0% found this document useful (0 votes)
46 views76 pages

1

The document appears to be a fragmented and disorganized collection of notes or instructions related to various mathematical and computational concepts, including data analysis, regression, and neural networks. It includes references to people, calculations, and technical terms, but lacks coherence and clarity. Overall, it seems to cover topics in statistics, machine learning, and data processing without a clear structure.

Uploaded by

testomkarmore
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
46 views76 pages

1

The document appears to be a fragmented and disorganized collection of notes or instructions related to various mathematical and computational concepts, including data analysis, regression, and neural networks. It includes references to people, calculations, and technical terms, but lacks coherence and clarity. Overall, it seems to cover topics in statistics, machine learning, and data processing without a clear structure.

Uploaded by

testomkarmore
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 76
3 Deer 20014" Consicltr There ore. 6 prope! Driven Con peter Co: En fohtee 47 Black Smith Sia ad Consoles a Ce ts ©oo people to do eon” jabs @ tr Gua" of it. How oa people. qe" need % 1 we hase | There 6, ed Contract Con be clone C with out time being Guibed) New Thue is peron + Ragas” Who Cam lo bott. fie Baa gz Cup Engg, So now tel me how mans People ane ntocloes 7 Now we need § people c Com be GC. 2a + 3b dz-atb at ili -ftom a & d d-atb C= 2a+ 3b pe du & = 2043 (d- 4) = 2a + 3d- 30 ¢ = 38d -o won obtand pom ‘a § d C= -a+ab Gom we get Which veck& which Comb™ G a,e oid how mong Vents Cam gek om Combination of ‘alg 'b' Fa + grb a3 Scalar, Com have co Vata Aatrb - t hoo ow 8 Ft 10 12, 18 A = 2| |p| Wa! |F| 3 wh Is oy 3 6 2 Ce L 3x8 4 3 13 30 yor et tha 14 | a = 2 5 3xr 3 6 { Ab onatvuction OLR Oe Ovi ginak aaa. & Leta SCC 2 + a le co ce : H See tee SPEER EE eet ; é cy fit Nea Trt bo feddtires - Re Congt ruc ReconaWe* a it Ser QaxO zat Lenn a ood xs env me A [* ' {| “No vetation blw tHe Columns. v uring ee Gam I eer ord echt Yes. ALE ae ee MPO E ede eee ae “he Meee es © Fue Js Thue ay actahiorn Shs fp. sf No hn * bot Be HO IE (3 Boe any aclotion — bly On & Bak Gone 2 3+ Yin monert sect DET ED Un & byt at pthaked Unut = 4 . Uy, ist FART headed c| B84 on “out Cons: her any Scaled Vert ion of Vie Ares Wraal ti ply ny by A the output w')) be Some otter SCaled Jerson of Vin "Eyon Voeters ” Speak Vettr Shak ch rot Chonge. Ahivection. =) ified Bualy & Spe — mabriz: PCA : Pati ple Component ns! tbs Xe (ae lal 5 <—s kh & 10 f or 6 Ts "; g i 0 % Step 1: Sctom dan chi the data leon 2 Qtr | BHA Hon : -3 ° Mean: L se in wdirected rf" we fae A lo | ° ! ad matric 8 B | Oo 1 { yrs mabrit Cc oO | Oo 1 Pe 46 Jw Por! A BC oe EN. at ] a 28 Gum] LY SSce beb/ Cabin Ties Pssoet cy = 3 mess / Hote hy 23 Nedos /vetios = £12,343 B dopa e| |£/C.2), C13), Git) (2), (2,3) (2), By), &,2), @4) a , Wa), 2) \ 2 |3 4 a dat ! ° 114 4 Adponty * 2 ‘ } Matrix. 3 \ 0 \ y l tT 0 1 aye Shothank va ab fiends = | Choundon + frends = 2 Mo hur: F fends = | Gin a Friends NetwaK how ony Ploneks Coch peton thes, te Connretions - each fouron. pe Cos.69 691 - dy 4 cad > GH ln) 1 Dar CED, WW, Wa FT — Pos “part CRED Gy) (ua) J — Day y C Ch (63), aT = Day ST > Stentinw g& ee PPP ax rot Lane, > No Nodes ae eee Hioah > Paws ira thereugl iim nooks, Ted ,.@3,2) J] - Day A [@. DBs) Kea L — Deyo ae” Ua Bykveny ~! (UY). G9123),69,Ud T= oh u E27. GD (WT tr s AS a ” at qapeaktal| h Directed w artis Aue D — Dest B 23” Dew 2024: what tb do 2 ” Clatsiptalion ” 4 lO - crear Packet 7 LEC - Not Wear Jacket: Whek t So 4 “s 2106 & <2¢'e on | 9 fF Teorg> Tockint- 10 ae {_ fomp onffut a Leslem fat "9 @ 4” Lom Anka. CiBtt Sune _§ _ hean, %,- we, leet petcdadot so ete prcticto- whet is 7Ke bYurse in te Saurbos J Ved yo AtpAtien 6 He problem © Lash Re pus:pa we 5 feolins z pedisk He i ey Min My PI Ay Foe as Hb d A %, 7 ye ade ee is ak [Plas wp o Wy 45) 49" % > GH) #19, Xi, HOY ie 469, Kry AOD Hi * Ardficial t Bet geet a es Ag Tomb ize. tos me 7 « 4 X-NO Quy sR aN ~ en, o> Affe itieg a (we f 5 be & tock 4 ‘ 7 ge the prbabi lt. y Com be Bea pty ofp £1 SL hae a rb . nur b Gat *t te anrta numnbe blu O47 2G" dee 2024: (te, 9) bing: Ge wa + eon} ea Yee Wee +b gr -etl uk — both valet Oe Vale. Fe pe ts 2-94 uy A bye | to [3 +) 4 = = t= -/ t (22) 2-4] =-3 fh 2) 4 } (42) + g-2¢! =} pO) 2 Sle atl =3 2 A pbs) 5 AT Thowea rnbex Convert to = tte meme 0) ee 3 1 146" ° 2 os 720 WXi0 oO Ux ig'® ’ ath 1 lange -ve 40 324 1-3K10 - 48) 78x10 0 lange ve &1 gud (g2 74949 3.14 0.04 + =e 0.14 -3 Bi - 0.3807 Q. @ i; o4s 0-680 / ae q ati 4 Syreid ifn 4 Logste ji ths wea abe b Cloasify fae! on He notion of prob li 2e” dee 2024 2 ee Clans freahion ; Binoy C lamification. Sigmord t d Tr we At feral Newron, ag TS K oly ——+ 4 5. ()— SO— 17 O- 3 % ri g € Cond ken Cx) = — acon fie pre = O49 = it L \ he = Cue) Ite Logistic Repmmion + jt wed f& Cloniti cation in Armee we threahold @ 0.8 $4 om Crcomp te us Heep > oS Shon we Soy Clon 4 acy) 4 05 Tham we Soy CloK © claw A > 1 ok (U-0-4)7 O| > 10 O.2 (070.2) > PD doads te 1 IPD read J= 0.23) ® (Pltuk Tos in bs 2 (P Lt, T= 1-0.231- 0.369 6 3 we fader beret 4 os the probabil, thot the gue ert Omple belongs fo Claw 4 = O32 2) ivem Re Faroe iL bth tal 4 clad nl eiak uy, HS I-4 + 0.68 =S fe 30 babs li freak the Sr omple belongs te ClaXO is O68 oly) 2) Vor ft Prob below to Clem No O.32 > Peob belongs t. Clon NA. Jt & Wines = Claws Ye = O|> claw no J , d [- 3] — Clox Yea 42 Clan Nd =s d aH > Glow No O1-> clan 4a actual Labels mel | row acl”) a “0.499994 | lone< to Clay A 0.S0001 + e | Pili pelvis ith Om ? 8 T Com ole lace Cab. ay e the the i A obel_dadh |? | jot ty tA we had 2 Clames 4 § eve, ve 3 let ta 3 Clamer {= 5 | legen 8:3 Suoeek Lobe What is of bogste we “q¢ = 4 “| > rob ik Mot Claw 4 Vewtlla Lo gite Tag be used WAM toe have Flore 2 kes Universab A ppvorimalide __‘thedtam + > 4 we Awe stacked emaugh. num be of nano We Com appro mate past oe > Consiclr Onn hidolenr bouyen a}, & it Gan oppnomaly far] moup bing) one Simpler Re prosenbatin of New x pzAnoY v a " 3 erete 87 Jon 2025 hogstic Regression MLP /Fe Convert motkrin to Vector i CloK%-O EE | 7h orclut that Spobal wel) — leese MLP bf medl 20. Input Volume (4pad 2)(7783) ter WO(3EN3) kee WE GAS) Our Volume 82) woe safest, oft) 8)0], 5 v 40 \ 031 - 650 seit } BE u uv 0 0 cl A 0 a —_—— C4 Kenet / Filton Sye Tr 3x3 num ber of, Filtes ~ 2 AEH Stoide= | Bride: 2 7 Ctrides 3 Stride > 4 Now Skye Cont be LE than Keanek | Size J PEC EER) EEE Ms Kee a Way te Cabktubale the Sie of He eubput - Define tha I npuk Sizes Hx wexDe befne paddling. Cs*s xa) Now out put Sze will be Hy XW xDo (3x 322) AN Filtow = k Do = Num f Filtm =k wm of 3 Filta Size eF Ho= (Hr - F+2P) 4 2 Stride = 8 s l Padohinay af Wo = - F +o ° (Wiz 228) + \ Hee (3 ™) #1 mw 3 Wo = S22? )+1 Cee = 3 23x28 x3 2h xrU X16 Sree tt f=? Kolb les 6 Ment h $=? F-4 Res Res 22 Pe Se) 8-) Ses P20 P=0 He = Cee oH 6 Coxe | 2h = Ca )n = 2 1 Cored 24 2) 98- 5S+O\41 = 24 Sonn Coe 3 Bu ‘C= 2 a) +1226 X 1 Ghee & | | | Feat [Pet (se | ak = (WS )t! =|24 7 Galel Si: Fe3, P2O, Sod Xx 242,28 -3) 4) = pi gatsias C or) == Gon we on 28xv2exd 29429 %6 Ho= (HiT ERP) +1 co Cue red . (e ty + - 24 4 Caco Lubion roses ss CAmacteu Seep th clean that ns kK, FE, Po Ho: /S-H +0) 4( - (aree, Bx343 | % oe Oz > {4 | cu —z) eb SxsxaB_ | 2x3x3 . Fre, CAP) CFP). aeons (Haro) G3, 301) Gonsida a Clonit: cation freoblor "Ip Bx$xd Num ber of Chaves = 4 3 Conv Layer, 2p Showld bea Gan 4 prob Vector, 202 x3 After 3 Con Lasers 2n x3 93> HH ft Lge fa Bri__| ww g © $ Cat, dog, Con, tiger 3 (@) LO a CONV | CONV CONV | CONV CONV | CONV i Co lela Piseuey aig ET z= SI | EI = E = | Hy Hid, + Xa ust, +Xgi, th hl Eee) bj —> I +9) —_ Hs Tor Line an Sun. Et ee Linear z)=z regression Unit Step Percepiron [Heaviside 20 Variant &: ve Sa on 2, cape wae Hyperbolic e-o7 ‘Muttilayor NN, Tangent oa ——— RNa {tanh ore ma ee 0 2<0 Multilayer NN, helm CNS Mm ot (0,%) pool Kennet (202) Srride 2 epth sce 2/4 @ sna p00 wh 22 are and ste 2 8 man |_peoling hme pooliny / Avy pooling, yaad CNN Awk * > How =m Conv ou “J Ly Ch. FP) > Probing < ad AML: How many Layer > Activatin Funt Teo jan Options ave not geod ne data model — Train Ar Co ter t data » ced 10 clam problem 9 € § ptt AB bi images px ol Jeoo 00 224 K22H X3 iJ. Imagentt cik MMIOT: 23x28%1 DEAS [HAIL 1oKi0% erSAll —- [oP eney cafes | 14. xt 8410 laath no me Tes] 00 pee $e) Pro rn “ee ) Hla ————— | Th loz (14-5 +0 ———— 7 +4 s ee = Per s nyt \o 1 2s exrdl ‘$0 who $3e q Jom 202: ) Linear Represion Thecty & Ode 2) Poly nomial Regursion Thad & Cooke. 3) Dimensional ty Reduchon TSC uy Pe Rank ca Thc ta E*) 9 + To be Tenpei tort You Shouts Know Inept peor \ wy SO CAuaster / Stark afiarh 0.35 qe" t O node bob af ONS orn pings poctot Al from a Yond om. Dimension — Rekuction: Lacking Q@ Nahuln Daka > Com I cheese Some of the Pen pat oh Colurons using Which T cam obtasa pepcgtates Columns ust th Some epprom err ck. a hos ‘Ye now \nypektowet ealarus Given “Ha Data. > how to know the Aelation dle 2 jfealare, + Corelation Co ~eff lt +1 via b=} G A (A) @8) 40 2 @A (8) C30 ea) 9 CO y gu Awe /o a we get 10X10 matrix. tanq Scene an * 3x200 asp AOKIO To et Cath wil Ev LC ™M d Choose 1 wv X ‘am 4 + 200 200 x3 Ganan jo a ee bey < ma <} C2 4 geen a oleate P Wh 6, +, C +b ~ udpot rede +h cSt * m Ww q : aan £ ct LR Wiyb tux +b * “4 mbepedt 04 prob te” TT thom Sey Gla 4 Soy Clow o ’ Book Dake * Title Audet Price Dig Count Methods —-int -— gu pre get his Count Nove Sateat Yovelt = Nowell) ———> —_ init __ novell, betk_ info Tear “=p? Novel t . Seb_bei te L) Called. will be Not in Chil e pansat VL Child » fue. fun ae nt dla Gk ld2— wt & child ut child, Super 0)» fer snore &> Common tb cw id "name f the metrod"/ pate Clan 2 Chad \ Mode __ 2015: hepnning Method’. Dz Deke « S(mi yy fo, Gade. Cimy? Wrews Wag ~ & 9 T(r9) S Gradient dawnt dus (560) & weedy-| b |S dale o y | od: ss = Che 9 FA coh opdake we nated to Compube the Summation, fr en! Creare plas To _werolu this we take Small batch af em tes, ~t batch 6.30 2 5 b Pip, 3 pe Cd ch, > 1 de dj win have | 6 Ce ormples > how times Go nated to Loo, around the Whole daBa. ? Frwand Pre pag chor wom WH dimas hess Computation Gradient Comput ahr / a pdakion tek oy you need RA weight updates Bokeh. Whole daka b times per _updabe fm “mes per upelite So b oem S000 is a nurobe, Sha) Gs) Thus rx 100 et if] Dako MNisT. *. lo- Clow pus: 2B x 28 impuk nv obs fMLP va +BH. oalfuk redex of MEP is lo Clays; frock’ AN! MLP Relv 0 Rel = FauxksiD +512 L Jv = ginasid +sid | = sitxd +10 4o1 92.0 siz 1o 262 656 she sin T 130 ee 6 664706 input 2 bedden ° ut fag Me opt if Fined Yorroble Finad Qot \Jon_| 2.025: SVM Spent Neckot Mains Fo. Biren Claw: fication Cl -0 PB Rm clem-a Sop prt Vectors > Fy Pr Py ait af thom cu able fo Glomify “he Training Data wWithouk a exh. Mos ye > even when we hove Claus 'em balance, gum do wert 7 Hes Clas -0. Clam-4 > Sot Mangan 5 pak veckns. Clos: ty cation thw 1s a mis Clo ti Calida Ry May Ae Me Ae ca 2, % % be decision Mattila closification “ bie any C lors, y cation. oVYR Red ml Red V/s Gren Yellow, blue Gree os YetLow Gwem v/s Red, Yellow, blue Blue Yulow ig Given, Red, blue Me OVO be v]¢ Gren Red Tellow, Red fy been Gre vis Blue Avovls Yellea Red vis Blue Gran Vis Yellow Red v/s Yelow Evaluation — MeBrodds: Clomificabioa Vs Mt, » Accuracy t FF Correetty Claw i-pied examples “Total numba af Crt ammpoler.. 12. 45% ry Confusion Matrix. ' « Covrd: +ve cClaitied a4 -ve Falye -Ve * “Sam ye ave ¢ BARC: -ve Cla fred ay +ve Tet Fk _ve bal z Pet L fs am F880, ve lp L ve, © ficial Reed =e public. Tun, +ve % Actually we, C lauified ag tve True -ve * Ac tially ~e, Clanitied oy sve Fae -v¢ 4 Actually +> Clawitred a ~ Ve Fahe +ve 3 Actually VC, Clauified o1 +ve we =ve A ti al Value Pre dicted Value ln | dal | ars 2) Presi & Recalb True +ve Tus tye sp Fake -ve- y of Gore Hy labelled te 10K tom Cor, Recale = Teun We Tra me oh Fete 0 Xx of Actual +ve instore cas Preusion = Rak oro poroltted 04 pve. Achiad value Eg: Total predied oy te predicted Vols Total Actot Wwe Pictures es 3o|+ os 2 EE | _oitis doducbaladeaes 1000 Precision = _ 80 fo | ea Ot ——- - Sie s 30+ HS ao Reeal = _30 = oo mi 30 + 20 s0 3) Fi~ Sede: Combination ef, freuison & Recall C Hanmont¢ mean) Flos ae C'rsecs.c))# C} Recut) - a TPePP 4 TPR+EN TR Te | [2 te QTE RPEEN. FR Re above — ertampl: 60 | | one. Flos 2 30 i 24 30dhe+20 126 Peciadt value foe ve) | “Ve t Ace = OFM. 4u0 |S40 | ho Pred preusion+ 390 = O-1T 390+H0 Re Galt - 890 = 0:45 290420 -So = Tet 248% = 0546 2890 +40 +20 237 Jon 2ors: Ki repro, | Le beg tenn! Clartering “ Groves, K- groups Chy pe prameler meoms Average We grow te aka into vk! geups bacD on the heganew to Pe mean of tas grops. Steps: ) Intiohge the Chute. Cembroiols . 2) Atslgn point clus tern 38> Updale — Centos dr . uw) Y eak - ni Keo ot) * 0 (20 ney (2 (2.2) (as) Gisd (sd (C7) G+ | eno) 62+ bss) Romolo m Inartiohiz ahion how find the Similarty Cclosenen } ae Ke, - 1) * om (4-995 v bad + eH) dist & Ct (01) Eudhileom — obet- dist to 6, 7 Sy), tol ° Views +t = Ven ad Vu-o dD" = 4 VO ba|. ¢ an 4 Year is = = G2) e v Qu +22)" = JE Yasnttos = ve (95) 7 Vat ist evan o ec) ~ Jleot tea . Jar Vex r69* = 1 “ (66) Lev Atay = ai 3 i (0 Vr Vz Clutert 6 , if r Chute 2 du ta (ss) Cx.) || p Ces) (ry 1 uv Ss.) (2.2) nu 6. 6) mime (6/4 Yu) - US 4 Gs,| £5) Repeak The whole pros FM he Stobi bed. cl Ce ¢ (uw (aw js) uo el Oo Ve z eo ce a 0 9 Gon 45) Cuen Cortro AL th et yy err ahy + [ee b= (2 = Ye H (Se st J Fee 201s Mhuanpon | > Wher of MPI FC is kroun joPIE | page 8 nat te Riddim Layes. > Foe at produ prpose Om Imoge sla matrix. >| Usa MiP pA Images clicthy Hae Spatial info Comet 1b to A Aleck, F Conve lution ©VPenstian. (Cutt Velame (2) Aerts) wa stet) togge movewent iter W Gxe3) ait Fier Wo (323) nut Volume (+pad 1) 02783) 2 oo 00000 Bue padding - 4 2 sree 2 A Filten We Se = 3 ng & How Com pul the Output Size, Comider te s]p ‘pefohe padding : Haw Dy! Sx 5x3 wd filter: kh ~2 Filta) lege F |: Stride S 2 Padding i 4 BZ x9 xr thom, the o}m will be Uy * WW, *D, Hy (i ete 44 § -3 4241 4) $s eee L Wo = (we - F +203) 41 Dd = * Thane em |__ image, 28x26 «3 we need Convert “Riis inte —__om_|_block _of DX Dk X16 hat | ghoul be Ake fare octens of cis Conyaluction Raye k =|? 2€ ~218 x3 2h A DU Khe Z|~e Hy x wexD; >| Ho Kino * Do Sle 2 t R-? =3 6 pip [Elsen tel il | (ep a ee Ca? See t We Fro) et . (=) ) Ee 2H “(PE sEe*)t > © sg 2H ={] 2eefitah | fl [4 fs Z 7 plelo I 23 = Soe lea +f et 5 . ag 1 Sra hs Solua 4 Ib Sel © A iC l QO. G 7 4 ¢ + a i — a a rt “| 4a } “ Bs “ w < \ 1 : g Ae «88 8 3 4 “4 i CL pe zs 7 =p a z “ aaa i “I N a . auus A t Com biai murlip Conv om FKP Ss q y i cowl 4 3 Oo | cow2 33 9 4 2 == 3x8x3 Hoe 82M 44 Hye 6-3 4240 rin } L aS =e <3 He CS) 4 s il ie Ps { ! 24 x5 {ep Feat. E pthcter alae wt ty Decists head con a Clamex — 5 ( ~2Z«s) +S (zxysy) + 3 | (34G) +3) ) t ed # fits Sing pie S| t 30 40 = 22) Avg pooling Mon pooling. Kerab Se Strike wetpsivn nae aun | [34 a Single depth slice pool 44 2i4 6i7 8 | I 3/2 [ilo] 1[2 [3] 4) a 12 2 y Pctng layer downeampies the volume stat, independent in each depth sie ofthe input vlurne. Left nthis example the Input volare of size [224322464 is pooled with iter size 2, sve 2 into output volume of size [11271 2x64, Notice thatthe volume depth is preserved. Right: The most common dossarpling operation's max, gg rise to mex pooling exe shown ‘tha etice of? Thatle each mane taken over A murere (iia 22 equate)

You might also like