0% found this document useful (0 votes)
39 views31 pages

Mae 342 Lecture 12

The document discusses spacecraft attitude control, focusing on rotation matrices, quaternions, and various control systems. It details the inputs and outputs of attitude control systems, including on-board sensors and control torques, as well as disturbances affecting spacecraft attitude. Additionally, it covers techniques such as yo-yo de-spin and continuously variable torque controllers for managing spacecraft orientation.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
39 views31 pages

Mae 342 Lecture 12

The document discusses spacecraft attitude control, focusing on rotation matrices, quaternions, and various control systems. It details the inputs and outputs of attitude control systems, including on-board sensors and control torques, as well as disturbances affecting spacecraft attitude. Additionally, it covers techniques such as yo-yo de-spin and continuously variable torque controllers for managing spacecraft orientation.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 31

2/12/20

Spacecraft Attitude Control


Space System Design, MAE 342, Princeton University
Robert Stengel

• More on Rotation Matrices


• Direction cosine matrix
• Quaternions
• Yo-yo De-Spin
• Continuously Variable Torque Controllers
• On/Off-Torque Controllers

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only.
http://www.princeton.edu/~stengel/MAE342.html 1

Attitude Control System

Fortescue
2

1
2/12/20

UARS Attitude Control System

Spacecraft Attitude Control Inputs


• On-Board Sensors
– Inertial Measurements
• Accelerometers
• Angle sensors
• Angular-rate sensors
– Optical Sensors
• Star sensors
• Sun sensors
• Horizon sensors
• Off-Board Observations
– Ground-Based Tracking
• Radar
• Navigation beacons (VOR/DME, LORAN, …)
– Spaced-Based Tracking
• GPS, GLONASS, …
4

2
2/12/20

Potential Accuracies of External


Attitude Measurements

Fortescue
5

Spacecraft Attitude Control Outputs


• Continuous Control Torques
– Control Moment/Reaction Wheel Gyros
– Magnetic Torquers
– Solar Panels
• Pulsed Control Torques
– Reaction Control Thrusters (RCS)
• One-Shot Devices
– RCS Spin-up
– Yo-Yo De-Spin
6

3
2/12/20

Spacecraft Attitude Disturbances


• External Torques
– Solar radiation pressure
– Gravity gradient
– Magnetic fields
– Aerodynamics
– Can be put to good use if related to
attitude control objectives
• Vehicle-Based Torques
– Mass movement
– Elasticity
– Out-gassing
7

More on Rotation
Matrices and Quaternions

4
2/12/20

Direction Cosine Matrix

§ Cosines of angles
between each I axis
and each B axis
§ Projections of vector
components in one
frame on the other

⎡ cos δ11 cos δ 21 cos δ 31 ⎤


⎢ ⎥
H BI = ⎢ cos δ12 cos δ 22 cos δ 32 ⎥
⎢ cos δ cos δ 23 cos δ 33 ⎥
⎣ 13

rB = H BI rI 9

Euler’s Rotation Formula


Angular orientation of one axis
system, B, with respect to another, I
Vector transformation

rB = H BI rI
= ( aT rI ) a + ⎡⎣ rI − ( aT rI ) a ⎤⎦ cos φ + sin φ ( rI × a )
= cos φ rI + (1− cos φ ) ( aT rI ) a − sin φ ( a × rI )

⎡ a1 ⎤
⎢ ⎥
a ! ⎢ a2 ⎥
⎢ a ⎥
⎣ 3 ⎦ 10

10

5
2/12/20

Euler’s Formula
rB = H BI rI = cos φ rI + (1− cos φ ) ( aT rI ) a − sin φ ( a × rI )
Identity

( a r ) a = ( aa ) r
T
I
T
I

Rotation matrix

H BI = cos φ I 3 + (1− cos φ ) aaT − sin φ a!

11

11

Quaternion Derived from Euler


Rotation Angle and Orientation
Quaternion vector
4 parameters based on Euler’s formula

⎡ ⎡ ⎛ a1 ⎞ ⎤
q1 ⎤ ⎢ ⎥
⎢ ⎥
⎢ q2 ⎥ ⎡ aφ ⎤ ⎢ sin (φ 2 ) ⎜ a2 ⎟ ⎥
⎥=⎢ ⎜ ⎟ ⎥
q=⎢ !⎢
q3 ⎥ ⎢ q4 ⎥⎦ ⎢ ⎜ a3


⎠ ⎥
⎢ ⎥ ⎣ ⎢ ⎥
⎢⎣ q4 ⎥
⎦ ⎢⎣ cos (φ 2 ) ⎥⎦
§ Not singular at θ = ±90°
§ 4-parameter representation of 3 parameters;
hence, a constraint must be satisfied

q T q = q12 + q2 2 + q32 + q4 2
= sin 2 (φ 2 ) + cos 2 (φ 2 ) = 1 12

12

6
2/12/20

Rotation Matrix Expressed with


Quaternion
From Euler’s formula

( )
H BI = ⎡⎣ q4 2 − aφ T aφ ⎤⎦ I 3 + 2aφ aφ T − 2q4 a! φ
Rotation matrix from quaternion
H BI =
⎡ q2 − q2 − q2 + q2 2 ( q1q2 + q3q4 ) 2 ( q1q3 − q2 q4 ) ⎤
⎢ 1 2 3 4

⎢ 2 ( q1q2 − q3q4 ) −q12 + q22 − q32 + q42 2 ( q2 q3 + q1q4 ) ⎥
⎢ ⎥
⎢ 2 ( q1q3 + q2 q4 ) 2 ( q2 q3 − q1q4 ) −q12 − q22 + q32 + q42 ⎥
⎣ ⎦
13

13

Quaternion Expressed from


Elements of Rotation Matrix
1
q4 = 1+ h11 + h22 + h33
2
Assuming that q4 ≠ 0

⎡ q1 ⎤ ⎡ (h − h ) ⎤
1 ⎢ ⎥
23 32
⎢ ⎥
aφ = ⎢ q2 ⎥ = ⎢ ( h31 − h13 ) ⎥
⎢ q ⎥ 4q ⎢ ⎥
⎢ ( h12 − h21 )
4
⎣ 3
⎦ ⎥
⎣ ⎦

Pisacane, 2005 14

14

7
2/12/20

Successive Rotations Expressed


by Products of Quaternions and
Rotation Matrices
Rotation from Frame q BA : Rotation from A to B
A to Frame C through qCB : Rotation from B to C
Intermediate Frame B
qCA : Rotation from A to C
Matrix Multiplication Rule

HCA ( qCA ) = HCB ( qCB ) H BA ( q BA )


Quaternion Multiplication Rule
⎡ ⎤
( ( )
q4 )B aφ BA + ( q4 )A aφ CB − a" φ aφ BA
C C B C
⎡ aφ ⎤ ⎢ ⎥
qCA = ⎢ ⎥ = qCB q BA ! ⎢ B

⎢⎣ q4 ⎥⎦ ( ( )
q4 )B ( q4 )A − aφ CB aφ BA
C B T
⎢ ⎥
A
⎣ ⎦
15

15

Quaternion Vector Kinematics


ODE is linear in both q and ωB

d ⎡ aφ ⎤ 1 ⎡ q4 ω B − ω" B aφ ⎤
q! = ⎢ ⎥= ⎢ ⎥
dt ⎢ q4
⎣ ⎥⎦ 2 ⎢ −ω BT aφ ⎥
⎣ ⎦

⎡ q!1 ⎤ ⎡ 0 ωz −ω y ω x ⎤ ⎡ q1 ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ q!2 ⎥ 1 ⎢ −ω z 0 ωx ωy ⎥ ⎢ q2 ⎥
⎢ = ⎢ ⎥
q! 3 ⎥ 2 ⎢ ω y −ω x 0 ωz ⎥ ⎢ q3 ⎥
⎢ ⎥ ⎢ ⎥
⎢⎣ q! 4 ⎥ ⎢ −ω −ω y −ω z 0 ⎥ ⎢⎣ q4 ⎥
⎦ ⎣ x
⎦B ⎦
Pisacane, 2005 16

16

8
2/12/20

Propagate Quaternion Vector


⎡ q!1 ( t ) ⎤ ⎡ 0 ω z ( t ) −ω y ( t ) ω x ( t ) ⎤ ⎡ q1 ( t ) ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
dq ( t ) ⎢ q!2 ( t ) ⎥ 1 ⎢ −ω z ( t ) 0 ω x (t ) ω y (t ) ⎥ ⎢ q2 ( t ) ⎥
=⎢ ⎥= ⎢ ⎥ ⎢ ⎥
dt ⎢ q! 3 ( t ) ⎥ 2 ⎢ ω y ( t ) −ω x ( t ) 0 ω z (t ) ⎥ ⎢ q3 ( t ) ⎥
⎢ ⎢ ⎥ ⎢
⎢⎣ q! 4 ( t ) ⎥⎥ ⎢⎣ −ω x ( t ) −ω y ( t ) −ω z ( t ) 0 ⎥⎦ B ⎢⎣ q4 ( t ) ⎥⎥
⎦ ⎦

Digital integration to compute q(tk)

dq (τ )
tk

q int ( t k ) = q ( t k−1 ) + ∫t dt dτ
k−1

Normalize q(tk) to enforce constraint

q ( t k ) = q int ( t k ) q int T ( t k ) q int ( t k )


17

17

Quaternion Interface with Euler Angles


• Quaternion and its kinematics unaffected by Euler angle convention
• Definition of HIB makes the connection
• Specify Euler angle convention (e.g., 1-2-3 or 3-1-3) ; for (1-2-3),

B
⎡ h11 h12 h13 ⎤
⎢ ⎥
H I = ⎢ h21 h22
B
h23 ⎥
⎢ h h h33 ⎥
⎣ 31 32 ⎦I
⎡ cosθ cosψ cosθ sinψ − sin θ ⎤
⎢ ⎥
= ⎢ − cos φ sinψ + sin φ sin θ cosψ cos φ cosψ + sin φ sin θ sinψ sin φ cosθ ⎥
⎢ sin φ sinψ + cos φ sin θ cosψ − sin φ cosψ + cos φ sin θ sinψ cos φ cosθ ⎥
⎣ ⎦
• Apply equations on earlier slide to find q(0)
• Perform trigonometric inversions as indicated to generate
[Φ(tk), θ(tk),Ψ(tk)] from q(tk)
18

18

9
2/12/20

Yo-Yo De-Spin

19

19

Mars Odyssey Launch Phases


Booster Separation Stage 2 Separation Stage 2 Ignition

Heat Shield Separation

Stage 3 Spinup Yo-Yo De-Spin

20

20

10
2/12/20

Yo-Yo De-spin

Kaplan

• Satellite is initially spinning at ωz rad/s


• Angular momentum and rotational energy of satellite
plus expendable masses are conserved
• Masses are released, moment of inertia increases, and
angular velocity of satellite decreases
• With proper cord length (independent of initial spin
rate), satellite is de-spun to zero angular velocity

21

21

Yo-Yo De-spin
Angular momentum
R = spacecraft radius
hz = I zzω z + mR 2 ⎡⎣ω z + φ 2 (ω z + φ! ) ⎤⎦ l = tether length
mR 2 + I zz
c=
Rotational energy mR 2
2

m = mass of 2 deployable objects


I zzω z 2 + mR 2 ⎡ω z 2 + φ 2 (ω z + φ! ) ⎤
1 1 2
T= I zz = satellite moment of inertia
2 2 ⎣ ⎦ φ = angle between split hinge and tangent point

Simultaneous solution for final angular rate


⎛ cR 2 − l 2 ⎞
ω final = ω initial ⎜ 2 2 ⎟ = 0 if l=R c
⎝ cR + l ⎠
Spaceloft 7 Sounding Rocket De-Spin
https://www.youtube.com/watch?v=5ZqbjQ9ASc8
22

22

11
2/12/20

Continuously Variable
Torque Controllers

23

23

Overview of Control

Single- or multi-axis interpretation

24

24

12
2/12/20

Single-Axis “Classical”
Control of Non-Spinning
Spacecraft
Pitching motion (about the y axis) is to be controlled

⎡ p! ( t )

⎤ ⎡ M x ( t ) / I xx
⎥ ⎢ ⎥ ⎢
( )
⎤ ⎡ I zz − I yy q ( t ) r ( t ) / I xx ⎤

⎢ q! ( t ) ⎥ = ⎢ M y ( t ) / I yy ⎥ − ⎢ ( I xx − I zz ) p ( t ) r ( t ) / I yy ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢⎣ r! ( t ) ⎥⎦ ⎢⎣ M z ( t ) / I zz ( )
⎥⎦ ⎢ I yy − I xx p ( t ) q ( t ) / I zz
⎢⎣

⎥⎦
• For motion about the y axis q! ( t ) = M y ( t ) / I yy
only, this reduces to
• Pitch angle equation θ! ( t ) = q ( t )
25

25

Single-Axis Angular Rate Control of


Non-Spinning Spacecraft
• Small angle and angular rate perturbations
• Linear actuator, e.g.,
– Momentum wheel
• Linear measurement, e.g.,
– Angular rate gyro

Simplified Control Law (C = Control Gain)

e(t) = qc (t) − q(t)


u(t) = C e(t) 26

26

13
2/12/20

Angular Rate Control


t t t
g Cg Cg
q(t) = A ∫ u(t) dt = A ∫ e(t) dt = A ∫ [ qc − q(t)] dt
I yy 0 I yy 0 I yy 0

• Iyy: moment of inertia


• q(t): angular rate
• qc(t): desired angular rate
• gA: actuator gain
• gAu(t): control torque

27

27

Step Response of Angular Rate


Controller
Step input :
⎧⎪ 0, t < 0
qc (t) = ⎨
1, t ≥ 0
⎩⎪

⎡ −⎜ A ⎟ t ⎤
⎛ Cg ⎞

q(t) = qc ⎢1− e ⎝ yy ⎠ ⎥ = qc ⎡⎣1− eλt ⎤⎦ = qc ⎡⎢1− e τ ⎤⎥


I −t

⎢ ⎥ ⎣ ⎦
⎣ ⎦

• where
– λ = –CgA/Iyy = eigenvalue or
root of the system (rad/s)
– τ = Iyy/CgA = time constant of
the response (s)

28

28

14
2/12/20

Angle Control of the Spacecraft


• Small angle and angular rate perturbations
• Linear actuator, e.g.,
– Momentum wheel
• Linear measurement, e.g.,
– Earth horizon sensor

Angle Control Law (C = Control Gain)

e(t) = θ c (t) − θ (t)


u(t) = C e(t)
29

29

Model of Dynamics and Angle Control


• 2nd-order ordinary differential equation
d 2θ (t) !! Cg
= θ (t) = A [θ c − θ (t)]
dt 2
I yy

• Output angle, θ(t), as a function of time


t t t t t t
g Cg Cg
θ (t) = A ∫ ∫ u(t) dt dt = A ∫ ∫ e(t) dt dt = A ∫ ∫ [θ c − θ (t)] dt dt
I yy 0 0 I yy 0 0 I yy 0 0

30

30

15
2/12/20

Rewrite 2nd-Order Model as Two


1st-Order Equations
θ!(t) = q(t)
Cg
! = A [θ c − θ (t)]
q(t)
I yy

⎡ θ!(t) ⎤ ⎡ 0 1 ⎤ ⎡ θ (t) ⎤ ⎡ 0 ⎤
⎢ ⎥=⎢ ⎥⎢ ⎥+⎢ ⎥ C [θ c (t) − θ (t)]
!
⎢⎣ q(t) ⎥⎦ ⎣ 0 0 ⎦ ⎢⎣ q(t) ⎥⎦ ⎢⎣ gA / I yy ⎥⎦

⎡ θ!(t) ⎤ ⎡ 0 1 ⎤ ⎡ θ (t) ⎤ ⎡ 0 ⎤
⎢ ⎥=⎢ ⎥⎢ ⎥+⎢ ⎥θ c
!
⎢⎣ q(t) ⎥⎦ ⎢⎣ −CgA / I yy 0 ⎥ ⎢ q(t)
⎦⎣ ⎥⎦ ⎢⎣ CgA / I yy ⎥⎦
31

31

Simulation of Step Response


with Angle Feedback
Objective is to control angle to 1 rad, but
solution oscillates about the target

CgA/Iyy = 1, 0.5, and 0.25 32

32

16
2/12/20

What Went Wrong?


• No damping!
• Solution: Add rate feedback

u(t) = c1 [θ c (t) − θ (t)] − c 2q(t)


• Control law with
rate feedback

Closed-loop dynamic equation

⎡ θ!(t) ⎤ ⎡ 0 1 ⎤ ⎡ θ (t) ⎤ ⎡ 0 ⎤
⎢ ⎥=⎢ ⎥⎢ ⎥+⎢ ⎥θ c
!
⎢⎣ q(t) ⎥⎦ ⎢⎣ −c1gA / I yy −c2 gA / I yy ⎥ ⎢ q(t) ⎥ ⎢ c1gA / I yy
⎦⎣ ⎦ ⎣ ⎥⎦
33

33

Step Response with Angle


and Rate Feedback

c1gA /Iyy = 1
c2gA /Iyy = 0, 1.414, 2.828
34

34

17
2/12/20

2nd-Order Dynamics
Oscillation and damping are induced by linear
feedback control

⎡ θ!(t) ⎤ ⎡ 0 1 ⎤ ⎡ θ (t) ⎤ ⎡ 0 ⎤
⎢ ⎥=⎢ ⎥⎢ ⎥+⎢ ⎥θ c
!
⎢⎣ q(t) ⎥⎦ ⎢⎣ −c1gA / I yy −c2 gA / I yy ⎥ ⎢ q(t)
⎦⎣ ⎥⎦ ⎢⎣ c1gA / I yy ⎥⎦
⎡ θ!(t) ⎤ ⎡ 0 1 ⎤ ⎡ θ (t) ⎤ ⎡ 0 ⎤
⎢ ⎥=⎢ ⎥⎢ ⎥+⎢ 2 ⎥θ c
⎥⎦ ⎢⎣ −ω n −2ζω n ⎥ ⎢ q(t) ⎥⎦ ⎢⎣ ω n ⎥⎦
2
!
⎢⎣ q(t) ⎦⎣
Natural frequency and damping ratio

ω n = c1gA / I yy

( )
ζ = c2 gA / I yy / 2ω n = c2 / 2 c 1 gA I yy
35

35

Effect of Damping on Eigenvalues,


Damping Ratio, and Natural Frequency
c1gA /Iyy = 1
c2gA /Iyy = 0, 1.414, 2.828

Eigenvalues Damping Ratio, Natural Frequency


λ1, λ2 = ζ= ωn = (rad/s)
0 + 1.0000i 0 1
0 - 1.0000i

-0.7070 + 0.7072i 0.707 1


-0.7070 - 0.7072i

-0.4143 Overdamped
-2.4137

36

36

18
2/12/20

Control System Design to


Adjust Roots
Choose control gains to satisfy desirable eigenvalue
range

37

37

Control System Design to Adjust


Transient Response
Choose control gains to satisfy step response criteria

38

38

19
2/12/20

Control System Design to Adjust


Frequency Response
Choose control gains to satisfy frequency response
criteria

39

39

Laplace Transform of the State Vector


Neglecting the initial condition

Adj ( sI − F )
x(s) = G u(s)
Δ(s)
Applied to the closed-loop system

⎡ c1gA I yy ⎤ ⎡ c1gA I yy ⎤
⎢ ⎥ ⎢ ⎥ Δu(s)
⎡ Δθ (s) ⎤ ⎢ sc1gA / I yy ⎥ ⎢ sc1gA / I yy ⎥
⎣ ⎦ Δu(s) = ⎣ ⎦
⎢ ⎥=
⎢⎣ Δq(s) ⎥
⎦ Δ(s) 2
( )
( s ) + c2 gA I yy ( s ) + c1gA I yy
40

40

20
2/12/20

Frequency Response of the System


σ = jω
Angle Frequency Response

Δθ ( jω ) ωn 2
=
Δu( jω ) ( jω ) 2 + 2ζω n ( jω ) + ω n 2

Rate Frequency Response

Δq( jω )
=
( jω ) ω n 2

Δu( jω ) ( jω ) + 2ζω n ( jω ) + ω n 2
2

• Bode plot
– 20 log(Amplitude Ratio) [dB] vs. log ω
– Phase angle (deg) vs. log ω

41

41

Proportional-Integral-
Derivative (PID) Controller

e(t) = θ C (t) − θ (t)


PID Control Law
de(t)
(or compensator): u(t) = cI ∫ e(t) dt + cP e(t) + cD
dt 42

42

21
2/12/20

Proportional-Integral-
Derivative (PID) Controller
Control Law Transfer Function:

e(s) = θ C (s) − θ (s)


e(s)
u(s) = cP e(s) + cI + cD se(s)
s
u(s) cI + cP s + cD s 2
=
e(s) s
Differentiator produces rate term for damping
Integrator compensates for persistent (bias) disturbance
43

43

Proportional-Integral-Derivative
(PID) Controller
Forward-Loop Angle θ (s) ⎡ cI + cP s + cD s ⎤ ⎡ gA ⎤
2
= ⎥ ⎢ I s2 ⎥
Transfer Function: e(s) ⎢⎣ s ⎦ ⎣ yy ⎦

44

44

22
2/12/20

Closed-Loop Spacecraft Control


Transfer Function w/PID Control

θ (s) ⎡ c I + cP s + c D s 2 ⎤
⎢ gA ⎥
θ (s) e(s) ⎣ I yy s 3 ⎦
= =
Closed-Loop Angle θ c (s) 1+ θ (s) ⎡ c I + cP s + c D s 2 ⎤
Transfer Function: e(s) 1+ ⎢ I yy s 3
gA ⎥
⎣ ⎦
c I + cP s + c D s 2
=
cI + cP s + cD s 2 + gA / I yy s 3 45

45

Closed-Loop Frequency
Response w/PID Control
θ (s) c I + cP s + c D s 2
=
θ c (s) cI + cP s + cD s 2 + gA / I yy s 3

Let s = jω. As ω -> 0


θ ( jω ) c
→ I =1 Steady-state output =
θ c ( jω ) cI desired steady-state input

As ω -> ∞
θ ( jω ) −cDω 2 c jc
→ g = D gA = − D gA High-frequency
θ c ( jω ) − j I yyω 3 A
j I yyω I yyω response “rolls off”
cD and lags input
AR → g ; φ → −90 deg
I yyω A 46

46

23
2/12/20

State (“Phase”)-Plane Plots

Cross-plot of angle (or displacement) against rate


Time not shown explicitly in phase-plane plot

47

47

Effect of Damping Ratio


on State-Plane Plots
Damping ratio = 0.1 Damping ratio = 0.3 Damping ratio = –0.1
(Unstable)

48

48

24
2/12/20

On/Off-Torque
Controllers

49

49

Single-Axis State History


with Constant Thrust
What if the control torque can only be turned ON or OFF?

⎡ θ!(t) ⎤ ⎡ 0 1 ⎤ ⎡ θ (t) ⎤ ⎡ 0 ⎤ u (t ) =
⎢ ⎥=⎢ ⎥ ⎢ q(t) ⎥ + ⎢ g / I ⎥ u(t) +1, 0, or − 1
!
⎢⎣ q(t) ⎥⎦ ⎣ 0 0 ⎦ ⎢⎣ ⎥⎦ ⎣⎢ A yy ⎥⎦
What is the time evolution of the state while a thruster is
on [u(t) = 1]?

( )
q(t) = gA / I yy t + q(0)

( )
θ (t) = gA / I yy t 2 / 2 + q(0)t + θ (0)
Neglecting initial conditions, what does
the phase-plane plot look like? 50

50

25
2/12/20

Constant-Thrust
(Acceleration) Trajectories
For u = 1, For u = –1,
Acceleration = gA/Iyy Acceleration = –gA/Iyy

Thrusting away from the origin Thrusting to the origin

With zero thrust, what does the phase-plane plot look like?
51

51

Phase Plane Plot with Zero


Thrust

How can you use this information to design


an on-off control law?
52

52

26
2/12/20

Switching-Curve Control
Law for On-Off Thrusters

• Origin (i.e., zero rate


and attitude error)
can be reached
from any point in
the state space
• Control logic:
– Thrust in one
direction until
switching curve is
reached
– Then reverse
thrust
– Switch thrust off
when errors are
zero
53

53

Switching-Curve Control with


Coasting Zone

54

54

27
2/12/20

Apollo Lunar Module Control


• 16 reaction control thrusters
– Control about 3 axes
– Redundancy of thrusters
• LM Digital Autopilot

55

55

Apollo Lunar Module


Phase-Plane Control Logic

• Coast zones conserve RCS propellant by limiting angular rate


• With no coast zone, thrusters would chatter on and off at
origin, wasting propellant
• State limit cycles about target attitude
• Switching curve shapes modified to provide robustness
against modeling errors
– RCS thrust level
– Moment of inertia 56

56

28
2/12/20

Apollo Lunar Module Phase-


Plane Control Law

Switching logic implemented in the Apollo


Guidance & Control Computer
More efficient than a linear control law for on-off
actuators

57

57

Typical Phase-Plane Trajectory

• With angle error, RCS turned on until reaching OFF


switching curve
• Phase point drifts until reaching ON switching curve
• RCS turned off when rate is 0-
• Limit cycle maintained with minimum-impulse RCS firings
– Amplitude = ±1 deg (coarse), ±0.1 deg (fine)
58

58

29
2/12/20

Multi-Axis Spacecraft Control


Asymmetry Introduces Dynamic Coupling, Complicating Control

59

59

Next Time:
Sensors and Actuators

60

60

30
2/12/20

Supplemental Material

61

61

GOES Attitude Control Sub-System

62

62

31

You might also like