0% found this document useful (0 votes)
47 views3 pages

Design of Channel Wall

The document outlines the structural design specifications for a channel wall and base slab of a filter house project. It includes detailed calculations for moments, axial loads, and reinforcement requirements for both the vertical wall and base slab. Key design parameters such as thickness, effective cover, and material strengths are also provided.

Uploaded by

Lagnajit Das
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
47 views3 pages

Design of Channel Wall

The document outlines the structural design specifications for a channel wall and base slab of a filter house project. It includes detailed calculations for moments, axial loads, and reinforcement requirements for both the vertical wall and base slab. Key design parameters such as thickness, effective cover, and material strengths are also provided.

Uploaded by

Lagnajit Das
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
You are on page 1/ 3

Banpur Filter house

PROJECT : Filter house


STRUCTURE : CHANNEL WALL -CH1
ITEM : STRUCTURAL DESIGN

Design of Channel wall


30.35

200
1.260 m

29.090

0.8 m

Design of Channel
Vertical wall
Thickness = 200 mm

Moment at base of vertical wall 0.33 tm/m

Moment from walkway 0.00 tm/m

Total Moment 0.33 tm/m

Axial load 0.6048 t/m

Axial Tension in Base Slab 0.7938 t/m

Design of base slab


Vertical wall
Thickness = 200 mm

Load due to filling of Tsken 65 MM

((1.26*1)+(200/1000*2.5)+(65/1000
load on slab *1.4)) 1.851 t/sqm

Moment at base slab ((1.851*POWER((0.8),2)/8)-0.333) 0.5923 t-m/m


Tension away from liquid
DESIGN OF CHANNEL -Vertical Wall -W3

thickness 200

DESIGN DATA

Clear cover to reinf 30 mm

Effective cover 40 mm

Sigmast on water face FY 500 (0.8*500) 400 N/mm2


face

Sigmast on earth face 250 N/mm2


face

fck 30 N/mm2
σcbc 10 N/mm2
m 2*Es/Ec 14.610
Es 200000.000

M Moment at h3 from top 0.333 T-m/m


/ 1000
b B = WIDTH 1000 1000
h D =DEPTH 200 200
CLEAR COVER 40 40
d d =EFF.DEPTH (200-40) 160
σst 400

Ast
AST =AREA OF ((1-SQRT(1-((4.6*0.333396000000001*1.5*10^7)/
=(1-SQRT(1-((4.6*Mu)/(fck*b*d 72.4
STEEL (30*1000*160^2))))/((2/(1000*160))*(500/30)))
^2))))/((2/(b*d))*(fy/fck))

(160*((14.61*(523.333333333333/1000/160))*((1+2/
Y= d*Ast/b/d*m (sqrt(1+2/ Y =DPTH OF N.A 42.406
(523.333333333333/1000/160)^0.5)-1)))
Ast/b/d*m) -1 )
Z = d-y/3 (160-42.406/3) 145.86

fs = Tensile stress in steel in


(0.333396000000001*10^7/145.86/523.333333333333) 4.36800E+01 ok
service condition = Ms/Z*As

fcb = Compressive stress in


Concrete in service condition (2*0.333396000000001*10^7/145.86/1000/42.406) 1.08 ok
= 2*Ms/Z*b*y

Average elastic tensile


ε1 =( (h-y)*fs)/((d-y)*Es) strai in concrete
((200-42.406)*43.68/(160-42.406)/200000) 0.0003

ε2 ((1.0*1000*(200-42.406)^2)/
6.73E-04
=1.0*b*(h-y)*(h-y)/(3*Es*As*(d- (3*200000*523.333333333333*(160-42.406)))
y))
εm = ε1-ε2 (200)*(1000)+(10*72.44) -3.80E-04
acr SIGCBCALL= 85 85
w = (3*acr*em)/(1+2(acr-
Crck Width ((3*85*-0.00038)/(1+(2*(85-40-10)/(160-42.406)))) -0.067 OK
cmin)/(h-x))
Ast Reqd mm2/m ALLOWABLE CRACK WIDTH 0.2
72.4 10 @ 150 523
0 @ 175 0
523 mm2/m
net spacing 150 OK MINIMUM
minimum reinf 0.175 350
DESIGN OF CHANNEL base slab of W3

member
thickness 150
number
DESIGN DATA

Clear cover to reinf 30 mm

Effective cover 40 mm

Sigmast on water face FY 500 (0.8*500) 400 N/mm2


face

Sigmast on earth face 250 N/mm2


face

fck 30 N/mm2
σcbc 10 N/mm2
m 2*Es/Ec 14.610
Es 200000.000

M Moment at h3 from top 0.592 T-m/m


/ 1000
b B = WIDTH 1000 1000
h D =DEPTH 200 200
CLEAR COVER 40 40
d d =EFF.DEPTH (200-40) 160
σst 400

Ast
AST =AREA OF ((1-SQRT(1-((4.6*0.592320000000001*1.5*10^7)/
=(1-SQRT(1-((4.6*Mu)/(fck*b*d 129.5
STEEL (30*1000*160^2))))/((2/(1000*160))*(500/30)))
^2))))/((2/(b*d))*(fy/fck))

(160*((14.61*(523.333333333333/1000/160))*((1+2/
Y= d*Ast/b/d*m (sqrt(1+2/ Y =DPTH OF N.A 42.406
(523.333333333333/1000/160)^0.5)-1)))
Ast/b/d*m) -1 )
Z = d-y/3 (160-42.406/3) 145.86

fs = Tensile stress in steel in


(0.592320000000001*10^7/145.86/523.333333333333) 7.76000E+01 ok
service condition = Ms/Z*As

fcb = Compressive stress in


Concrete in service condition (2*0.592320000000001*10^7/145.86/1000/42.406) 1.92 ok
= 2*Ms/Z*b*y

Average elastic tensile


ε1 =( (h-y)*fs)/((d-y)*Es) strai in concrete
((200-42.406)*77.6/(160-42.406)/200000) 0.0005

ε2 ((1.0*1000*(200-42.406)^2)/
6.73E-04
=1.0*b*(h-y)*(h-y)/(3*Es*As*(d- (3*200000*523.333333333333*(160-42.406)))
y))
εm = ε1-ε2 (200)*(1000)+(10*129.46) -1.50E-04
acr SIGCBCALL= 85 85
w = (3*acr*em)/(1+2(acr-
Crck Width ((3*85*-0.00015)/(1+(2*(85-40-10)/(160-42.406)))) -0.026 OK
cmin)/(h-x))
Ast Reqd mm2/m ALLOWABLE CRACK WIDTH 0.2
129.5 10 @ 150 523
0 @ 200 0
523 mm2/m
net spacing 150 OK MINIMUM
minimum reinf 0.175 350

You might also like