Grade 9 - 2023 Exam
Grade 9 - 2023 Exam
Direction: Choose the best letter that corresponds to your answer. Write your answer on the space provided before the number.
_______ 1. What is a polynomial equation of degree two that can be written in a form a x 2 + bx + c = 0,
where a, b, c are real numbers and a ≠ 0.
a. Quadratic Equation b. Linear Inequality c. Linear Equation d. Quadratic Inequality
_______ 10. The following are the values of a, b and c that Edna and Luisa got when they expressed 5 – 3x = 2 x 2 in standard form
( Edna: a = 2, b = 3, c = -5 ; Luisa: a= -2, b= -3; c =5 )
Who do you think got the correct values of a, b c?
a. Luisa c. Both of them are correct
b. Edna d. Both of them are wrong
_________ 14. Which of the following quadratic equation has two real roots.
a. x 2 – 16 = 0 b. x 2 + 16 = 0 c. x 2+2 = 2 d. x 2+3=3
_________ 15. What is the value of “x” when you extract the roots of x 2=225 ?
a. ±15 b. 15 c. ±16 d. ±17
______ 17. Which of the following values of x make the equation x 2+7x-18=0 true?
I. -9 II. 2 III. 9
a. I & II b. II & III c. I & III d. I, II, III
______ 18. The roots are -1 and -8, which of the following equations has this roots?
a. x 2 + 9x = -8 b. x 2 + 7x = 0 c. t 2 + 8 t + 16 = 0 d. h2 + 6h = 16
______ 21. Which of the following equations may be solved easily by factoring?
a. 2 x 2=72 c. w 2−64=0
b. t 2+ ¿ 12t + 36 = 0 d. 2 s 2+ 8 s−10=0
_______22. What must be the number that should be added to make the equation x 2+ 4 x ¿ to make it a perfect square
trinomial?
a. 2 b. 4 c.6 d.8
_______23. Solve: y 2 +4 y=32 by completing the square. What are the roots?
a. y = 4 & y = -8 c. y = -6 , y = -4
b. y =-4 & y = 8 d. y = 6 , y = 4
_______24. Solve by completing the square: 2 x 2+8 x−10=0 . What are the roots?
a. 1,5 b. -1,5 c.1,-5 d. -1,-5
_______26. One of the roots of x 2−8 x +16=0 is 4. What is the other root?
a. -4 b.−8 c.16 d.4
_______28. Use the quadratic formula to solve x2− 8x + 12 = 0. What is the first step?
a. Evaluate the given c. Determine the values of a, b, c.
b. Get the square of a given d. substitutes the given to formula
_______29. Use the quadratic formula to solve x2− 8x + 12 = 0. Which of the following is the correct in substituting the given to
the Quadratic Formula?
a. b. c. d.
a. 8b b. b8 c. b2 d. b8
21. 304-2 is equal to?
a. 16 b. 1 c. 1/16 d. 1/8
22. Which of the following is equal to 1/8?
a. 23 b. 2-3 c. -23 d. 4-2
23. 1/5 equivalent to?
-3
a. 125 b. 1/125 c. 15 d. 25
24. (81/2) (81/2) is equal to?
a. 1 b. 6 c. 8 d. 1/8
a. 8 b. 8x2/z c. 8x2 d. 1
29. the symbol √ m is called _______.
n
31. given: √3
xy , determine the radicand.
a. 3 b. √ ❑ c. xy d. x2y2
32. The following will yield real roots, EXCEPT.
a. √ −8 b. √
3
−8 c. √
5
−32 d. √ 99
33. Simplify: √ 40
❑
a. 2√ 1 b. 2√ 5 c. 2√ 10 d. 2√ 1 0
34. What is the equivalent of 32/3?
a. √ 3
9 b. √
3
3 c.9 d. 27
35. Simplify: √ 250
3
a. 5 b. 2 √
3
5 c.5 √ 2 d.5 √
3
2
41. 1001/2 42. -641/3 43. 93/2 44. d-2(xy0d)28a-1 45. (d0xy2)-1
Prepared by:
“Because of your smile, you make the world most beautiful”. -Thich nhat hanh
Direction: choose the best letter that corresponds to your answer.
1. The mathematician behind Radicals is?
a. Christoph Rudolff b. Christoph Rudolf c. Christoph Rudoff d. Christoph Rodolff
2. Convert into radical form: 42/3
a. √3 2
4 b. √
2 3
4 c. √
3
4 d. ❑√ 4 2
3. Add: √ 2 + 2 √ 2
a. 3√ 2 b. √ 2 c. 2 √ 2 d. 1 √ 2
4. Subtract: 6√ 5 x -4√ 5 x.
a. 6√ 5 x b. 4√ 5 x c. 2√ 5 x d. √ 5 x
5. Simplify: 4√ 3-9√ 3.
a. -√ 3 b −5 √ 3 c. √ 3 d. √ 3
6. Solve: 2√ 5+5√ 2-4 √ 5 .
a. 3√ 5 b. −2 √ 5 +5√ 2 c. 2 √ 5 +5√ 2 d. 5√ 2
7. Simplify: √ 75-√ 27
a. 2√ 75 b. 25 √ 27 c. 2 √ 3 d. 7 √ 3
8. Multiply: ( √ 7) ¿ ).
a. √ 10 b. √ 17 c. 3√ 7 d. √ 21
9. Which of the following should multiply to √ 3 to get 3 √ 5?
a. √ 9 b. √ 15 c. √ 5 d. √ 45
10. Give the product: -√ 3(√ 6-2 √ 15 )
a. -3√ 2+ 6 √ 5 b. -3√ 2+ √ 5 c. 3√ 2+ 6 √ 5 d. -√ 2+ 6 √ 5
11. Find the product: (√ 2+ √ 3 ¿ ¿- √ 3 ¿
a. -1 b. 2-3 c. 1 d. 2
12. Find the conjugate of ¿- √ 11¿ .
a. ¿- √ 11¿ b. ¿+√ 11¿ c. −4 d. ¿- √ 11¿
13. Find the product of ¿+√ 5 ¿(√ 2-√ 5).
a. √ 6-√ 15+ √ 10-5b. √ 6-√ 15+ √ 10+5 c. √ 6+√ 15+ √ 10-5 d. √ 6-√ 15− √ 10-5
14. Which binomial will give 8-4√ 3 as the product?
a. ¿-√ 5)2 b. ¿-√ 5)2 c. ¿-√ 2)2 d. ¿-√ 2)2
15. Divide: √ 8 ÷ √ 2 .
a. 2 b. √ 4 c. √ 8 d. √ 2
2
16. Simplify: .
√3
3 √2 2 √3 √3
a. b. c. d. 2 √ 3
√3 3 3 ❑
17. divide : √ 8 +√ 24 ¿ ÷ √ 2
a. 2+2√ 3 b. 2-2√ 3 c. 2√ 3 d. 2+2√ 2
18. find x∈ √ x =8
a. 64 b. 8 c. 16 d. 32
19. determine the value of x : √ x−7-7=8
a. 232 b. 322 c. 223 d. 225
20. Solve for x: √ 3 x+7 =7
a. 12 b. 14 c. 11 d. 7
21. Evaluate: √ 3 x+3 -√ 5 x−1=0.
a. 2 b. -4 c. 0 d. 8
22. :|√
3
2 x −1+3=0
a. 13 b. 11 c. -13 d. -26
23. Determine the solution for: √ 5 x+1 =1+3√ x
9 9
a. 0 b. c. -0 d.
4 −4
a. X2 b. xy c. √ x d. x
28. What is y in : √3
y =5?
a. 25 b. 125 c. 5 d. 225
29. Which equation has x=64 as the value of x?
a. √ 3
y =5 b. ❑√ x =9 c. √
2
y =8 d. √ x =8
30. Find y: √ y =2.
4
a. 2 b. 4 c. 8 d. 16
31. A polygon of four sides is?
a. quadrilaterals b. parallelogram c. Square d. trapezoid
32. which of the following does not belong to the group?
a. b. c. d.
Prepared by:
4. The segment that joins the midpoints of the legs of a trapezoid is called the_______ .
a. median b. legs c. bases d. congruent
7. the square of hypotenuse of a _____________ is equal to the sum of the squares of the legs.
a. right triangle b. obtuse triangle c. acute triangle d. Pythagorean theorem
c?
a=9 a. 225 b. 15 c. 14 d. 125
12
9. using Pythagorean theorem find a, if b=40 and c=50.
a. 36 b. 90 c. 30 d. 900
10.in a right triangle the length of each side are given as: a=5, c=13 using Pythagorean theorem find b.
a. 7 b. 13 c. 12 d. 5
45 a. 3 b. 3 √ 2 c. 12 d. 6√ 2
x 6
45
12. In a 45-45-90 right triangle, the length of one of its leg is 20cm, what is the length of the other leg?
a. 10cm b. 20cm c. 20√ 2 d. 20 √ 3
13. In a 45-45-90 special right triangle, what is the length of the hypotenuse?
x
a. 7√ 3 b. 10 c. 7 √ 2 d. 7
14. In a 30-60-90 right triangle, the hypotenuse is 21 find the length of the shorter leg.
a. 21√ 3 b. √ 3 c. 10.5 d.10.5√ 3
15. In a 30-60-90 right triangle the length of the hypotenuse is 4 √ 3 , find the longer leg.
a. 2 √ 3 b. 4√ 3 c. 6 d. 2√ 6
16. In a Right triangle, if the acute angles are 45 degrees, then the legs are equal and the hypotenuse equals the length of the leg
times square root of two. Which illustration fit to the theorem?
a. b. c. d.
17. A triangle is right if the square of the longest side is_________ to the sum of the squares of the shorter sides.
a. equal b. greater than c. less than d. more than
18. A triangle is obtuse if the square of the longest side is_________ the sum of the squares of the shorter sides.
a. equal b. greater than c. less than d. more than
for items 31-42 complete the table below that summarizes the values of the trigonometric ratios of the angles
θ Sin Cos Tan Csc Sec Cot
30° 31. 34. 37. 41.
45° 32. 35. 38. 40.
60° 33. 36. 39. 42.
Item 42-50, solve the following using Trigonometric Ratios. Solve each triangle by finding all the missing side
lengths and angle measures.
Prepared by:
Wilma Rey Ledesma-Francisco
Subject Teacher
Congratulations…Welcome to Grade 10 Mathematics …be the best in everything you do. Love,learn, respect, obey and give thanks to God.
15. In a 30-60-90 right triangle the length of the hypotenuse is 4 √ 3 , find the longer leg.
a. 2 √ 3 b. 4√ 3 c. 6 d. 2√ 6
16. In a Right triangle, if the acute angles are 45 degrees, then the legs are equal and the hypotenuse equals the length of the leg
times square root of two. Which illustration fit to the theorem?
a. b. c. d.
17. A triangle is right if the square of the longest side is_________ to the sum of the squares of the shorter sides.
a. equal b. greater than c. less than d. more than
18. A triangle is obtuse if the square of the longest side is_________ the sum of the squares of the shorter sides.
a. equal b. greater than c. less than d. more than
Item 31-40, solve the following using Trigonometric Ratios. Solve each triangle by finding all the missing side
lengths and angle measures.
Prepared by:
Wilma Rey Ledesma-Francisco
Subject Teacher
11
38°
P 10 M
Q