25
To find ‘b’:
3x² - 22x + 35 = 2x² - 10x
x² - 12x + 35 = 0
Page | 55
x² - 7x – 5x + 35 = 0
x (x – 7) – 5 (x – 7) = 0
(x – 5) (x – 7) = 0
x = 5 (or) x = 7
b = 7² - 5² = 49 – 25
b = 24
So, a > b
93) Answer
From I
x² - ax + (b – 3) = 0
Substituting one of the root values of 4 in place of x
4² - 4a + b – 3 = 0
4a – b = 13 ---------- (1)
From II
y² - (a + 1) y + b = 0
Substituting one of the root values 5 in place of y
5² - (a + 1) * 5 + b = 0
25 – 5a – 5 + b = 0
5a – b = 20 ------------ (2)
Solving equations (1) and (2), we get
a = 7, b = 15
Substituting the values of a and b in I
x² - ax + (b – 3) = 0
x² - 7x + (15 – 3) = 0
x² - 7x + 12 = 0
x² - 3x – 4x + 12 = 0
x (x – 3) – 4 (x – 3) = 0
(x – 3) (x – 4) = 0
x = 3 (or) x = 4
So, the value of p = 3
From III
Page | 56
z² - 10z + 21 = 0
z² - 7z – 3z + 21 = 0
z (z – 7) – 3 (z – 7) = 0
(z – 3) (z – 7) = 0
z = 3 (or) z = 7
By checking Statement 1
One of the roots of III is equal to the value of p
Roots of III = 3, 7
Value of p = 3
So, the statement I follows
By checking Statement II
The product of the roots of II is less than the product of the roots of III
Roots of II = 5, 3
Product of the roots of II = 15
Roots of III = 3, 7
Product of the roots of III = 21
So, Statement II follows
Option 3
One of the roots of III is greater than (b – a)
Roots of III = 3, 7
(b – a) = 15 – 7 = 8
So, statement 3 does not follows
Hence, Statement 1 and 2 follows
94) Answer
2 10 34 106 322 970
*3+4 *3+4 *3+4 *3+4 *3+4
Wrong = 30
30 94 286 862 2590
*3+4 *3+4 *3+4 *3+4
Page | 57
95) Answer
8 10 17 31 54 88
1²+1 2²+3 3²+5 4²+7 5²+9
X = 54
34 36 43 (57) 80
1²+1 2²+3 3²+5 4²+7
a = 34, d = 80
a+d = 34 + 80 = 114
96) Answer
From Series I
(25 * 1) + 7 = 32
(32 * 2) + 7 = 71
(71 * 3) + 7 = 220
(220 * 4) + 7 = 887
(887 * 5) + 7 = 4442
Thus x = 887
From Series II
(20 * 5) + 2 = 102
(102 * 4) + 3 = 411
(411 *3) + 5 = 1238
(1238 * 2) + 7 = 2483
(2483 * 1) + 11 = 2494
Thus y = 2494
Required value = 887 + [(2494 / 2) + 13]/12 = 887 +105 = 992
97) Answer
From Series I
(20 - 1) * 1 = 19
(19 - 2) * 2 = 17 * 2 = 34
(34 - 3) * 3 = 31 * 3 = 93
(93 - 4) * 4 = 89 * 4 = 356
Page | 58
(356 - 5) * 5 = 351 * 5 = 1755
Thus, x = 20
From Series II
10 * 1.5 = 15
15 * 2 = 30
30 * 2.5 = 75
75 * 3 = 225
225 * 3.5 = 787.5
Thus, y = 787.5
Required value = {(20)² + (2 * 787.5) - 75} / 4 = (400 + 1575 - 75) /
4 = 1900 / 4 = 475
98) Answer
243 81 54 54 72 120
*1/3 *2/3 *3/3 *4/3 *5/3
70 71 67 76 60 85
+1² -2² +3² -4² +5²
80 40 40 60 120 300
*0.5 *1 *1.5 *2 *2.5
x = 70
y = 85
z = 45
x<y>z
99) Answer
Series I:
500 379 265 164 82 29 13
121 114 101 82 53 16
7 13 19 29 37
Thus, the missing term is 29
Series II:
368 577 773 954 1118 1263
Page | 59
209 196 181 164 145
13 15 17 19
Thus, the missing term is 368
(i) J is a prime number but W is not a prime number.
(ii) Any one of J and W is neither a perfect square nor a perfect cube.
(iii) the value of W is 368
So, the (i) and (ii) options are false.
100) Answer
Series I:
128 64 96 240 840 3780
*0.5 *1.5 *2.5 *3.5 *4.5
T + 2756 = 3780
T = 1024
329 + 3² = 338
338 - 7² = 289
289 + 13² = 458
458 - 19² = 97
97 + 29² = 938
W + 114 = 338
W = 224
i) the LCM of 1024 and 224 is 7168 is correct.
ii) difference of these two terms = 1024-224 = 800 so it is wrong
iii) sum of these two terms 1024+224 = 1248 is divisible by 12 is
correct.
Both 1 and 3 is correct.
Page | 60
Courses
Foundation &
Practice Batch For
Bank Exams 2025
(Pre + Mains)
Get this
course
SADHANA:
Practice Batch
For Bank Exams
2025 (Pre + Mains)
Get this
course
SAMBHAV:
Foundation Batch
For Bank Exams
2025 (Pre + Mains)
Get this
course
Courses
Important Features
Target Exams:
of the Batch:
Click Here to
Visit Our Website
Connect with
Kaushik Mohanty on :