0% found this document useful (0 votes)
34 views8 pages

Laplace Transform

The document provides a comprehensive overview of the Laplace Transform, including its definition, properties, and various theorems related to its application. It details linearity, shifting properties, and the transformation of derivatives, along with several examples and problems to illustrate these concepts. Additionally, it includes specific relations and transformations for different functions, demonstrating the utility of the Laplace Transform in solving differential equations.

Uploaded by

mdabdurraihan6
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
34 views8 pages

Laplace Transform

The document provides a comprehensive overview of the Laplace Transform, including its definition, properties, and various theorems related to its application. It details linearity, shifting properties, and the transformation of derivatives, along with several examples and problems to illustrate these concepts. Additionally, it includes specific relations and transformations for different functions, demonstrating the utility of the Laplace Transform in solving differential equations.

Uploaded by

mdabdurraihan6
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

Laplace Transform

Laplace Transform: Let F (t ) be a function defined for t  0, then the Laplace transform of F (t )
is denoted by L{F (t )}, or f ( s ) and is defined as follows:

L{F (t )} = f ( s) =  e− st F (t )dt
0
where s is real or complex.


Note: If the integral 0
e − st F (t )dt converges for some value of s, then L{F (t )} is said to exist
otherwise it does not exist.

The Linearity Property of Laplace Transform: A Laplace transform L{F (t )} is said to be


linear if for every pair of functions F1 (t ) and F2 (t ) satisfy the following condition:
L{c1 F1 (t ) + c 2 F2 (t )} = c1 L{F1 (t )} + c 2 L{F2 (t )}
where c1 and c 2 are any constant.

First Translation or Shifting Property: If L{F (t )} = f ( s ), then L{e at F (t )} = f ( s − a).

 F (t − a) if t  a
Second Translation or Shifting Property: If L{F (t )} = f ( s ) and G (t ) =  then
 0 if t  a
L{G(t )} = e − as f ( s)

1 s
Change of Scale Property: If L{F (t )} = f ( s ), then L{F (at )} = f  .
a a

Laplace Transform of Derivatives: If L{F (t )} = f ( s ), then


L{F n (t )} = s n f ( s) − s n −1 F (0) − s n − 2 F (0) −  − sF n − 2 (0) − F n −1 (0)

Some Relations on Laplace Transform and Inverse Laplace Transform:


n!  n! 
1. L{t n } = n +1  t n = L−1  n +1 
s s 
1 1 
2. L{1} =  1 = L−1  
s s
1  1 
3. L{e at } =  e at = L−1  
s−a s − a
1  1 
4. L{e − at } =  e − at = L−1  
s+a s + a
s  s 
5. L{cos at} =  cos at = L−1  2 2 
s + a2 2
s + a 
a  a 
6. L{sin at} = 2  sin at = L−1  2 2 
s + a2 s + a 
 n !  at n
7.L e at t n  =
n!
 L−1  n +1 
=e t
(s − a) ( )
n +1
 s − a 

−1 
 at
8.L e at sin bt =
b b
 L   = e sin bt
( s − a ) + b2  ( s − a ) + b 
2 2 2

s−a 
−1  s−a  at
9.L e at cos bt =  L   = e cos bt
( s − a ) − b2  ( s − a ) − b 
2 2 2

−1 
  at
10.L e at sinh bt =
b b
 L   = e sinh bt
( s − a ) − b2  ( s − a ) − b 
2 2 2

s−a −1 
 s−a  at
11.L e at cosh bt =  L   = e cosh bt
( s − a ) − b2  ( s − a ) − b 
2 2 2

Theorem:
1. If the function F (t ) is piecewise condition over any close interval 0  t  n and of
exponential  for t>n then its Laplace transformation f(s)=L{F(t)} exist for all s   .
Proof : since F(t) is integrable in the close interval, its F(t) is exist.
Now

L{F (t )} =  e − st F (t )dt  F (t )  Me t 
0

     e− ( s − )t  M
0 0 0 0
t − st  t
− s − a  = s − a ; s  
− st − st − st
 L{F (t )} = e F ( t ) dt  e F (t ) dt  e Me dt = M e e dt = M
 
Hence the Laplace transformation exist for s   .
2. State and prove linear property of Laplace Transformation.
3. State and prove first transformation or shifting property of Laplace Transformation
Or, If L{F (t )} = f ( s) then, L{e at F (t )} = f ( s − a).
Question: Find the Laplace transformation by using first shifting method.
(n + 1)
( i ) L{t n eat } = n +1 ( )
ii L{e at sin bt} ( iii ) L{e 2t (3sin 4t − 4sin 4t} ( iv ) L{t 3e5t }
(s − a)
3! 6
Solution ( iv ) let F (t ) = t 3 then L{F (t )} = L{t 3 } = = = f (s)
s4 s4
we knowthe first sheifting method ,
L{e F (t )} = f ( s − a ) then
at

6
L{e5t t 3 } = f ( s − 5) = .(ans )
( s − 5)
4
4. State and prove second transformation or shifting property of Laplace Transformation
 F (t − a),; t  a
Or, If L{F (t )} = f ( s ) , G (t ) =  then L{G (t )} = e − sa f ( s ).
 0 ;t  a
Question: Find the Laplace transformation by using 2nd shifting method.
  2  2
( t − 1)2 when t  1 ( t − 1)3 when t  2 cos  t − 3  when t  3
( i ) F (t ) =  ( ii ) F (t ) =  ( iii )( ii ) F (t ) =   
0 when 0  t  1 0 when 0  t  2 0 2
when 0  t 
 3
t / a when 0  t  a
( iv ) F (t ) = 
1 when t  a

5. State and prove change of scale property of Laplace Transformation.


1 s
Or, If L{ f (t )} = f ( s ) then showthat L{F (at )} = f ( ).
a a
 sin t  −1 1  sin at  −1 a
Questions If L   = tan then showthat L   = tan .
 t  s  t  s
6. L{F (t )} = f ( s ) then showthat L{F (t )} = sf ( s ) − F (0).
7. L{F (t )} = f ( s) then showthat L{F (t )} = s 2 f (s ) − sF (0) − F ' (0).
8. L{F (t )} = f ( s ) then showthat L{F (t )} = s 3 f (s ) − s 2 F (0) − sF ' (0) − F  ( 0 ) .

9. L{F (t )} = f ( s) then showthat ( i ) L  F (u)du = f (ss) .(ii ) L  sinu u du  = 1s tan
0
t

0
t
−1 1
s
. ( iii ) L{t n F (t )} = ( −1) f n ( s )
n

Theorem:
(n + 1)
(i) Show that L t n  = when n  −1 and s  0.
s n +1
Show that L t n  = n +1 when n = 0,1, 2,3.... and s  0.
n!
(ii)
s
Solution: By the definition of Laplace transformation

L{F (t )} = f ( s ) =  e − st F (t )dt
0

Given function F (t ) = t n , then



L{t n } = f ( s) =  e − st t n dt.......(1)
0

1
Now putting st = y , then sdt = dy dt = dy equation (1)we get ,
s
n
y
Also t n = n ; t = 0 then y = 0 and t =  then y = 
s
the equation (1) we get ,
 y n dy 1  1 (n + 1) n ! 
L{t n } = f ( s) =  e − y = n +1  e − y y ( ) dy = n +1 (n + 1) = = n +1 ;[ (n) =  e − x x n −1dx; n  0]
n +1 −1
n n +1
0 s s s 0 s s s 0

Problem:
(i) show that
1 a 1  −1  
(i ) L 1 = ;(ii ) L a = ; ( iii ) L t = 2 ; ( iv ) L t 2  = .
s s s   s
(ii) If s>a then show that
(i ) L e at  = (ii ) L eiat  =
1 1 a s
( iii ) L sin at = 2 2 ( iv ) L cos at = 2 2
s−a s − ia s +a s +a
a s
( v ) L sinh at = 2 2 ( vi ) L cosh at = 2 2
s −a s −a
(iii) Find the Laplace transformation of the following expression.
( i ) 4e5t + 6t 3 − 3cos 4t + 4sin 5t ( ii ) 3coh5t − 4sin 5t (iii ) e 4t + 4t 3 − 2sin 3t + 3cos 5t
.
( iv ) 3t 4 − 2t 3 − 4e−3t − 2sin 5t + 3cos 2t.
(iv) Find the Laplace transformation of the following function.
t , 0  t  2
( i ) F (t ) = t sin at ( ii ) t cos at ( iii ) F (t ) =  .
3, t  2

Question: Using Laplace transformation of 1st derivatives to show that.

1 1 1
( i ) L{1} = , s  0; ( ii ) L{t} = 2 , s  0; ( iii ) L{e at } = , s  0.
s s s−a

Question: Using Laplace transformation of 2nd derivatives to show that.

a a
( i ) L{sin at} = , s  0; ( ii ) L{sinh at} = 2 .
s +a 2
2
s − a2

Question: show that

s2 − a2 6as 2 − 2a 3 2 s 3 − 6a 2 s
2 ( ) 
iii L t 2 sin at = 3 ( ) 
iv L t 2 cos at =
2as
( i ) L t sin at = 2 ( ) 
ii L t cos at =
(s + a2 ) (s + a2 ) (s + a2 ) (s + a2 )
2 2 2 2 3

Question:

sin at 
1. show that 
0
t
dt = ;
2


2. Prove by use of Laplace transformation  e − x dx =
2
;
0
2

e
− st
F (t )dt
Theorem: If F(t) has period T>0 then L{F (t )} = 0
.
1 − e sT
sin t , 0  t  
Question: Find the Laplace transformation of the function F ( t ) = 
0 ,   t  2

Question:Prove that
 
s2 − a2 2as
( i )  te− st cos at dt = 2 ( )
. ii te − st sin at dt = .
( s2 + a2 ) ( s2 + a2 )
2
0 0

Inverse Laplace Transform

Inverse Laplace Transform: If L{F (t )} = f ( s ), then F (t ) is called an inverse Laplace transform


of f (s) and it is denoted by
F (t ) = L−1  f ( s)
where L−1 is called inverse Laplace transformation operator.

The Linearity Property of Inverse Laplace Transform: If L{F1 (t )} = f 1 ( s), L{F2 (t )} = f 2 ( s)


and c1 , c 2 are constants, then
L−1{c1 f 1 ( s) + c 2 f 2 ( s)} = c1 L−1{ f 1 ( s)} + c 2 L−1{ f 2 ( s)} = c1 F1 (t ) + c 2 F2 (t )

First Translation or Shifting Property: If L−1{ f ( s)} = F (t ), then L−1{ f ( s − a)} = e at F (t ).

Second Translation or Shifting Property: If L−1{ f ( s)} = F (t ), then


 F (t − a), t  a
L−1 {e − as f ( s)} = 
 0 , ta

1 t
Change of Scale Property: If L−1{ f ( s)} = F (t ), then L−1 { f (as )} = F  .
a a

Inverse Laplace Transform of Derivatives: If L−1{ f ( s)} = F (t ), then L−1 { f n ( s)} = (−1) n t n F (t ).

Inverse Laplace Transform of Integrals: If L−1{ f ( s)} = F (t ), then L−1 s




f (u )du =
F (t )
t
.

Convolution Property: If L−1 { f ( s)} = F (t ) and L−1 {g ( s)} = G(t ), then


t
L−1{ f ( s) g ( s)} =  F (u )G (t − u ) du
0
Some Relations on Laplace Transform and Inverse Laplace Transform:
n!  n! 
1. L{t n } = n +1
 t n = L−1  n +1 
s s 
1 1 
2. L{1} =  1 = L−1  
s s
1  1 
3. L{e at } =  e at = L−1  
s−a s − a
1  1 
4. L{e − at } =  e − at = L−1  
s+a s + a
s  s 
5. L{cos at} =  cos at = L−1  2 2 
s + a2 2
s + a 
a  a 
6. L{sin at} = 2  sin at = L−1  2 2 
s + a2 s + a 

 n !  at n
7.L e at t n  =
n!
 L−1  n +1 
=e t
(s − a)  ( s − a ) 
n +1


−1 
 at
8.L e at sin bt =
b b
 L   = e sin bt
( s − a ) + b2  ( s − a ) + b 
2 2 2

s−a −1 
 s−a  at
9.L e at cos bt =  L   = e cos bt
( s − a ) − b2  ( s − a ) − b 
2 2 2

−1 
  at
10.L e at sinh bt =
b b
 L   = e sinh bt
( s − a ) − b2  ( s − a ) − b 
2 2 2

s−a −1 
 s−a  at
11.L e at cosh bt =  L   = e cosh bt
( s − a ) − b2  ( s − a ) − b 
2 2 2

Theorem:
1. If L{F1 (t )} = f 1 ( s), L{F2 (t )} = f 2 ( s) and c1 , c 2 are constants, then show that
L−1{c1 f 1 ( s) + c 2 f 2 ( s)} = c1 L−1{ f 1 ( s)} + c 2 L−1{ f 2 ( s)} = c1 F1 (t ) + c 2 F2 (t )

Question:

1. Prove that

−1 
 at  s − a  at
−1 
( i ) L−1 
1  sin at −1  1  tn b
2
= . ( ii ) L  n+1  = . ( iii ) L   = e sin bt . ( iv ) L   = e cos bt
s + a   s  ( n + 1)  ( s − a ) + b   ( s − a ) + b 
2 2 2 2 2
a

Theorem: state and prove first transformation or shifting property of inverse Laplace
transformation
Or If L−1{ f ( s)} = F (t ), then show that L−1{ f ( s − a)} = e at F (t ).
Question: Find the inverse Laplace transformation of

 3s − 8 4 s − 24  6s − 4 
( i ) L−1 
1   1   1  −1 
2 ( ) 2 (
ii L−1  2 iii ) L−1  3/2  ( iv ) L−1  2 − 2  (v ) L  2 
s + a  s + a  s   s + 4 s − 16   s − 4s + 20 
2

 2s − 11  4s + 12   
−1  −1  −1  7 s + 12  −1  s 2 + 2s + 3 
( vi ) L   ( vii ) L  2  ( viii ) L  2  ( ix ) L  2 
 ( s + 2 )( s − 3)   s + 8s + 16   s +9  (
 ( s + 2s + 2 ) ( s + 2s + 5 )
2
) 
s +1  −1  
( x ) L−1  2
4  −1  15  −1  1
 ( xi ) L  2  ( xii ) L  2  ( xiii ) L  3 2 
 4s + 16   s + 4s + 13   s + 6s + 25   s ( s + 4) 

−1  2s 2 − 4 
( ) 
xiv L 
 ( s + 1)( s − 2 )( s − 3) 

Theorem: state and prove 2nd transformation or shifting property of inverse Laplace
transformation
Or, If L−1{ f ( s)} = F (t ), then show that
 F (t − a), t  a
L−1 {e − as f ( s)} = 
 0 , ta

Theorem; If L−1{ f ( s)} = F (t ), then show that L−1 { f n ( s)} = (−1) n t n F (t ).


Question: Find inverse transformation of derivatives
   
−1  s  −1  s +1 
( )  2 2 2 ( )  2
i L ii L 
 ( s + a )   ( s + 2s + 2 ) 
2 2

 1  t 2
Question: Show that L−1  3 2  = + cos t − 1.
 s ( s + 1)  2

Convolution: If F(t) and G(t) be two functions then the convolution of two function F(t) and
G(t) denoted by F*G is define by the relation
If L−1 { f ( s)} = F (t ) and L−1 {g ( s)} = G(t ), then
t
L−1{ f ( s) g ( s)} =  F (u )G (t − u ) du = F * G
0
Theorem: State and prove convolution theorem.
Question: Using convolution theorem to show that
 
 
( i ) L−1  2 2 2  =
s t sin at 1
; ( ii ) L−1  2 2
= te −t + 2e −t + t − 2
 ( s + a )  2 a  s ( s + 1) 
Question: Using convolution theorem find the value of
  
 1  −1  1  −1  s  
−1  3  −1  1 
(i ) L −1
 ( ii ) L   ( iii ) L   ( iv ) L   (v) L  2 2 
 ( s + 1)( s − 2 )   ( s − 2 ) ( s + 1)   ( s + 4 )   s ( s + 2 )   s ( s + 4) 
2 2 3 2

   
( vi ) L−1   −1 
s 1
 ( vi ) L  2 2
 ( s + a )   s ( s + 1) 
2 2 2

Theorem: State and prove Heaviside’s expansion theorem.


Question: Using Heaviside’s expansion formula evaluate
   2s 2 − 4   3s + 1 
3s −1  −1 
(i ) L −1
 ( ii ) L   ( iii ) L  
 ( s + 1)( s − 3)   ( s + 1)( s − 2 )( s − 3)   ( s − 1) ( s + 1) 
2

Question: prove that


  
  
( i )  e− x dx = ( ii )  cos x 2 dx = ( iii )  sin x 2dx =
2
;using Laplace transformation.
0
2 0 2 2 0 2 2
Question: Solve the following differential equation using Laplace transformation.
( i ) Y  + Y = 0, Y (0) = 0, Y (0) = 1 ( ii ) Y  + Y = 1, Y (0) = 2, Y (0) = 0 ( iii ) Y  + Y = t , Y (0) = 1, Y (0) = −2.
( iv ) Y  − Y = t , Y (0) = 2, Y (0) = −3. ( v ) Y  + 4Y = 9t , Y (0) = 0, Y (0) = 7 ( vi ) y '' − 2 y ' − 8 y = 0, y(0) = 3, y ' (0) = 6.
( vii ) y '' − 2 y ' − 6 y = 0, y(0) = 1, y ' (0) = 0; ( viii ) Y  − 3Y  + 2Y = 4e2t , Y (0) = −3, Y (0) = 5.
( ix ) Y  − 3Y  + 2Y = 2e−t , Y (0) = 2, Y (0) = −1. ( x ) Y  + Y = 8cos t , Y (0) = 1, Y (0) = −1.
( xi ) Y  + 25Y = 10 cos 5t , Y (0) = 2, Y (0) = 0. ( xii ) Y  + 2Y  + 5Y = e −t sin t , Y (0) = 0, Y (0) = 1.
( xiii ) Y  + 2Y  + 5Y = e−t sin t , ( xiv ) Y  − 3Y  + 2Y = 3et , Y (0) = 0, Y (0) = 1, Y  ( 0 ) = 2.
( xv ) Y  − 3Y  + 3Y  − Y = t 2et , Y (0) = 1, Y (0) = 0, Y  ( 0 ) = −2.
( xvi ) Y  − 3Y  + 3Y  − Y = t 2et ,
( xvii ) Y  + 2Y ' + Y = 3te−t , Y (0) = 4, Y (0) = 2. ( xviii ) y '' − 6 y ' + 9 y = t 2 33t , y (0) = 2, y ' (0) = 6
( xix ) y '' + 2 y ' + y = 4sin t , y(0) = −2, y ' (0) = 1; ( xx ) x '' ( t ) + x ( t ) = 6 cos 2t; x ( 0 ) = 3, x ' ( 0 ) = 1

( xxi ) Y  + a 2Y = F ( t ) , Y (0) = 1, Y (0) = −2. ( xxii ) Y  + 9Y = cos 2t , Y (0) = 1, Y ( ) = 1.
2
d 2x dx
( xxiii ) 2
+ 3 + 2 x = t + sin t subject x ( 0 ) = 1 and x ' ( 0 ) = −2 and verify the result .
dt dt
Question: Solve the following differential equation using Laplace transformation.
( i ) ty + y + ty = 0, y ( 0 ) = 1, y ( 0 ) = c ( ii ) ty + y + 4ty = 0, y ( 0 ) = 3, y ( 0 ) = 0.
( iii ) y + y + 4ty = 0, y ( 0 ) = 3, y ( 0 ) = 0
Md.Nurul Alam
Lecturer(Mathematics)
Barishal Engineering College, Barishal

You might also like