0% found this document useful (0 votes)
182 views65 pages

P Block Comparison Chart - Final

The document provides a detailed comparison of the physical and chemical properties of P block elements (Groups 15 and 16) and the halogen and noble gas families (Groups 17 and 18). It outlines trends in properties such as ionization energy, electronegativity, atomic radius, and reactivity, highlighting anomalies in behavior, particularly for nitrogen and fluorine. Additionally, it discusses the preparation of fluorine and its reactions with hydrogen and metals.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
182 views65 pages

P Block Comparison Chart - Final

The document provides a detailed comparison of the physical and chemical properties of P block elements (Groups 15 and 16) and the halogen and noble gas families (Groups 17 and 18). It outlines trends in properties such as ionization energy, electronegativity, atomic radius, and reactivity, highlighting anomalies in behavior, particularly for nitrogen and fluorine. Additionally, it discusses the preparation of fluorine and its reactions with hydrogen and metals.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 65

P block elements (Group 15th and 16th)

Physical properties:
Properties N – Family (15th group) O – Family (16th group)
Physical state 1. N 2 – Diatomic gas 1. O2 – Diatomic gas
2. P4 – Soft vaxy solid 2. S8 – octaatomic solid
3. (As4, Sb4) - solid 3. (Se, Te, Po) – Solid
4. Bi – metallic solid
Ionization Top – Bottom Top – Bottom
energy 1. Decreases 1. Decreases
2. I.E. of N is greater than
corresponding elements of O
family due to stable 2p3
configuration.
Electronegativity Top – Bottom Top – Bottom
1. Decreases 1. Decreases
2. It increases in period 2. Oxygen is 2nd most E.N.
element in P.T.

Electron affinity Top – Bottom Top – Bottom


1. It generally decreases 1. It generally decreases
2. But E.A of Nitrogen is less 2. But E.A of sulphur is less
than that of Phosphorus than that of oxygen
because of small size of because of small size of
Nitrogen oxygen
3. P>As>Sb>Bi>N 3. S>Se>Te>Po>O
Atomic radius & Top – Bottom Top – Bottom
Ionic radius 1. Increases 1. Increases

Metallic Top – Bottom Top – Bottom


character 1. Increases (due to decrease in 1. Increases
I.E. and increase in atomic 2. (O, S) – Non metal
size. 3. (Se, Te) – semi metal
2. (N, P) – Non Metal 4. Po - Metal
3. (As, Sb) – Semi metal
4. Bi - Metal
Density Top – Bottom Top – Bottom
1. Increase ( as mass dominates 1. Increase ( as mass
over volume or size) dominates over volume or
size)
Electrical and Top – Bottom Top – Bottom
thermal 1. Increases 1. Increases
conductivity 2. (N, P) – Non conductor 2. (O, S) – Non cond.
3. (As, Sb) – Semi conductor 3. (Se, Te) – Semi cond.
4. Bi – good conductor 4. Po – good cond.
Melting Point Top – Bottom Top – Bottom
1. Generally increases 1. Increases
2. N<P<As>Sb>Bi 2. In period M.P. decreases
3. From As to Bi M.P. decreases 3. But M.P. of Te>Bi
due to decrease in the
strength of metallic bonding.
Boiling Point Top – Bottom Top – Bottom
1. Increases 1. Increases
Allotropy 1. Except Nitrogen all other
elements in the group show
allotropy

Chemical Properties:
Properties N- Family O- Family

Anamolus 1. Due to smaller size, High I.E., 1. Same


behavior High E.N. and unavailability of 2. Same
vecant d orbital : Nitrogen 3. O-O < S-S (Bond enthalpy)
differs from rest of the elements 4. O = O > S = S (due to small size
in some property &interelectronic repulsion bond
2. Nitrogen has ability to form Pπ- energy)
Pπ multiple bond with itself or 5. Oxygen exist as O2 but sulphur
with other smaller atoms like exist as S 8 due to high S-S B.E.
carbon & oxygen N = O 6. Same for sulphur (Ex- S02, S03,
3. N-N < P-P ( bond, enthalpy) H2SO4etc)
4. N ≡ N > P ≡ P (due to small size 7. Oxygen can not form dπ – pπ
&interelectronic repulsion bond bond
energy)
5. Nitrogen exist as N2 but
phosphorus exist as P4 due to
above reason
6. Phosphorus has a ability to form
dπ – pπ bond and this ability
decreases down the group ( ex –
H3PO4)
7. Nitrogen can not form dπ – pπ
bond

Oxygen state 1. Common O.S. are +3, -3, +5 1. -2, +4, +6


2. All forms +3, +5O.S. I covalent 2. All form +4 and +6 O.S. in
compound covalent compound.
3. Nitrogen form +5 O.S. by 3. +6 is more covalent than +4
formation of coordination bond. 4. Oxygen can not form +4 and +6
(Ex: HNO3 , N2O5) state due to unavailability of d
4. +5 O.S. is more covalent than +3 orbitals.
5. Stability of +5 O.S. decreases 5. All forms -2 O.S in hydrides
due to inert pair effect. (H2O, H 2S)
(The inert pair effect is the 6. Oxygen generally forms -2 in
tendency of the electrons in the ionic oxides, -1 in peroxides, -
outermost s atomic orbital to 1/2 in super oxides and +1 or +2
remain un-ionized or unshared in oxygen fluorides.
in compounds of post-transition
metals.)
6. All form -3 O.S. in hydride
(Except Bi) , Ex: NH3, PH3, AsH3,
SbH3
7. All form -3 O.S. in binary
compound with metals. (Ex:
Li3N, Mg3N2, AlN, Ca3P 2, Ca3As2,
Zn3Bi2.
Reactivity 1. All form binary hydrides of the 1. All form binary hydrides of the
with formula EH3 formula EH2
Hydrogen 2. Ex: NH3(Ammonia), 2. H2O(water), H2S(hydrogen
PH3(Phosphine), AsH3(Arsine), sulphide), H2Se(hydrogen
SbH3(Stibine), BiH3( Bismuthene) selenide), H2Te(Hydrogen
3. EH3 : SP3hybridised ( 3 BP + 1 LP) teuride)
, Pyramidal shape 3. H2E: SP3hybridised (2 BP + 2 LP) ,
bent (V) shape.

4. DTG from top to bottom Bond 4. DTG from top to bottom Bond
angle, Bond enthalpy, basic angle, Bond enthalpy, basic
nature, stability, dipole moment nature, stability, dipole moment
decreases. decreases.
(NH3>PH3>AsH 3>SbH3>BiH3) (H2O<H2S<H2Se<H2Te)
5. Acidic nature, bond length, 5. Acidic nature, bond length,
reducing nature, volatile reducing nature, volatile
character increases. character increases.
(NH3<PH3<AsH 3<SbH3<BiH3) (H2O>H2S>H2Se>H2Te)
6. Boiling point 6. Boiling point and Melting point
(SbH3>NH3>AsH3>PH3) (H2O>H2Te>H2Se>H2S)
7. Melting point
(NH3> SbH3>AsH3>PH3)
Reactivity 1. All form oxide of the formula 1. All form EO2, EO3
with Oxygen E2O3, E2O 5 2. Ex: SO2, SeO2, TeO2, SO3, SeO3,
(Oxide) 2. (N2O3, N2O5), (P4O6, P4O10), TeO3
(As2O 3, As2O5), (Sb 2O3, Sb2O5), 3. EO3 more acidic EO2.
(Bi2O3, …x….) 4. T-B: Acidic decreases.
3. E2O5 is more acidic than E2O3. 5. Reducing nature of EO2 from
4. Acidic nature of oxides Top to bottom decreases.
decreases.(As E.N. decreases)
5. Stability of E2O5 decreases from
T-B.

Halides 1. Formula: EX5, EX3 (Except NX5) 1. Formula: EX2, EX4, EX6
2. EX3: SP3 hybridized (3 BP + 1LP), 2. EX6 is found in fluorides only
Pyramidal structure and its stability decreases from
3. Bond angle: NF3<NCl3<NBr3 Top to Bottom. (Ex: SF6, SeF 6etc)
4. Bond angle: NX3>PX3>AsX3>SbX3 3. EX6: SP3d2, Octahedral shape
5. EX5: SP3d hybridized (5 BP), 4. EX4 is more common in S, Se,
Trigonal bi pyramidal (TBP) Te: SF4 (Gas), SeF4 (Liquid), TeF4
6. Stability of halide decreases as (Solid) [ See saw structure ].
F>Cl>Br>I 5. Oxygen does not form OX 4, OX6
7. T-B, For same element Covalent due to absence of d orbital.
nature decreases (F<Cl<Br<I) 6. Oxygen form dihalide OF2, OCl2,
8. EX5 is more covalent than EX3 OBr2 etc. (SP3 hybridized – (2BP
9. Only BiF3 – Ionic others all are + 2 LP) Bent / V / Angular shape)
covalent. 7. Mono halide are also form with
10. These halides are soluble in S, Se etc in dimeric form. (Ex:
water due to hydrolysis O2F 2, S2Cl2, Se2Cl2.
8. These halides are soluble in
water due to hydrolysis
Group 17th and 18th

Property Halogen family Noble Gases


Electronic configuration 2
ns np 5 2
ns np 6

Atomic Radius T B TB 


Ionisation Enthalpy T B T B
Electron Gain Enthalpy T B T B
F  cl  Br  I
cl highest EA
Electronegativity T B T B
Enthalpy of Dissociation cl2  Br2  F2  I 2 
MP/BP T B T B
State F2  gas All are mono atomic gases
cl2 
Br2  liq .
I 2  solid
Colour F2  Yellow Colourless test less
cl2  Greenish Yellow
Br2  Red
I 2  Voilet Colour
Standard Reduction Potential I 2  Br2  cl2  F2
Other cl2  Suffocating

Chemical Properties
1. Oxidation State: + 1, + 3, + 5, + 7.
Generally = – 1.
2. Oxidizing nature: F2  cl2  Br2  I 2 .
3. Hydration Energy (Smaller the ion higher HE)
F   cl   Br   I  .
4. Anomalous behavior of Fluorine
 Due to smaller size.
 Unavailability of d orbital.
 Highest EN.
5. Reactivity towards hydrogen.
All form acid
HF, HCl, HBr, HI
Acitic strength strength HI  HBr  HCl  HF .
H  X dissociation enthalpy: H  F  H  Cl  H  Br  H  I .
Stability: H  F  H  Cl  H  Br  H  I .
6. Reactivily towards oxygen:
 Fluorine makes only O2 F2 & OF2 in which OF2 thermally stable at 298 K.
 Cl forms Cl2O, ClO2 , Cl2O6 , Cl2O7 ClO2  used as bleaching agent.
 Br form  Br2O, BrO2 , BrO3 .
 I form  I 2O4 , I 2O5 , I 2O7

Very good O. A
7. Reactivity towards metals:
 Form metla halides
 Ex. Mg Br2 , MgCl2 .
8. Reactivity towards halogens:
AB, AB3 , AB5 , AB 7 .
A  Larger Size.
B  Smaller Size.

F2 Preparation

On electrolysis:

2 H   2e   H2  g 

2F   H 2  F2  g 
2 H   2 F  
 H 2  F2  g 

 F2  g  must be free from HF (due to corrosiveness).


 To make it free from HF we pass NaF which absorb HF.
 There should not be no moisture present in vessel otherwise F2 with react with H 2 O .
 4 HF  O2 .
2 F2  2 H 2O 
 If aqueous solution of NaF or KF is taken then no. F2 is farmed.
1
H 2O  O2  2 H   2e  E = –1.23 sop.
2
1
F   F2 sop = – 2.87.
2
1
K 2  MnFb   SbF5 
 2 K  SbFb   MnF3  F2 .
2
Reaction: (Oxidizing agent)
O2 F2 SF6  HF
NaF  X 2
aX
N

O2  NaF F2 OF2  NaF  H 2O


NaOH NaOH

AgF
N 2  HF

Chlorine  Cl2  :

1. Heating chlorides
H   MnO2  2 X  
 X 2  Mn 2 .
2. Deacon’s process
CuCl2
O2  HCl 
723 K
 Cl2 .
3. Electrolytic process
NaX  aq  .
Na  X  .
Na   e  
 Na cathode.
2 X  
 X 2  2e  anode.

Note: Chlorine water turns blue litmus to red but after some time it becomes colourless.

 HOCl  HCl .
Cl2  H 2O 

 O  (Nasent Oxygen)
HOCl 

Oxidizing property
HCl
NaCl + NaOCl

Ca  OCl 2
Bleaching Powder
Ca  OH 2 cl2

Powerful bleaching NaCl  NaClO3


agent

 Fe2  SO4 3  HCl .


(i) FeSO4  H 2 SO4  Cl2 

 x2  Cl   x  Br  , I  .
(ii) x   Cl2 
Cl2  H 2O  2 HCl  O .

coloured  O  colourless
subtance substnace

 SO2 bleaching action property is temprorary because reduction occue here.


SO2  H 2O 
 H 2 SO4  H
.
Reduce
 Cl2 bleach by oxidation.
 SO2 bleach by reduction.

Bromine  Br2  .

Preporation:

 MgCl2  Br2 .
MgBr2  Cl2 

x   Cl2 
 x2  Cl  x 
 Br , I .

Properties:

 Fairly soluble in water.


 Forms hydrate like Cl2 .
Br2 .8 H 2O, Cl2 .8 H 2O .

Iodine  I 2  .

Preparation:

x   Cl2 or F2 or Br2 
 x2  Cl  / F  / Br  .

Properties:

 Sparingly soluble in water.


 Readily soluble in Na S K iodide.
KI  I 2  KI 3 .
 NaI 3 .
NaI  I 2 
Reactions

kIO3  Cl2 S 4O62   2 I 

O 2
3

o
2
S
yp
H
I2 NH 3  q 

NH 3  q 

KIO3  Br2 NI 3  NH 3  HI
C2 H 5OH  KoH

NCOOK  CHI 3  KI

Halogen acids (HCl, HBr, HI)

Preparation

1.  2 HCl .
H 2  Cl2 
Pt
H 2  Br2   2 HBr
Pt
H 2  I 2 
450C
 2HI .
2. By RXN with P4.
P4  Br2  I 2  
 PBr3  PI3  .

PBr3  PI3   H 2O 
 H 3 PO3  HBr .
3. Passing H 2 S / SO2 into solution of halogen.
 HX  S .
H 2 S  X 2 
 HX  H 2 SO4 .
nSO2  X 2  H 2O 

 Cl   H 3O 
HCl  H 2O  l  
GROUP 17

Hydrogen Halides

 Action of SiO2/Glass

SiO2  HF   H 2 SiO3  H 2 SiF6 .


 SiF4  2 H 2O 

 Na2 SiF6  H 2O .
Na2 SiO3  HF 

 Action of AgNO3 Solution


Agf [Soluble]
AgCl [White ppt.  insolube in HNO3, but soluble in NH4OH]
AgBr [Pale yellow  solube in HNO3, but less soluble in NH4OH]
Agl [yellow  soluble in both HNO3 and NH4OH]
 Pb 2 salt
HF   No Precipitate.
PbCl2 , PbBR2  white  , Pbl2 Yellow .
All soluble in hot water
 Hg 2 and Hg  .
HF 
 No precipitate
HX  Precipitate
 CuSO4 Solution
Only HI reacts
HI  CuSO4   Cul  I 2 .
 Cul2 
 BaCl2 , SrCl2 and CaCl2 solution.
Only HF reacts to produce HF2 (white ppt).
Others – No precipitate
 Reaction with MnO2 and H 2 SO4 .
 MnSO4  H 2O  O .
MnO2  H 2 SO4 
HX + O   H2O + X2.
HF does not give this reaction.
BLEACHING POWDER

Mixed salt of calcium hypo – chlorite Ca  OCl 2  3H 2O  and basic calcium carbonate
CaCl2  Ca  OH 2 .H 2O  .

Properties

 Aqueous solution gives positive test for Ca 2  , Cl  and OCl  .


 On standing, decomposes into CaCl2 and Ca  ClO3 2 .
 Ca  ClO3 2  CaCl2 .
CaOCl2 

Reaction with Acid

CaOCl2  H  
 Ca 2   CaCl2  HOCl .

 HCl  O (With limitd quantity of Acid)


HOCl 

CaOCl2  H  
 Ca 2  H 2O  Cl2 (with excess of Acid)

 CaCO3  Cl2 .
CaOCl2  CO2 

Oxidizing nature and Bleaching nature

 CaCl2  O .
CaOCl2 

1. Proparation of HCl, HBr, HI


A. H 2  Cl2  2 HCl .
pt
B. H 2  Br2   2 HBr .
Pt
C. H 2  I 2 
450 c
 2 HI .

2. By reaction of P4.
P4  6 Br2  6 I 2  
 4 PBr3  4 PI 3  .
PBr3  PI 3   3H 2O 
 3HBr  HI   H 3 PO3 .
3. By passing H 2 S & SO2 into solution of halogen.
 2 HX  S .
H 2 S  X 2 
 2 HX  H 2 SO4 .
SO2  2 H 2O  X 2 
Reducing nature: HI > HBr > HCl.
Stability: HF > HCl > HBr > HI.
Acidic nature: HI> HBr > HCl > HF.

Detection of Cation:
Fe

HF preparation
1. Laboratory method

kHF2   kF  HF .
2. Industrial Method.
CaF2  H 2 SO4  CaSO4  2 HF .

Note: Aqous

HF 
 corrosive to glass

 stored in wax lined bottles or vessel made of copper or monel.




 high B.P. (Due to H – Bonding)




NaCl

traces
 ClO2  NaHSO4

light
ClO2   ClO  O 


H
ClO2  O3   Cl2O6  O2


H
ClO2  HI  I 2  Cl 

 ClO2  O2
ClO2  H 2O2 

Oxides of chlorine:

CaOCl2 (Bleaching Powder)

 Preparation:
40C
Ca  OH 2  Cl2   Ca  OCl  Cl  H 2O .
 Properties:
a) Pale yellow powder.
b) Soluble in water.
c) Long standing undergoes auto oxidation.
CaOCl2   Ca  ClO3  2  SCaCl2 .
d) Losses O in H 2 SO4 (dilute)
 CaCl2  CaSO4  HClO .
CaOCl2  H 2 SO4 
HClO 
 HCl  O

.
H2S
S + CaCl2
KI I2 + CaCl2
Oxidizing NH3
Property N2 + CaCl2

NO 2
NO3
Fe+2 Fe+3
H+

Note: When CaOCl2 react with dilute acid or CO2 then it releases available chlorine:

 Cl2  CaCl2 .
CaOCl2  HCl 
 Cl2  CaSO4 .
CaOCl2  H 2 SO4 
CaOCl2  CO2 
 Cl2  CaCO3

Available
Chlorine

OXY ACIDS OF HALOGENS:

FLUORINE:
HOF  Hypo florous acid

CHLORINE: BROMINE:

IODINE:
ACIDIC STRENGTH:
HClO  HBrO  HIO .
HClO3  HBrO3  HIO3 .
HClO4  HBrO4  HIO4 .

Q. Which one is stronger acid.


H 2 SO4 , HClO4 .

Q. Oxidizing Power
BrO4  IO4  ClO4 .

INTERHALOGEN COMPOUNDS
AB AB3 AB5 AB7
ClF . ClF3 . ClF5 . IF7 .
BrF . BrF3 . BrF5 .
ICl . ICl3 . IF5 .
IF IF3 .

PROPERTIES:
1. Can be gas, liquid, solid.
Gas  ClF , IF7 .
 BrF3 .
Liquid 
 ICl , IBr , IF3 , ICl3 .
Solid 
2. ftlesa F gS
os jxafgu gSaA ftlesa Br, I, Cl gS os jafxu gSaA
Intensity (frozrk) (darkness)  as mw  .
3. All are covalent (lgl;ksth) Molecule (v.kq).
4. izfrpqEcfd;A
5. rkfi; LFkkf;Rork  as EN es vraj  .
 IF  BrF  ClF  ICl  IBr  BrCl .
6. ftruk T;knk AB /kzqfo; (Polar) mruk fg LFkk;h (Stable).
7. fØ;kf’kyrk dk Øe.
ClF3  BrF3  IF7  BrF5  BrF .
8. Hydrolysis (ty;kstu)
 HB  HOA .
AB  H 2O 
 HCl  HOBr .
BrCl  H 2O 
 HCl  HIO2 .
ICl3  H 2O 
 HF  HIO3 .
IF5  H 2O 
SODIUM THIO SULPHATE  Ha2 S 2O3  5 H 2O  HYPO

PREPARATION:

Na2 S3  O2 
 Na2 S 2O3  Na2 SO4

S
Na2 SO3 
boiling
 Na2 S 2O3

SO2 S I2
NaOH  Na2 SO3   Na2 S 2O3 

 Na2 S2O3

PPT RXN:

H 2O
   PbS

 
H 2O
 Ag 2 S

REDUCING BEHAVIOR:

I2
Na2S4O6 + NaI

Cl2
Na2S2O3 NaHSO4 + HCl
kMnO4
k2SO4 + Na2SO4 + Mn2O3
COMPLEXATION RXN:

Excess
Ag 2 S 2O3   Na3  Ag  S2O3 2 

Na3  Ag  S2O3 2 
x  Cl , Br , I

Excess
AuCl 
Na2 S 2O3
 Au2 S 2O3   Na3  Au  S 2O3  2 

Na4 Cu6  S 2O3 5 



Na3  Bi  S 2O3 3    Bi2 S3 

Fe 3 
Fe  S2O3 2

Group – 18
FLUORIDES OF XENON

 Reaction with HF– This reaction takes place as follows


XeF2 and XeF4 dissolves in HF without any XeF6  H 2O   XeO3  HF .
rection.
XeO3  OH  HXeO4 .
XeF6 dissolves in HF to form an equilibrium.
XeF6  HF XeF5  HF2 . HXeO4  OH    XeO64  Xe  O2  H 2O .
 Reaction with water  XeF6 reacts with silica, so can’t be stored in glass
XeF4  2 H 2O  Xe  HF  O2 . XeF6  SiO2   XeOF4  SiF4 .
 XeF2 and XeF4 acts as fluorinating agent, but XeF6
XeF2  OH  Xe  F   O2 [Base catalysed]
accepts F– from alkali metal fluorides [except LiF]
 XeO3  HF  Xe  O2 .
XeF4  H 2O   All these can act as oxidizing agent.
 XeOF2  HF [Partial hydrolysis]
XeF4  H 2O  XeFx   Xe .
 XeOF4 / XeO2 F2 / XeO3 .
XeF6  H 2O 
XeF6  OH  
 XeO64  Xe  F   O2 .
OXIDES OF XENON

XeF6 + H2O XeF4 + H2O

HXeO4 OH– XeO3 Powerful oxidizing agent


OH– Pu2++XeO3+H+ Pu4+ + Xe +H2O

XeO64  Xe  O2 Explosive solid

H2SO4
Powerful oxidizing agent Room temp.
Xe + O2
Cl– Cl2 Unstable gas

Mn2+ MnO4
H2O O2

You might also like