Lead-lag Compensation
𝑅1
𝐶2
𝑉𝑖 𝐶1 𝑉𝑂
𝑅2
1
𝑍𝑖 = ( + 𝑆𝐶1 )−1
𝑅1
1 + 𝑆𝐶1 𝑅1 −1 𝑅1
𝑍𝑖 = ( ) =
𝑅1 1 + 𝑆𝐶1 𝑅1
1 1 + 𝑆𝐶2 𝑅2
𝑍0 = (𝑅2 + =( )
𝑆𝐶2 𝑆𝐶2
𝑅1 1 + 𝑆𝐶2 𝑅2
𝑍𝑇 = +
1 + 𝑆𝐶1 𝑅1 𝑆𝐶2
𝑉0 𝑍0 1 + 𝑆𝐶2 𝑅2 ⁄𝑆𝐶2 (1 + 𝑆𝐶2 𝑅2 )(1 + 𝑆𝐶1 𝑅1 )
= = =
𝑉𝑖 𝑍𝑇 (𝑅1⁄ 1 + 𝑆𝐶2 𝑅2
⁄𝑆𝐶 ) 𝑆𝐶2 𝑅1 + (1 + 𝑆𝐶1 𝑅1 )(1 + 𝑆𝐶2 𝑅2 )
1 + 𝑆𝐶1 𝑅1 ) + ( 2
𝑉0 (1 + 𝑆𝐶2 𝑅2 )(1 + 𝑆𝐶1 𝑅1 )
=
𝑉𝑖 𝑆𝐶2 𝑅1 + 1 + 𝑆𝐶2 𝑅2 + 𝑆𝐶1 𝑅1 + 𝑆 2 𝐶1 𝐶2 𝑅1 𝑅2
𝑉0 (1 + 𝑆𝐶2 𝑅2 )(1 + 𝑆𝐶1 𝑅1 )
=
𝑉𝑖 1 + 𝑆(𝐶1 𝑅1 + 𝐶2 𝑅2 + 𝐶2 𝑅1 ) + 𝑆 2 (𝐶1 𝐶2 𝑅1 𝑅2 )
The general form is:
𝑉0 (1 + 𝑠𝜏1 )(1 + 𝑠𝜏2 )
=
𝑉𝑖 (1 + 𝑠𝛼𝜏1 )(1 + 𝑠𝛽𝜏2 )
Where we get:
𝜏1 = 𝐶1 𝑅1
𝜏2 = 𝐶2 𝑅2
𝛼𝛽𝜏1 𝜏2 = 𝑅1 𝑅2 𝐶1 𝐶2
Page 1 of 3
𝛽𝜏2 + 𝛼𝜏1 = 𝑅1 𝐶1 + 𝑅2 𝐶2 + 𝑅2 𝐶1
From the above we get 𝛼𝛽 = 1.
Hence there is no independence choice of 𝛼 and 𝛽. For our design and 𝛽 must be
reciprocal of each other.
We have: 𝛼𝜏1 𝛽𝜏2 = 𝜏1 𝜏2
𝛼𝜏1 𝛽𝜏2 = 1
𝛼𝜏1 > 𝜏1 > 𝜏2 > 𝛽𝜏2
𝑀 𝑑𝐵 1 1
1 1
𝜏2 𝛽𝜏2
𝛼𝜏1 𝜏1
∅0
𝐿𝑒𝑎𝑑
𝐿𝑎𝑔 1 1
𝜔= =
𝜏1 √𝛼 𝜏2 √𝛽
The lead-lag network is a combination of the phase lag network and phase lead
network. The phase symmetry has odd symmetry about the center frequency.
1 1
𝜔= =
𝜏1 √𝛼 𝜏2 √𝛽
Page 2 of 3
The network when employed for compensation is used primarily for its attenuation
in the region of the center frequency in combination with positive phase shift above
1 1 1 1
the center frequency. The frequencies , , 𝑎𝑛𝑑 are chosen such that the
𝜏1 𝛼𝜏1 𝜏2 𝛽𝜏2
system will decrease the system gain cross-over frequency and simultaneously
increase the phase cross-over frequency. This results in improvement of the system
stability.
We have:
𝑅2
𝛽=
𝑅1 + 𝑅2
𝑅1 + 𝑅2
𝛼=
𝑅2
Page 3 of 3