Deviator stress σd (psi) Confining pressure σ3 (psi)
1 6
1 3
1 0
2 6
2 3
2 0
4 6
4 3
4 0
8 6
8 3
8 0
10 6
10 3
10 0
The recoverable strain can be obtain by dividing the recoverable
The resilient modulus is computed by equation, Mr=σd/εr
From the above table we plotted a graph between resilient modu
From the graph the values of K1, K2, K3 and K4 can be found out
The values of K1 and K2 are the y and x coordinates of the interse
y = -0.9429x + 10.6
y = -0.3667x + 7.4333
So, x =
y=
K1 5422.110
K2 5.489
K3 942.9
K4 366.7
E(max)
E(min)
Recoverable deformation (0.001 in.)
0.392
0.416
0.456
0.816
0.868
1.04
2.052
2.224
3.02
5.712
7.112
9.412
7.692
11.112
16
obtain by dividing the recoverable deformation with the initial length (4 in.)
puted by equation, Mr=σd/εr
tted a graph between resilient modulus vs deviator stress
K1, K2, K3 and K4 can be found out
he y and x coordinates of the intersection of two line
5.489
5422.110
psi
psi
8711.429
60.109
1750.898
12.081
Recoverable strain εr (10^-3) Resilient modulus Mr (10^3 psi)
0.098 10.2
0.104 9.6
0.114 8.8
0.204 9.8
0.217 9.2
0.26 7.7
0.513 7.8
0.556 7.2
0.755 5.3
1.428 5.6
1.778 4.5
2.353 3.4
1.923 5.2
2.778 3.6
4 2.5
h the initial length (4 in.)
37.413 Mpa
37.871 Kpa
psi
Mpa
psi
Mpa
resilient modulus vs deviator stress
12.0
10.0 f(x) = − 0.943589509297758 x + 10.6010137438949
8.71
Resilient modulus (10^3 psi)
8.0
K3
6.0 K2
K4
f(x) = − 0.366945572904785 x + 7.43609573950069
4.0
K1
2.0
0.0
0 2 4 6 8 1015.5 12
Deviator stress, psi
(1 psi = 6.9 KPa)
s
43609573950069
1015.5 12