Laplace Transform
Laplace Transform: Let F (t ) be a function defined for t 0, then the Laplace transform of F (t )
is denoted by L{F (t )}, or f ( s ) and is defined as follows:
L{F (t )} = f ( s) = e− st F (t )dt
0
where s is real or complex.
Note: If the integral 0
e − st F (t )dt converges for some value of s, then L{F (t )} is said to exist
otherwise it does not exist.
The Linearity Property of Laplace Transform: A Laplace transform L{F (t )} is said to be
linear if for every pair of functions F1 (t ) and F2 (t ) satisfy the following condition:
L{c1 F1 (t ) + c 2 F2 (t )} = c1 L{F1 (t )} + c 2 L{F2 (t )}
where c1 and c 2 are any constant.
First Translation or Shifting Property: If L{F (t )} = f ( s ), then L{e at F (t )} = f ( s − a).
F (t − a) if t a
Second Translation or Shifting Property: If L{F (t )} = f ( s ) and G (t ) = then
0 if t a
L{G(t )} = e − as f ( s)
1 s
Change of Scale Property: If L{F (t )} = f ( s ), then L{F (at )} = f .
a a
Laplace Transform of Derivatives: If L{F (t )} = f ( s ), then
L{F n (t )} = s n f ( s) − s n −1 F (0) − s n − 2 F (0) − − sF n − 2 (0) − F n −1 (0)
Some Relations on Laplace Transform and Inverse Laplace Transform:
n! n!
1. L{t n } = n +1 t n = L−1 n +1
s s
1 1
2. L{1} = 1 = L−1
s s
1 1
3. L{e at } = e at = L−1
s−a s − a
1 1
4. L{e − at } = e − at = L−1
s+a s + a
s s
5. L{cos at} = cos at = L−1 2 2
s + a2 2
s + a
a a
6. L{sin at} = 2 sin at = L−1 2 2
s + a2 s + a
n ! at n
7.L e at t n =
n!
L−1 n +1
=e t
(s − a) ( )
n +1
s − a
−1
at
8.L e at sin bt =
b b
L = e sin bt
( s − a ) + b2 ( s − a ) + b
2 2 2
s−a
−1 s−a at
9.L e at cos bt = L = e cos bt
( s − a ) − b2 ( s − a ) − b
2 2 2
−1
at
10.L e at sinh bt =
b b
L = e sinh bt
( s − a ) − b2 ( s − a ) − b
2 2 2
s−a −1
s−a at
11.L e at cosh bt = L = e cosh bt
( s − a ) − b2 ( s − a ) − b
2 2 2
Theorem:
1. If the function F (t ) is piecewise condition over any close interval 0 t n and of
exponential for t>n then its Laplace transformation f(s)=L{F(t)} exist for all s .
Proof : since F(t) is integrable in the close interval, its F(t) is exist.
Now
L{F (t )} = e − st F (t )dt F (t ) Me t
0
e− ( s − )t M
0 0 0 0
t − st t
− s − a = s − a ; s
− st − st − st
L{F (t )} = e F ( t ) dt e F (t ) dt e Me dt = M e e dt = M
Hence the Laplace transformation exist for s .
2. State and prove linear property of Laplace Transformation.
3. State and prove first transformation or shifting property of Laplace Transformation
Or, If L{F (t )} = f ( s) then, L{e at F (t )} = f ( s − a).
Question: Find the Laplace transformation by using first shifting method.
(n + 1)
( i ) L{t n eat } = n +1 ( )
ii L{e at sin bt} ( iii ) L{e 2t (3sin 4t − 4sin 4t} ( iv ) L{t 3e5t }
(s − a)
3! 6
Solution ( iv ) let F (t ) = t 3 then L{F (t )} = L{t 3 } = = = f (s)
s4 s4
we knowthe first sheifting method ,
L{e F (t )} = f ( s − a ) then
at
6
L{e5t t 3 } = f ( s − 5) = .(ans )
( s − 5)
4
4. State and prove second transformation or shifting property of Laplace Transformation
F (t − a),; t a
Or, If L{F (t )} = f ( s ) , G (t ) = then L{G (t )} = e − sa f ( s ).
0 ;t a
Question: Find the Laplace transformation by using 2nd shifting method.
2 2
( t − 1)2 when t 1 ( t − 1)3 when t 2 cos t − 3 when t 3
( i ) F (t ) = ( ii ) F (t ) = ( iii )( ii ) F (t ) =
0 when 0 t 1 0 when 0 t 2 0 2
when 0 t
3
t / a when 0 t a
( iv ) F (t ) =
1 when t a
5. State and prove change of scale property of Laplace Transformation.
1 s
Or, If L{ f (t )} = f ( s ) then showthat L{F (at )} = f ( ).
a a
sin t −1 1 sin at −1 a
Questions If L = tan then showthat L = tan .
t s t s
6. L{F (t )} = f ( s ) then showthat L{F (t )} = sf ( s ) − F (0).
7. L{F (t )} = f ( s) then showthat L{F (t )} = s 2 f (s ) − sF (0) − F ' (0).
8. L{F (t )} = f ( s ) then showthat L{F (t )} = s 3 f (s ) − s 2 F (0) − sF ' (0) − F ( 0 ) .
9. L{F (t )} = f ( s) then showthat ( i ) L F (u)du = f (ss) .(ii ) L sinu u du = 1s tan
0
t
0
t
−1 1
s
. ( iii ) L{t n F (t )} = ( −1) f n ( s )
n
Theorem:
(n + 1)
(i) Show that L t n = when n −1 and s 0.
s n +1
Show that L t n = n +1 when n = 0,1, 2,3.... and s 0.
n!
(ii)
s
Solution: By the definition of Laplace transformation
L{F (t )} = f ( s ) = e − st F (t )dt
0
Given function F (t ) = t n , then
L{t n } = f ( s) = e − st t n dt.......(1)
0
1
Now putting st = y , then sdt = dy dt = dy equation (1)we get ,
s
n
y
Also t n = n ; t = 0 then y = 0 and t = then y =
s
the equation (1) we get ,
y n dy 1 1 (n + 1) n !
L{t n } = f ( s) = e − y = n +1 e − y y ( ) dy = n +1 (n + 1) = = n +1 ;[ (n) = e − x x n −1dx; n 0]
n +1 −1
n n +1
0 s s s 0 s s s 0
Problem:
(i) show that
1 a 1 −1
(i ) L 1 = ;(ii ) L a = ; ( iii ) L t = 2 ; ( iv ) L t 2 = .
s s s s
(ii) If s>a then show that
(i ) L e at = (ii ) L eiat =
1 1 a s
( iii ) L sin at = 2 2 ( iv ) L cos at = 2 2
s−a s − ia s +a s +a
a s
( v ) L sinh at = 2 2 ( vi ) L cosh at = 2 2
s −a s −a
(iii) Find the Laplace transformation of the following expression.
( i ) 4e5t + 6t 3 − 3cos 4t + 4sin 5t ( ii ) 3coh5t − 4sin 5t (iii ) e 4t + 4t 3 − 2sin 3t + 3cos 5t
.
( iv ) 3t 4 − 2t 3 − 4e−3t − 2sin 5t + 3cos 2t.
(iv) Find the Laplace transformation of the following function.
t , 0 t 2
( i ) F (t ) = t sin at ( ii ) t cos at ( iii ) F (t ) = .
3, t 2
Question: Using Laplace transformation of 1st derivatives to show that.
1 1 1
( i ) L{1} = , s 0; ( ii ) L{t} = 2 , s 0; ( iii ) L{e at } = , s 0.
s s s−a
Question: Using Laplace transformation of 2nd derivatives to show that.
a a
( i ) L{sin at} = , s 0; ( ii ) L{sinh at} = 2 .
s +a 2
2
s − a2
Question: show that
s2 − a2 6as 2 − 2a 3 2 s 3 − 6a 2 s
2 ( )
iii L t 2 sin at = 3 ( )
iv L t 2 cos at =
2as
( i ) L t sin at = 2 ( )
ii L t cos at =
(s + a2 ) (s + a2 ) (s + a2 ) (s + a2 )
2 2 2 2 3
Question:
sin at
1. show that
0
t
dt = ;
2
2. Prove by use of Laplace transformation e − x dx =
2
;
0
2
e
− st
F (t )dt
Theorem: If F(t) has period T>0 then L{F (t )} = 0
.
1 − e sT
sin t , 0 t
Question: Find the Laplace transformation of the function F ( t ) =
0 , t 2
Question:Prove that
s2 − a2 2as
( i ) te− st cos at dt = 2 ( )
. ii te − st sin at dt = .
( s2 + a2 ) ( s2 + a2 )
2
0 0
Inverse Laplace Transform
Inverse Laplace Transform: If L{F (t )} = f ( s ), then F (t ) is called an inverse Laplace transform
of f (s) and it is denoted by
F (t ) = L−1 f ( s)
where L−1 is called inverse Laplace transformation operator.
The Linearity Property of Inverse Laplace Transform: If L{F1 (t )} = f 1 ( s), L{F2 (t )} = f 2 ( s)
and c1 , c 2 are constants, then
L−1{c1 f 1 ( s) + c 2 f 2 ( s)} = c1 L−1{ f 1 ( s)} + c 2 L−1{ f 2 ( s)} = c1 F1 (t ) + c 2 F2 (t )
First Translation or Shifting Property: If L−1{ f ( s)} = F (t ), then L−1{ f ( s − a)} = e at F (t ).
Second Translation or Shifting Property: If L−1{ f ( s)} = F (t ), then
F (t − a), t a
L−1 {e − as f ( s)} =
0 , ta
1 t
Change of Scale Property: If L−1{ f ( s)} = F (t ), then L−1 { f (as )} = F .
a a
Inverse Laplace Transform of Derivatives: If L−1{ f ( s)} = F (t ), then L−1 { f n ( s)} = (−1) n t n F (t ).
Inverse Laplace Transform of Integrals: If L−1{ f ( s)} = F (t ), then L−1 s
f (u )du =
F (t )
t
.
Convolution Property: If L−1 { f ( s)} = F (t ) and L−1 {g ( s)} = G(t ), then
t
L−1{ f ( s) g ( s)} = F (u )G (t − u ) du
0
Some Relations on Laplace Transform and Inverse Laplace Transform:
n! n!
1. L{t n } = n +1
t n = L−1 n +1
s s
1 1
2. L{1} = 1 = L−1
s s
1 1
3. L{e at } = e at = L−1
s−a s − a
1 1
4. L{e − at } = e − at = L−1
s+a s + a
s s
5. L{cos at} = cos at = L−1 2 2
s + a2 2
s + a
a a
6. L{sin at} = 2 sin at = L−1 2 2
s + a2 s + a
n ! at n
7.L e at t n =
n!
L−1 n +1
=e t
(s − a) ( s − a )
n +1
−1
at
8.L e at sin bt =
b b
L = e sin bt
( s − a ) + b2 ( s − a ) + b
2 2 2
s−a −1
s−a at
9.L e at cos bt = L = e cos bt
( s − a ) − b2 ( s − a ) − b
2 2 2
−1
at
10.L e at sinh bt =
b b
L = e sinh bt
( s − a ) − b2 ( s − a ) − b
2 2 2
s−a −1
s−a at
11.L e at cosh bt = L = e cosh bt
( s − a ) − b2 ( s − a ) − b
2 2 2
Theorem:
1. If L{F1 (t )} = f 1 ( s), L{F2 (t )} = f 2 ( s) and c1 , c 2 are constants, then show that
L−1{c1 f 1 ( s) + c 2 f 2 ( s)} = c1 L−1{ f 1 ( s)} + c 2 L−1{ f 2 ( s)} = c1 F1 (t ) + c 2 F2 (t )
Question:
1. Prove that
−1
at s − a at
−1
( i ) L−1
1 sin at −1 1 tn b
2
= . ( ii ) L n+1 = . ( iii ) L = e sin bt . ( iv ) L = e cos bt
s + a s ( n + 1) ( s − a ) + b ( s − a ) + b
2 2 2 2 2
a
Theorem: state and prove first transformation or shifting property of inverse Laplace
transformation
Or If L−1{ f ( s)} = F (t ), then show that L−1{ f ( s − a)} = e at F (t ).
Question: Find the inverse Laplace transformation of
3s − 8 4 s − 24 6s − 4
( i ) L−1
1 1 1 −1
2 ( ) 2 (
ii L−1 2 iii ) L−1 3/2 ( iv ) L−1 2 − 2 (v ) L 2
s + a s + a s s + 4 s − 16 s − 4s + 20
2
2s − 11 4s + 12
−1 −1 −1 7 s + 12 −1 s 2 + 2s + 3
( vi ) L ( vii ) L 2 ( viii ) L 2 ( ix ) L 2
( s + 2 )( s − 3) s + 8s + 16 s +9 (
( s + 2s + 2 ) ( s + 2s + 5 )
2
)
s +1 −1
( x ) L−1 2
4 −1 15 −1 1
( xi ) L 2 ( xii ) L 2 ( xiii ) L 3 2
4s + 16 s + 4s + 13 s + 6s + 25 s ( s + 4)
−1 2s 2 − 4
( )
xiv L
( s + 1)( s − 2 )( s − 3)
Theorem: state and prove 2nd transformation or shifting property of inverse Laplace
transformation
Or, If L−1{ f ( s)} = F (t ), then show that
F (t − a), t a
L−1 {e − as f ( s)} =
0 , ta
Theorem; If L−1{ f ( s)} = F (t ), then show that L−1 { f n ( s)} = (−1) n t n F (t ).
Question: Find inverse transformation of derivatives
−1 s −1 s +1
( ) 2 2 2 ( ) 2
i L ii L
( s + a ) ( s + 2s + 2 )
2 2
1 t 2
Question: Show that L−1 3 2 = + cos t − 1.
s ( s + 1) 2
Convolution: If F(t) and G(t) be two functions then the convolution of two function F(t) and
G(t) denoted by F*G is define by the relation
If L−1 { f ( s)} = F (t ) and L−1 {g ( s)} = G(t ), then
t
L−1{ f ( s) g ( s)} = F (u )G (t − u ) du = F * G
0
Theorem: State and prove convolution theorem.
Question: Using convolution theorem to show that
( i ) L−1 2 2 2 =
s t sin at 1
; ( ii ) L−1 2 2
= te −t + 2e −t + t − 2
( s + a ) 2 a s ( s + 1)
Question: Using convolution theorem find the value of
1 −1 1 −1 s
−1 3 −1 1
(i ) L −1
( ii ) L ( iii ) L ( iv ) L (v) L 2 2
( s + 1)( s − 2 ) ( s − 2 ) ( s + 1) ( s + 4 ) s ( s + 2 ) s ( s + 4)
2 2 3 2
( vi ) L−1 −1
s 1
( vi ) L 2 2
( s + a ) s ( s + 1)
2 2 2
Theorem: State and prove Heaviside’s expansion theorem.
Question: Using Heaviside’s expansion formula evaluate
2s 2 − 4 3s + 1
3s −1 −1
(i ) L −1
( ii ) L ( iii ) L
( s + 1)( s − 3) ( s + 1)( s − 2 )( s − 3) ( s − 1) ( s + 1)
2
Question: prove that
( i ) e− x dx = ( ii ) cos x 2 dx = ( iii ) sin x 2dx =
2
;using Laplace transformation.
0
2 0 2 2 0 2 2
Question: Solve the following differential equation using Laplace transformation.
( i ) Y + Y = 0, Y (0) = 0, Y (0) = 1 ( ii ) Y + Y = 1, Y (0) = 2, Y (0) = 0 ( iii ) Y + Y = t , Y (0) = 1, Y (0) = −2.
( iv ) Y − Y = t , Y (0) = 2, Y (0) = −3. ( v ) Y + 4Y = 9t , Y (0) = 0, Y (0) = 7 ( vi ) y '' − 2 y ' − 8 y = 0, y(0) = 3, y ' (0) = 6.
( vii ) y '' − 2 y ' − 6 y = 0, y(0) = 1, y ' (0) = 0; ( viii ) Y − 3Y + 2Y = 4e2t , Y (0) = −3, Y (0) = 5.
( ix ) Y − 3Y + 2Y = 2e−t , Y (0) = 2, Y (0) = −1. ( x ) Y + Y = 8cos t , Y (0) = 1, Y (0) = −1.
( xi ) Y + 25Y = 10 cos 5t , Y (0) = 2, Y (0) = 0. ( xii ) Y + 2Y + 5Y = e −t sin t , Y (0) = 0, Y (0) = 1.
( xiii ) Y + 2Y + 5Y = e−t sin t , ( xiv ) Y − 3Y + 2Y = 3et , Y (0) = 0, Y (0) = 1, Y ( 0 ) = 2.
( xv ) Y − 3Y + 3Y − Y = t 2et , Y (0) = 1, Y (0) = 0, Y ( 0 ) = −2.
( xvi ) Y − 3Y + 3Y − Y = t 2et ,
( xvii ) Y + 2Y ' + Y = 3te−t , Y (0) = 4, Y (0) = 2. ( xviii ) y '' − 6 y ' + 9 y = t 2 33t , y (0) = 2, y ' (0) = 6
( xix ) y '' + 2 y ' + y = 4sin t , y(0) = −2, y ' (0) = 1; ( xx ) x '' ( t ) + x ( t ) = 6 cos 2t; x ( 0 ) = 3, x ' ( 0 ) = 1
( xxi ) Y + a 2Y = F ( t ) , Y (0) = 1, Y (0) = −2. ( xxii ) Y + 9Y = cos 2t , Y (0) = 1, Y ( ) = 1.
2
d 2x dx
( xxiii ) 2
+ 3 + 2 x = t + sin t subject x ( 0 ) = 1 and x ' ( 0 ) = −2 and verify the result .
dt dt
Question: Solve the following differential equation using Laplace transformation.
( i ) ty + y + ty = 0, y ( 0 ) = 1, y ( 0 ) = c ( ii ) ty + y + 4ty = 0, y ( 0 ) = 3, y ( 0 ) = 0.
( iii ) y + y + 4ty = 0, y ( 0 ) = 3, y ( 0 ) = 0
Md.Nurul Alam
Lecturer(Mathematics)
Barishal Engineering College, Barishal