Read Anytime Anywhere Easy Ebook Downloads at ebookmeta.
com
  Histochemistry of Single Molecules Methods and
 Protocols Methods in Molecular Biology 2566 Carlo
                Pellicciari (Editor)
https://ebookmeta.com/product/histochemistry-of-single-
molecules-methods-and-protocols-methods-in-molecular-
           biology-2566-carlo-pellicciari-editor/
                          OR CLICK HERE
                         DOWLOAD EBOOK
  Visit and Get More Ebook Downloads Instantly at https://ebookmeta.com
      Recommended digital products (PDF, EPUB, MOBI) that
        you can download immediately if you are interested.
Whole-Body Regeneration: Methods and Protocols (Methods in
Molecular Biology, 2450) Blanchoud
https://ebookmeta.com/product/whole-body-regeneration-methods-and-
protocols-methods-in-molecular-biology-2450-blanchoud/
ebookmeta.com
Circadian Regulation Methods and Protocols Methods in
Molecular Biology 2482 Guiomar Solanas
https://ebookmeta.com/product/circadian-regulation-methods-and-
protocols-methods-in-molecular-biology-2482-guiomar-solanas/
ebookmeta.com
Rhodopsin Methods and Protocols Methods in Molecular
Biology 2501 Valentin Gordeliy (Editor)
https://ebookmeta.com/product/rhodopsin-methods-and-protocols-methods-
in-molecular-biology-2501-valentin-gordeliy-editor/
ebookmeta.com
The Six Million Fact or Fiction Fifth Edition Peter Winter
https://ebookmeta.com/product/the-six-million-fact-or-fiction-fifth-
edition-peter-winter/
ebookmeta.com
Mechanobiology: Methods and Protocols 1st Edition Ronen
Zaidel-Bar (Editor)
https://ebookmeta.com/product/mechanobiology-methods-and-
protocols-1st-edition-ronen-zaidel-bar-editor/
ebookmeta.com
Thinking Critically About Child Development 4th Edition
Jean Mercer
https://ebookmeta.com/product/thinking-critically-about-child-
development-4th-edition-jean-mercer/
ebookmeta.com
Multivariate Analysis An Application Oriented Introduction
Klaus Backhaus
https://ebookmeta.com/product/multivariate-analysis-an-application-
oriented-introduction-klaus-backhaus/
ebookmeta.com
Healthy Planet Environment For 3 2022nd Edition Manisha
Arora
https://ebookmeta.com/product/healthy-planet-environment-for-3-2022nd-
edition-manisha-arora/
ebookmeta.com
Education and Equality in Japan William K. Cummings
https://ebookmeta.com/product/education-and-equality-in-japan-william-
k-cummings/
ebookmeta.com
The Assyrian Church of the East: History and Geography
Christine Chaillot
https://ebookmeta.com/product/the-assyrian-church-of-the-east-history-
and-geography-christine-chaillot/
ebookmeta.com
Methods in
Molecular Biology 2566
Carlo Pellicciari · Marco Biggiogera
Manuela Malatesta Editors
Histochemistry
of Single
Molecules
Methods and Protocols
Second Edition
METHODS    IN     MOLECULAR BIOLOGY
                      Series Editor
                    John M. Walker
          School of Life and Medical Sciences
              University of Hertfordshire
              Hatfield, Hertfordshire, UK
          For further volumes:
          http://www.springer.com/series/7651
For over 35 years, biological scientists have come to rely on the research protocols and
methodologies in the critically acclaimed Methods in Molecular Biology series. The series was
the first to introduce the step-by-step protocols approach that has become the standard in all
biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-
step fashion, opening with an introductory overview, a list of the materials and reagents
needed to complete the experiment, and followed by a detailed procedure that is supported
with a helpful notes section offering tips and tricks of the trade as well as troubleshooting
advice. These hallmark features were introduced by series editor Dr. John Walker and
constitute the key ingredient in each and every volume of the Methods in Molecular Biology
series. Tested and trusted, comprehensive and reliable, all protocols from the series are
indexed in PubMed.
             Histochemistry of Single
                    Molecules
                             Methods and Protocols
                                      Second Edition
                                             Edited by
                                    Carlo Pellicciari
             Department of Biology and Biotechnology, University of Pavia, PAVIA, Italy
                                  Marco Biggiogera
             Department of Biology and Biotechnology, University of Pavia, PAVIA, Italy
                                 Manuela Malatesta
Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, VERONA, Italy
Editors
Carlo Pellicciari                                Marco Biggiogera
Department of Biology and                        Department of Biology and Biotechnology
Biotechnology                                    University of Pavia
University of Pavia                              PAVIA, Italy
PAVIA, Italy
Manuela Malatesta
Department of Neurosciences,
Biomedicine and Movement Sciences
University of Verona
VERONA, Italy
ISSN 1064-3745                 ISSN 1940-6029 (electronic)
Methods in Molecular Biology
ISBN 978-1-0716-2674-0         ISBN 978-1-0716-2675-7 (eBook)
https://doi.org/10.1007/978-1-0716-2675-7
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part
of Springer Nature 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Cover Illustration: Combined lectin- and immune-histochemistry on a semithin cryosection of normal human
urothelium. For labelling the proteins, the primary polyclonal rabbit antibody against transmembrane proteins
uroplakins and Alexa Flour 588 conjugated secondary goat anti-rabbit antibody were used (red fluorescence), while
for labelling the sugar residues, the FITC-conjugated Amaranthus caudatus agglutinin (ACA) was used (green
fluorescence). Colocalization of uroplakins and ACA binding is seen as orange to yellow fluorescence. Nuclear DNA
was counterstained with DAPI (blue fluorescence). (Courtesy of Daša Zupančič, Mateja Erdani Kreft and Rok Romih.)
This Humana imprint is published by the registered company Springer Science+Business Media, LLC, part of Springer
Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.
Preface
As a distinctive feature, histochemical techniques allow localizing different chemical species
in the very place (in a tissue, or a cell or an organelle) they exist, are synthesized, or function
in vivo; this makes histochemistry a unique tool for basic and applied bio-medical research,
where it provides topological evidence of the biochemical and molecular data.
     The story of histochemistry goes a long way back and, in the last 150 years, has evolved
in parallel with the detection instruments, from light and electron microscopy to cytometry
and super-resolution microscopy. Since the year 2000, about 325,000 articles, in which
histochemistry was used, have been published in qualified international journals (according
to the Web of Science database). This demonstrates that histochemistry is central for inves-
tigating very different research subjects (from cell and tissue biology to anatomy and
pathology, from zoology and botany to ecology, from developmental biology to nanotech-
nology), where it is principally applied to locate and quantify single molecules or molecular
complexes in situ, in the attempt to relate structural organization and function.
     This second edition of Histochemistry of Single Molecules aims at updating and improving
the first edition’s overview of histochemical techniques, through a series of discursive
chapters and lab-tested protocols for the detection of specific molecules or metabolic
processes, at light and electron microscopy.
     The book opens with a review chapter on the evolution of histochemical markers in
cytometry, and then it is divided into seven parts dealing with an assortment of chemical
targets.
     Part I is on vital histochemistry, and it includes four chapters on autofluorescence
imaging, lysosome imaging by carbon dots, the detection of oxidative and nitrosative stress,
and the identification of adipogenic and osteogenic differentiation of living stem cells. Part
II, Carbohydrate Histochemistry, is comprises an updated overview on lectin histochemis-
try, followed by two chapters on the histochemical and immunohistochemical labelling of
proteoglycans, and on combined lectin- and immuno-histochemistry for fluorescence
microscopy. Five chapters form Part III, Protein Histochemistry: in the first four chapters,
immunohistochemistry is used to detect proteins marking myogenic differentiation or
autophagy at light microscopy, or milk proteins at electron microscopy, while in the last
one potassium permanganate is rediscovered as a stain for basic proteins on ultrathin
sections at transmission electron microscopy. Part IV, Lipid Histochemistry, offers an update
of basics in fixation and tissue processing, and gives protocols for the staining of myelin in
the nervous system or of lipid droplets in mouse oocytes and embryos. Part V, Nuclear
Histochemistry, contains a protocol for assessing DNA damage in cervical epithelial cells and
two contrasting methods for transmission electron microscopy: a uranyl-free technique for
nuclear structures and a staining procedure for the specific visualization of RNA by terbium
citrate vapors. Part VI is on plant histochemistry: three chapters describe protocols for the
detection of different molecules in plant cell walls, one is on starch staining with iodine
solution, and the last one on plant secretory structures. The book ends with Part VII,
Histochemistry for Nanoscience: this part, which was not present in the first edition,
includes protocols for the visualization of chemically different nanoconstructs in animal
and plant cells at bright-field, fluorescence, and transmission electron microscopy.
                                                v
vi      Preface
     These 28 chapters demonstrate that histochemical techniques may be effectively used to
visualize, with high specificity, a plethora of molecules in differently processed tissues and
cells, thus confirming that histochemistry still ranks high among the methodological
approaches in life science research.
Pavia, Italy                                                               Carlo Pellicciari
Pavia, Italy                                                              Marco Biggiogera
Verona, Italy                                                            Manuela Malatesta
Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    v
Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       xi
  1 Histochemistry in Advanced Cytometry: From Fluorochromes
    to Mass Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                1
    Giuliano Mazzini and Marco Danova
PART I           VITAL HISTOCHEMISTRY
  2 Autofluorescence Label-Free Imaging of the Liver Reticular Structure. . . . . . . . .                                                           29
    Anna C. Croce, Giuseppina Palladini, Andrea Ferrigno,
    and Mariapia Vairetti
  3 Lysosome Imaging Based on Fluorescent Carbon Dots . . . . . . . . . . . . . . . . . . . . . .                                                   37
    Shuo Guo, Yuanqiang Sun, and Zhaohui Li
  4 Oxidative and Nitrosative Stress Detection in Human Sperm
    Using Fluorescent Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        45
    Sara Escada-Rebelo and João Ramalho-Santos
  5 Simultaneous Labeling of Adipogenic and Osteogenic Differentiating
    Stem Cells for Live Confocal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 53
    Patrizia Vaghi, Amanda Oldani, Paola Fulghieri, Lidia Pollara,
    Enza Maria Valente, and Virginie Sottile
PART II           CARBOHYDRATE HISTOCHEMISTRY
  6 Lectin Histochemistry: Historical Perspectives, State of the Art,
    and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                     65
    Susan Ann Brooks
  7 Histochemical and Immunohistochemical Methods for the
    Identification of Proteoglycans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           85
    David Sánchez-Porras, Juan Varas, Carlos Godoy-Guzmán,
    Fabiola Bermejo-Casares, Sebastián San Martı́n, and Vı́ctor Carriel
  8 Combined Lectin- and Immuno-histochemistry (CLIH) for
    Fluorescence Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                         99
    Daša Zupančič, Mateja Erdani Kreft, and Rok Romih
PART III            PROTEIN HISTOCHEMISTRY
  9 Immunofluorescence Labeling of Skeletal Muscle in Development,
    Regeneration, and Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
    Marie E. Esper, Kasun Kodippili, and Michael A. Rudnicki
                                                                           vii
viii        Contents
10 Immunohistochemical Detection of the Autophagy Markers LC3
   and p62/SQSTM1 in Formalin-Fixed and Paraffin-Embedded Tissue . . . . . . . . .                                                     133
   Sabina Berezowska and José A. Galván
11 Immunohistochemical Detection of the Chaperone-Mediated
   Autophagy Markers LAMP2A and HSPA8 in Formalin-Fixed and
   Paraffin-Embedded Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               141
   Tereza Losmanová, Mario P. Tschan, José A. Galván,
   and Sabina Berezowska
12 Immunogold Labeling of Milk Proteins at Transmission
   Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         149
   Paolo D’Incecco
13 Rediscover Potassium Permanganate as a Stain for Basic Proteins
   on Ultrathin Sections at Transmission Electron Microscopy . . . . . . . . . . . . . . . . . .                                       159
   Lorena Zannino, Claudio Casali, and Marco Biggiogera
PART IV           LIPID HISTOCHEMISTRY
14 Tissue Fixation and Processing for the Histological Identification
   of Lipids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
   David Sánchez-Porras, Fabiola Bermejo-Casares, Ramon Carmona,
   Tamara Weiss, Fernando Campos, and Vı́ctor Carriel
15 Staining Methods for Normal and Regenerative Myelin in the
   Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
   Óscar D. Garcı́a-Garcı́a, Tamara Weiss, Jesús Chato-Astrain,
   Stefania Raimondo, and Vı́ctor Carriel
16 Nile Red and BODIPY Staining of Lipid Droplets in Mouse
   Oocytes and Embryos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
   Simona Bisogno, Łukasz Ga˛sior, and Grażyna E. Ptak
PART V          NUCLEAR HISTOCHEMISTRY
17 Chromatin Dispersion Test to Asses DNA Damage in Cervical
   Epithelial Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
   Elva I. Cortés-Gutiérrez, José L. Fernández, Martha I. Dávila-Rodrı́guez,
   Carlos Garcı́a de la Vega, and Jaime Gosálvez
18 Uranyl-Free Staining as a Suitable Contrasting Technique for
   Nuclear Structures at Transmission Electron Microscopy . . . . . . . . . . . . . . . . . . . . 225
   Maria Assunta Lacavalla and Barbara Cisterna
19 Specific RNA Visualization at Electron Microscopy via Terbium
   Citrate Vapors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
   Claudio Casali, Lorena Zannino, and Marco Biggiogera
PART VI           PLANT HISTOCHEMISTRY
20     Localizing Molecules in Plant Cell Walls Using Fluorescence Microscopy . . . . . . 243
       Lloyd A. Donaldson
                                                                                                                               Contents              ix
21 Ratiometric Fluorescent Safranin-O Staining Allows the
   Quantification of Lignin Contents In Muro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        261
   Oriane Morel, Corentin Spriet, Cédric Lion, Fabien Baldacci-Cresp,
   Garance Pontier, Marie Baucher, Christophe Biot, Simon Hawkins,
   and Godfrey Neutelings
22 Live Fluorescence Visualization of Cellulose and Pectin in
   Plant Cell Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               269
   Youssef Chebli and Anja Geitmann
23 Staining Starch with Iodine Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 281
   Shengnan Zhao, Yinhui Ren, and Cunxu Wei
24 Histochemical Analysis of Plant Secretory Structures . . . . . . . . . . . . . . . . . . . . . . . .                                             291
   Diego Demarco
PART VII              HISTOCHEMISTRY FOR NANOSCIENCE
25 Alcian Blue Staining to Visualize Intracellular Hyaluronic
   Acid-Based Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                         313
   Mathieu Repellin, Flavia Carton, Giovanna Lollo,
   and Manuela Malatesta
26 Prussian Blue Staining to Visualize Iron Oxide Nanoparticles . . . . . . . . . . . . . . . .                                                     321
   Valeria Bitonto, Francesca Garello, Arnaud Scherberich,
   and Miriam Filippi
27 Diaminobenzidine Photooxidation to Visualize Fluorescent
   Nanoparticles in Adhering Cultured Cells at Transmission
   Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      333
   Manuela Costanzo and Manuela Malatesta
28 Fluorescent Labeling of Lignin Nanocapsules with Fluorol
   Yellow 088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             345
   Franco Cheli, Sara Falsini, Maria Cristina Salvatici,
   Sandra Ristori, Silvia Schiff, Emilio Corti, Irene Costantini,
   Cristina Gonnelli, Francesco Saverio Pavone, and Alessio Papini
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   355
Contributors
FABIEN BALDACCI-CRESP • Université de Lille, CNRS, UMR 8576, UGSF – Unité de
    Glycobiologie Structurale et Fonctionnelle, Lille, France
MARIE BAUCHER • Laboratoire de Biotechnologie Végétale (LBV), Université Libre de
    Bruxelles, Gosselies, Belgium
SABINA BEREZOWSKA • Department of Laboratory Medicine and Pathology, Institute of
    Pathology, Lausanne University Hospital and University of Lausanne, Lausanne,
    Switzerland; Institute of Pathology, University of Bern, Bern, Switzerland
FABIOLA BERMEJO-CASARES • Department of Histology (Tissue Engineering Group), Faculty
    of Medicine, University of Granada, Granada, Spain; Instituto de Investigacion
    Biosanitaria, Ibs.GRANADA, Granada, Spain
MARCO BIGGIOGERA • Department of Biology and Biotechnology “Lazzaro Spallanzani”,
    Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
CHRISTOPHE BIOT • Université de Lille, CNRS, UMR 8576, UGSF – Unité de Glycobiologie
    Structurale et Fonctionnelle, Lille, France
SIMONA BISOGNO • Malopolska Centre of Biotechnology, Jagiellonian University, Krakow,
    Poland
VALERIA BITONTO • Department of Molecular Biotechnology and Health Sciences, University
    of Turin, Torino, Italy
SUSAN ANN BROOKS • Department of Biological & Medical Sciences, Oxford Brookes
    University, Oxford, UK
FERNANDO CAMPOS • Department of Histology (Tissue Engineering Group), Faculty of
    Medicine, University of Granada, Granada, Spain; Instituto de Investigacion
    Biosanitaria, Ibs.GRANADA, Granada, Spain
RAMÓN CARMONA • Department of Cell Biology, Faculty of Science, University of Granada,
    Granada, Spain
VÍCTOR CARRIEL • Department of Histology (Tissue Engineering Group), Faculty of
    Medicine, University of Granada, Granada, Spain; Instituto de Investigacion
    Biosanitaria, Ibs.GRANADA, Granada, Spain
FLAVIA CARTON • Department of Neurosciences, Biomedicine and Movement Sciences,
    Anatomy and Histology Section, University of Verona, Verona, Italy; University of Eastern
    Piedmont, Department of Health Sciences, Novara, Italy
CLAUDIO CASALI • Department of Biology and Biotechnology “Lazzaro Spallanzani”,
    Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
JESÚS CHATO-ASTRAIN • Department of Histology (Tissue Engineering Group), Faculty of
    Medicine, University of Granada, Granada, Spain; Instituto de Investigacion
    Biosanitaria, Ibs.GRANADA, Granada, Spain
YOUSSEF CHEBLI • Department of Plant Science and ECP3-Multi-Scale Imaging Facility,
    McGill University, Sainte-Anne-de-Bellevue, QC, Canada
FRANCO CHELI • LENS – European Laboratory for Non-linear Spectroscopy, University of
    Florence, Florence, Italy
BARBARA CISTERNA • Department of Neurosciences, Biomedicine and Movement Sciences,
    University of Verona, Verona, Italy
                                             xi
xii     Contributors
ELVA I. CORTÉS-GUTIÉRREZ • Universidad Autonoma de Nuevo Leon, México Faculty of
   Biological Sciences, Monterrey, Mexico
EMILIO CORTI • Department of Biology, University of Florence, Florence, Italy
IRENE COSTANTINI • LENS – European Laboratory for Non-linear Spectroscopy, University of
   Florence, Florence, Italy
MANUELA COSTANZO • Department of Neurosciences, Biomedicine and Movement Sciences,
   Anatomy and Histology Section, University of Verona, Verona, Italy
ANNA C. CROCE • Institute of Molecular Genetics “Luigi Luca Cavalli Sforza” (IGM) –
   CNR, Pavia, Italy; Department of Biology and Biotechnology “Lazzaro Spallanzani”,
   University of Pavia, Pavia, Italy
PAOLO D’INCECCO • Department of Food, Environmental and Nutritional Sciences,
   University of Milan, Milan, Italy
MARCO DANOVA • Department of Internal Medicine and Oncology, ASST Pavia and
   LIUCC University, Castellanza, Varese, Italy
MARTHA I. DÁVILA-RODRÍGUEZ • Universidad Autonoma de Nuevo Leon, Faculty of Public
   Health and Nutrition, Monterrey, Mexico
DIEGO DEMARCO • Departamento de Botânica, Instituto de Biociências, Universidade de São
   Paulo, São Paulo, Brazil
LLOYD A. DONALDSON • Scion Crown Research Institute, Rotorua, New Zealand
SARA ESCADA-REBELO • PhD Programme in Experimental Biology and Biomedicine (BEB),
   IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra,
   Portugal; Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell
   Biology, University of Coimbra, Coimbra, Portugal
MARIE E. ESPER • The Sprott Centre for Stem Cell Research, Regenerative Medicine Program,
   Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and
   Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
SARA FALSINI • Department of Biology, University of Florence, Florence, Italy
JOSÉ L. FERNÁNDEZ • Genetics Unit, INIBIC, Complejo Hospitalario Universitario A
   Coruña, As Xubias, La Coruña, Spain; Laboratorio de Genética Molecular y
   Radiobiologı́a Centro Oncologico de Galicia, La Coruña, Spain
ANDREA FERRIGNO • Department of Internal Medicine and Therapeutics, University of
   Pavia, Pavia, Italy
MIRIAM FILIPPI • Soft Robotics Laboratory, ETH Zurich, Zurich, Switzerland
PAOLA FULGHIERI • Department of Molecular Medicine, University of Pavia, Pavia, Italy
JOSÉ A. GALVÁN • Institute of Pathology, University of Bern, Bern, Switzerland
CARLOS GARCÍA DE LA VEGA • Unit of Genetics, Department of Biology, Universidad
   Autonoma de Madrid, Madrid, Spain
ÓSCAR D. GARCÍA-GARCÍA • Department of Histology (Tissue Engineering Group), Faculty of
   Medicine, University of Granada, Granada, Spain; Instituto de Investigacion
   Biosanitaria, Ibs.GRANADA, Granada, Spain
FRANCESCA GARELLO • Department of Molecular Biotechnology and Health Sciences,
   University of Turin, Torino, Italy
ŁUKASZ GA˛SIOR • Malopolska Centre of Biotechnology, Jagiellonian University, Krakow,
   Poland
ANJA GEITMANN • Department of Plant Science and ECP3-Multi-Scale Imaging Facility,
   McGill University, Sainte-Anne-de-Bellevue, QC, Canada
                                                                         Contributors      xiii
CARLOS GODOY-GUZMÁN • Centro de Investigacion Biomédica y Aplicada (CIBAP), Escuela
   de Medicina, Universidad de Santiago de Chile, (USACH), Santiago, Chile
CRISTINA GONNELLI • Department of Biology, University of Florence, Florence, Italy
JAIME GOSÁLVEZ • Unit of Genetics, Department of Biology, Universidad Autonoma de
   Madrid, Madrid, Spain
SHUO GUO • College of Chemistry, Institute of Analytical Chemistry for Life Science,
   Zhengzhou University, Zhengzhou, China
SIMON HAWKINS • Université de Lille, CNRS, UMR 8576, UGSF – Unité de Glycobiologie
   Structurale et Fonctionnelle, Lille, France
KASUN KODIPPILI • The Sprott Centre for Stem Cell Research, Regenerative Medicine
   Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of
   Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa,
   ON, Canada
MATEJA ERDANI KREFT • Institute of Cell Biology, Faculty of Medicine, University of
   Ljubljana, Ljubljana, Slovenia
MARIA ASSUNTA LACAVALLA • Department of Neurosciences, Biomedicine and Movement
   Sciences, University of Verona, Verona, Italy
ZHAOHUI LI • College of Chemistry, Institute of Analytical Chemistry for Life Science,
   Zhengzhou University, Zhengzhou, China
CÉDRIC LION • Université de Lille, CNRS, UMR 8576, UGSF – Unité de Glycobiologie
   Structurale et Fonctionnelle, Lille, France
GIOVANNA LOLLO • Laboratoire d’Automatique, de Génie des Procédés et de Génie
   Pharmaceutique, Université Claude Bernard Lyon 1, Villeurbanne, France
TEREZA LOSMANOVÁ • Institute of Pathology, University of Bern, Bern, Switzerland
MANUELA MALATESTA • Department of Neurosciences, Biomedicine and Movement Sciences,
   Anatomy and Histology Section, University of Verona, Verona, Italy
GIULIANO MAZZINI • Institute of Molecular Genetics – CNR (National Research Council),
   Pavia, Italy; Department of Biology and Biotechnology “Lazzaro Spallanzani”, University
   of Pavia, Pavia, Italy
ORIANE MOREL • Université de Lille, CNRS, UMR 8576, UGSF – Unité de Glycobiologie
   Structurale et Fonctionnelle, Lille, France; Institute of Biophysics, University of Natural
   Resources and Life Sciences Vienna, Vienna, Austria
GODFREY NEUTELINGS • Université de Lille, CNRS, UMR 8576, UGSF – Unité de
   Glycobiologie Structurale et Fonctionnelle, Lille, France
AMANDA OLDANI • PASS-Bio Med, Centro Grandi Strumenti, University of Pavia, Pavia,
   Italy
GIUSEPPINA PALLADINI • Fondazione IRCCS Policlinico San Matteo, Pavia, Italy;
   Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
ALESSIO PAPINI • Department of Biology, University of Florence, Florence, Italy
FRANCESCO SAVERIO PAVONE • LENS – European Laboratory for Non-linear Spectroscopy,
   University of Florence, Florence, Italy
LIDIA POLLARA • Department of Molecular Medicine, University of Pavia, Pavia, Italy
GARANCE PONTIER • Université de Lille, CNRS, UMR 8576, UGSF – Unité de Glycobiologie
   Structurale et Fonctionnelle, Lille, France
GRAŻYNA E. PTAK • Malopolska Centre of Biotechnology, Jagiellonian University, Krakow,
   Poland
xiv     Contributors
STEFANIA RAIMONDO • Dipartimento di Scienze Cliniche e Biologiche, Università di Torino,
   Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
JOÃO RAMALHO-SANTOS • Biology of Reproduction and Stem Cell Group, Center for
   Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of
   Life Sciences, University of Coimbra, Coimbra, Portugal
YINHUI REN • Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key
   Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou
   University, Yangzhou, China; Co-Innovation Center for Modern Production Technology of
   Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture
   and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou,
   China
MATHIEU REPELLIN • Department of Neurosciences, Biomedicine and Movement Sciences,
   Anatomy and Histology Section, University of Verona, Verona, Italy; Laboratoire
   d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude
   Bernard Lyon 1, Villeurbanne, France
SANDRA RISTORI • Department of Chemistry, University of Florence, Florence, Italy
ROK ROMIH • Institute of Cell Biology, Faculty of Medicine, University of Ljubljana,
   Ljubljana, Slovenia
MICHAEL A. RUDNICKI • The Sprott Centre for Stem Cell Research, Regenerative Medicine
   Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of
   Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa,
   ON, Canada
MARIA CRISTINA SALVATICI • Institute of Chemistry of Organometallic Compounds
   (ICCOM)-Electron Microscopy Centre (Ce.M. E.), National Research Council (CNR),
   Florence, Italy
SEBASTIÁN SAN MARTÍN • Centro de Investigaciones Biomédicas, Escuela de Medicina,
   Facultad de Medicina, Universidad de Valparaı́so, Valparaı́so, Chile
DAVID SÁNCHEZ-PORRAS • Department of Histology (Tissue Engineering Group), Faculty of
   Medicine, University of Granada, Granada, Spain; Instituto de Investigacion
   Biosanitaria, Ibs.GRANADA, Granada, Spain
ARNAUD SCHERBERICH • Department of Biomedicine, University and University Hospital of
   Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel,
   Allschwil, Switzerland
SILVIA SCHIFF • Department of Biology, University of Florence, Florence, Italy
VIRGINIE SOTTILE • Department of Molecular Medicine, University of Pavia, Pavia, Italy
CORENTIN SPRIET • Université de Lille, CNRS, UMR 8576, UGSF – Unité de Glycobiologie
   Structurale et Fonctionnelle, Lille, France; Université de Lille, CNRS, Inserm, CHU Lille,
   Institut Pasteur de Lille, US 41-UMS 2014-PLBS, Lille, France
YUANQIANG SUN • College of Chemistry, Institute of Analytical Chemistry for Life Science,
   Zhengzhou University, Zhengzhou, China
MARIO P. TSCHAN • Institute of Pathology, University of Bern, Bern, Switzerland
PATRIZIA VAGHI • PASS-Bio Med, Centro Grandi Strumenti, University of Pavia, Pavia,
   Italy
MARIAPIA VAIRETTI • Department of Internal Medicine and Therapeutics, University of
   Pavia, Pavia, Italy
                                                                       Contributors     xv
ENZA MARIA VALENTE • Department of Molecular Medicine, University of Pavia, Pavia,
   Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
JUAN VARAS • Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de
   Medicina, Universidad de Valparaı́so, Valparaı́so, Chile
CUNXU WEI • Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key
   Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou
   University, Yangzhou, China; Co-Innovation Center for Modern Production Technology of
   Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture
   and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou,
   China
TAMARA WEISS • Department of Plastic, Reconstructive and Aesthetic Surgery, Medical
   University of Vienna, Vienna, Austria
LORENA ZANNINO • Department of Biology and Biotechnology “Lazzaro Spallanzani”,
   Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
SHENGNAN ZHAO • Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key
   Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou
   University, Yangzhou, China; Co-Innovation Center for Modern Production Technology of
   Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture
   and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou,
   China
DAŠA ZUPANČIČ • Institute of Cell Biology, Faculty of Medicine, University of Ljubljana,
   Ljubljana, Slovenia
                                                                                               Chapter 1
Histochemistry in Advanced Cytometry: From
Fluorochromes to Mass Probes
Giuliano Mazzini and Marco Danova
Abstract
For over half a century, fluorescence has been the milestone of most of the quantitative approaches in
various fields from chemistry and biochemistry to microscopy. This latter also evolved into cytometry,
thanks to the development of fluorescence techniques. The dyes of classical cytochemistry were replaced by
fluorochromes, and the pioneer microphotometry was replaced by microfluorometry. The latter has great
advantages in terms of simplicity, sensitivity, and accuracy. The extensive research and availability of new
fluorochromes as well as the technological evolution contributed to the success of microfluorometry. The
development of flow cytometry in the 1960s gave a giant boost to cell analysis and in particular to the
clinical diagnostics. The synergy between flow cytometry and the subsequent development of monoclonal
antibodies allowed the setup of multiparametric analytical panels that are today popular and irreplaceable in
many clinical and research laboratories. Multiparametric analysis has required the application of an increas-
ing number of fluorochromes, but their simultaneous use creates problems of mutual contamination, hence
the need to develop new fluorescent probes. Semiconductor and nanotechnology research enabled the
development of new probes called nanocrystals or quantum dots, which offered great advantages to the
multiparametric analysis: in fact, thanks to their spectrofluorometric peculiarities, dozens of quantum dots
may be simultaneously used without appreciable crosstalk between them. New analytical horizons in
cytometry seem to be associated with a new concept of analysis that replaces fluorescence toward new
markers with (non-radiative) isotopes of heavy metals. Thus, the mass flow cytometry was born, which
seems to guarantee the simultaneous compensation-free analysis of up to 100 markers on a single sample
aliquot.
     Key words Quantitative microscopy, Cytometry, Fluorescence, Flow cytometry, Mass flow cytometry
1 Introduction
                                 The great advances of microscopic techniques, in the second half of
                                 the last century, led to the birth of quantitative microscopy. The
                                 microscope became not only an instrument for the observation of
                                 microstructures and morphologies but also an instrument capable
                                 of quantitate some of the main cellular components. Thus, cyto-
                                 metry was born, an analytical approach that, initially based on
                                 microscopy, was aimed to the quantitative determination of cellular
Carlo Pellicciari et al. (eds.), Histochemistry of Single Molecules: Methods and Protocols,
Methods in Molecular Biology, vol. 2566, https://doi.org/10.1007/978-1-0716-2675-7_1,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2023
                                                             1
2   Giuliano Mazzini and Marco Danova
                    constituents. In addition to cytometry, cytochemistry also evolved:
                    from the empirical science that used salts and natural pigments
                    (from both the animal and plant worlds), cytochemistry became a
                    refined technique based on defined and controlled chemical reac-
                    tions. The central core of this first methodological and later instru-
                    mental evolution is DNA on which an immense research work was
                    carried out in the years from 1950 to 1970 [1–7]. DNA, as a
                    fundamental cell component, immediately became the subject of
                    quantitative study. From the first observations of cell proliferation
                    and neoplastic transformation, the need derived for a procedure to
                    exactly measure the amount of DNA per cell. The first approaches
                    of DNA cytometry were based on the evaluation of the Feulgen
                    reaction products by absorption measurement [8–12]. The com-
                    plexity and limitations of this procedure were soon overcome by the
                    development of fluorescence microscopy [13] and related fluoro-
                    chromes. Quantitative cytochemistry thus underwent a great devel-
                    opment with the availability of new fluorescent molecules that have
                    made cytofluorometry the technique of choice for increasingly
                    sensitive, precise, and reliable quantitative determinations [14–16].
                         After decades of research on DNA, other cellular components
                    have also been the subject of quantitative interest, e.g., RNA and
                    proteins.
                         In addition to the quantitative fluorescence probes, several
                    markers have been developed to study cellular functions. In this
                    case, measurements are not strictly quantitative but rather aimed at
                    acquiring information on the cell functional states (viability, death/
                    apoptosis occurrence, oxidative state, membrane potential, pH,
                    etc.) under both physiological and pathological conditions.
                         A milestone in the development of cytometry, however, is
                    linked to the technological evolution that led to the birth of flow
                    cytometry (FC). The ability to directly analyze cells in suspension
                    led to enormous advantages. In fact, classical cytometry on a slide
                    (even after various attempts for automation) allowed the analysis of
                    a few hundred cells in very long times, whereas FC made it possible
                    to analyze thousands of cells in a few seconds [17–22].
                         A further boost (this is very great too) was linked to the
                    development of immunofluorescence and, immediately after, to
                    the advent of monoclonal antibodies. Thanks to the conjugation
                    with a variety of fluorochromes, monoclonal antibodies became a
                    very powerful investigative tool in various fields of immunology,
                    both in biological research and in the clinical diagnostics. The
                    combination of fluorescent monoclonal antibodies and FC is
                    today an unbeatable tool in many clinical laboratories [23–25].
                         Modern diagnostic approaches in the immunohematological
                    areas often require the use of a large panel of antibodies. These
                    multiparametric investigations, therefore, require the simultaneous
                    use of multiple fluorescent markers. To avoid errors due to the
                    mutual interference between probes, it is necessary that the labeling
           Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes       3
                      fluorochromes are spectrally separated or, in other words, with
                      fluorescent emissions in fairly narrow and sufficiently distinct
                      bands. Today, using traditional fluorochromes (in addition to the
                      new ones called “tandem”), the FC techniques allow to discrimi-
                      nate up to 12 different colors; to do this, however, the sample must
                      be divided into aliquots analyzed with instruments equipped with
                      several sequential excitation sources (from the UV to the far-red
                      wavelengths).
                           To further expand the potential of multiparametric analysis, a
                      family of innovative fluorescent probes called nanocrystals
                      (or QDs) have been developed in recent years. Their chemical/
                      physical characteristics make them unique in the broad scenario of
                      the commercially available fluorescent markers, today.
                           Finally, after almost a century of fluorescence, cytometry is
                      evolving toward new analytical horizons offered by the use of
                      markers based on heavy metal isotope. FC is going to leave the
                      concept of optical (spectrofluorometric) analysis and uses the time-
                      of-flight mass spectrometry (so-called CyTOF) to recognize new
                      markers. This technology utilizes rare metal isotopes instead of
                      fluorophores to label antibodies, thus breaking the limit of multi-
                      plexing capability of conventional cytometry, and allows the multi-
                      ple simultaneous labelling of dozens of “targets” (actually near a
                      hundred) without mutual interference. Obviously, in parallel with
                      the instruments’ technological evolution, a commercial fight has
                      also begun for the development of new diagnostic kits based on
                      these markers. Terminology is also changing and the historical
                      “fluorescence flow cytometry” becomes today “mass flow
                      cytometry.”
2   Fluorochromes and Cytometry
                      Although the first prototypes of flow cytometers were based on the
                      measurement of scattered light parameters, the instrumentation
                      that later became commercially available was instead based on the
                      use of fluorochromes labeling the cellular components to be
                      detected and measured. It is worth noting that although the vast
                      majority of (clinical) applications of FC are presently directed to
                      measure immunofluorescence markers, DNA was instead the start-
                      ing cellular target.
                          The first experimental contributions to the automated analysis
                      of cells in suspension were aimed at measuring the volume (through
                      the evaluation of scattered light) and immediately afterward the
                      DNA content (through the measurement of fluorescence). The
                      goal was in fact to automate the cytometric analyses of DNA
                      (traditionally carried out on a slide), and, more or less in the same
                      years, FC was replacing the more laborious and imprecise cytopho-
                      tometric determination [8–12]. In other words, fluorochromes
4   Giuliano Mazzini and Marco Danova
                    were replacing the classic dyes of cytochemistry, at least as far as
                    quantitative aspects were concerned.
                         In the years around the 1970s, FC was an advanced analytical
                    technique for cell proliferation studies, mainly based on the analysis
                    of fluorescence emitted by a stoichiometrically bound fluoro-
                    chrome to DNA. It is important to remember the first attempts
                    to adapt to FC some important classical reactions of cytochemistry
                    in fluorescence [26–29]. Subsequently, FC was significantly
                    improved by extensive methodological researches that made it
                    available, in the timespan of a few years, a wide range of methodol-
                    ogies with often specially developed procedures and fluoro-
                    chromes. The impact of the phenanthridine fluorochromes,
                    ethidium bromide (EB) and propidium iodide (PI), on DNA FC
                    was huge [30–32], and these fluorochromes are still nowadays
                    among the most widely used probes for the quantitative analysis
                    of DNA [33–37]. From the methodological point of view, also the
                    so-called fluorescent antibiotics (mithramycin, olivomycin, cromo-
                    mycin) have provided important contributions to DNA
                    quantitation.
                         After DNA, the interest of FC was addressed to cellular pro-
                    teins, and the methodological evolution exactly follows what has
                    just been described for DNA. At first, traditional techniques were
                    adapted to samples of cells in suspension, and then FC-tailored
                    methods and fluorochromes were, on purpose, developed. Starting
                    from eosin, fluorescamine, and ortho-phthalaldehyde, then fluores-
                    cein isothiocyanate (FITC) became the leader probe in this field
                    (still today, it is the most widely used in immunofluorescence). The
                    transfer to FC of the first immunofluorescence methods (initially
                    used in fluorescence microscopy) then gave a major boost toward
                    spreading the FC techniques in most of the biomedical labora-
                    tories. The methodological research subsequently made a series of
                    fluorochromes available, either synthetic (e.g., the Hoechst series)
                    or derived from algae (e.g., phycobiliprotein).
                         Other fluorochromes were later proposed with the aim not to
                    strictly quantitate the amount of molecules but to monitor cellular
                    functions or markers of cell viability or death, oxidation state, pH,
                    etc. A new family of probes were recently developed, called nano-
                    crystals or QDs. They are characterized by very peculiar spectroflu-
                    orometric properties allowing a dedicated application in
                    multiparametric FC. Lastly, cytometry evolved toward an innova-
                    tive analytical strategy that would even replace fluorescence with
                    the labeling by heavy metal mass isotopes; hence, mass cytometry
                    was born.
           Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes         5
3   Fluorescence and Autofluorescence
                      The evolution of cytometry in fluorescence also conditioned a series
                      of researches on the importance of bioluminescence with mainly
                      negative contributes to cytofluorimetric detections. It became
                      immediately evident that biological tissues can be a spontaneous
                      source of autofluorescence and that this can interfere with the
                      analytical results. Fluorescence analysis allows cells to be irradiated
                      by a beam of light of a certain frequency and high intensity
                      (depending on the type of excitation source) which, interacting
                      with the various biological components, can generate (in addition
                      to diffused and refracted light) also a spontaneous fluorescence
                      emission called autofluorescence.
                           In general, fluorescence can be distinguished into primary
                      (spontaneous, or autofluorescence, or natural fluorescence) and
                      secondary (or induced) fluorescence. The latter in turn can be
                      further classified into numerous “subtypes” depending on the
                      physicochemical treatments used to generate the emission.
                           Autofluorescence can be more or less high, depending on the
                      cell type under examination, and is generally produced by the
                      photoluminescence of some amino acids and therefore by the pro-
                      teins where they are contained in. In particular, tryptophan and
                      tyrosine are fairly luminescent especially when excited in ultraviolet
                      light. Since these amino acids are commonly present in proteins,
                      they can be considered the main components responsible for the
                      typical autofluorescence of many biological tissues observed in
                      ultraviolet light under a fluorescence microscope. Many other com-
                      ponents (or substances) physiologically or even pathologically pres-
                      ent in cells can increase the basic autofluorescence of certain cell
                      types. Many vitamins, lipids, enzymes, and coenzymes are often
                      characterized by specific fluorescence emissions. As far as lipids are
                      concerned, there are, for example, porphyrins which represent an
                      important family of substances naturally present in some tissues
                      (especially in the hematopoietic compartment); the increase in
                      porphyrin content under some pathological situations and the
                      consequent increase in the typical fluorescence intensity can be
                      used for diagnostic purposes. Lipids also have the peculiar charac-
                      teristic of being similar to many vitamins and lipofuscins (often very
                      fluorescent) that they are able to accumulate within cells or tissues
                      in the form of micro-drops or liposomes.
                           Other biological components of some tissues, such as elastin
                      and collagen, show a high level of spontaneous emission when
                      observed under a fluorescence microscope. In these cases, however,
                      since the localization of this substance is mostly in the extracellular
                      matrix, the incidence of this phenomenon is quite modest as far as
                      single cell (or nuclei) analyses are concerned. In addition, the
                      autofluorescence of cells or tissues can increase as a result of the
6   Giuliano Mazzini and Marco Danova
                    presence of non-physiological substances, among which are some
                    types of drugs such as some antibiotics. Virtually all anthracyclines
                    are so fluorescent that they can be considered as “fluorochromes,”
                    and some antibiotics (described below) represent a particular group
                    of luminescent molecules. These drugs specifically bind DNA so
                    that their clinical use, even at low doses, allows their accumulation
                    in the cell nuclei: as a consequence, when analyzed by FC or
                    observed under a microscope, the nuclei have a much higher spon-
                    taneous fluorescence. Autofluorescence in cytometry can be a diag-
                    nostic tool as it has been shown to increase in some tumor tissues
                    compared to the corresponding normal tissue. So, in particular
                    situations, autofluorescence can be considered as a positive occur-
                    rence; however, in general, spontaneous fluorescence represents a
                    negative aspect in many cytometric approaches, especially in static
                    cytometry, but also, though to a lesser extent, in FC. In static
                    cytometry, the sample is often observed under excitation light
                    with the contribution of the biological matrix surrounding the
                    cells; on the contrary, in FC, the cells are isolated from the tissue
                    milieu and even single nuclei are often processed. However, one
                    should always be aware of the sample autofluorescence and have an
                    approximate estimate of its level, to predict the possible error
                    incidence.
                         The fluorescence that mainly interest the field of cytometry are
                    the so-called extrinsic or induced fluorescence. All the lumines-
                    cence artificially induced (by means of physicochemical/chemical
                    treatments) in a sample belong to this class. Historically, some of
                    the first fluorochromization processes in histochemistry involved
                    the transformation of weakly luminescent substances (e.g., the
                    catecholamines) into compounds with stronger emission. Other
                    treatments transformed a substrate into a fluorescent product
                    (e.g., enzyme histochemistry) and still others, on the basis of
                    intermediate reactions, finally bound a fluorochrome (e.g., the
                    fluorescent Feulgen reaction). The current labeling techniques for
                    cytometry are essentially attributable to two types of procedures:
                    (a) those that lead to the binding of a fluorochrome to the
                    biological molecule, based on specific chemical-physical interac-
                    tions, and (b) those that bind a fluorochrome to the target antigen
                    through an immunochemical reaction.
                         In recent years, the progress of FC was dependent on the
                    technological improvement but also on the evolution of the stain-
                    ing procedures, among which were the manufacture and commer-
                    cial availability of monoclonal antibodies: thanks to their use, FC
                    became a routine analytical technique in many research and clinical
                    laboratories, in particular for leukocyte immunophenotyping.
           Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes           7
4   DNA Probes
                      As already recalled, the most important chapter on fluorescent
                      markers undoubtedly deals with DNA cytochemistry.
                           The Feulgen reaction [7] was the very first attempt to quantify
                      a cellular component of fundamental importance for a wide range
                      of biomedical applications. Few years later many contributes [4, 16]
                      were focused on the automation of this determination (by means of
                      both static and flow cytometry). The first step was the modification
                      of the original method, replacing the conventional Shiff’ reagent
                      with alternative fluorochromes (which paints the nuclei
                      red-magenta and was used for the first absorption measurements)
                      [26–29]. The results were not particularly “brilliant” due to the
                      complex and time-consuming method that required acid hydrolysis
                      with many washes and centrifugations, which resulted in a high cell
                      loss. Nonetheless, the first applications of FC were based on the
                      Feulgen reaction modified with acriflavine, 2,5-bis(benzoxazol-2-
                      yl)thiophene (BBT), and auramine. In the meantime, a new fluo-
                      rescent probe acridine orange (AO) was proposed, whose meta-
                      chromatic property was already exploited in other histochemical
                      applications [38]. Together with its peculiar chemical-physical
                      characteristics, AO appeared to be (at least initially) the probe of
                      choice for the analysis of nucleic acids by FC [39]. In fact, it has an
                      absorption spectrum favorable for its excitation with the argon ion
                      laser (488 or 514 nm) which was (and still is) the typical excitation
                      source of the most popular instruments. AO has also a good quan-
                      tum yield and, above all, it provides two different information at the
                      same time: its peculiar characteristic is in fact to intercalate into the
                      DNA double helix, and in this situation (molecules spaced between
                      them) it emits green fluorescence, while it can also bind externally
                      the single RNA helix and in this other condition (molecules close
                      one to each other) emits red fluorescence. This peculiarity was
                      initially exploited in numerous applications in the hemato-
                      oncology field, where the DNA/RNA ratio is a powerful marker
                      in the study and classification of some leukemias. From the point of
                      view of general applications, however, this method has numerous
                      drawbacks, mainly related to its crucial binding mechanism that
                      requires extremely controlled and not always exactly reproducible
                      reaction conditions.
4.1 G-C Base-         Other fluorochromes able to bind to DNA with different mecha-
Specific              nism were later proposed under the name of “fluorescent antibio-
Fluorochromes         tics.” Among these mithramycin (MM), cromomycin, and
                      olivomycin all react with a similar mechanism that involves the
                      formation of a complex with guanine (in the presence of magne-
                      sium ions) and are therefore base-specific probes, with a preference
                      for G-C pairs. Their excitation maximum is in the blue
8      Giuliano Mazzini and Marco Danova
                       (410–430 nm) and emission in the green-yellow (500–600 nm).
                       They can therefore be best excited with lamp sources of both
                       mercury and xenon vapor while maintaining a good emission
                       even when excited with argon lasers (both in blue and green).
                       Thanks to their base specificity, they should not bind to RNA;
                       therefore, they guarantee an accurate DNA determination, without
                       the need to enzymatic RNA digestion. In fact, MM in particular has
                       been used for this purpose in combination with EB [40]. Exploiting
                       the energy transfer between MM and EB, it is possible to excite
                       MM in the blue region (at 420 nm where EB does not absorb) to
                       obtain red fluorescence from EB, which does not receive light
                       directly from the lamp but receives energy from the excited MM
                       molecules. This phenomenon occurs only if the molecules of the
                       donor-acceptor pair are in close proximity, as it occurs for MM and
                       EB when they are bound to DNA. The collected fluorescence signal
                       is therefore dependent on the amount of DNA only, without the
                       interference of RNA.
                            These G-C fluorochromes in combination with other A-T-
                       specific dyes can provide information on DNA base composition.
                       Based on this strategy, a method has been applied to the differenti-
                       ation of single chromosomes using chromomycin in combination
                       with Hoechst, as well as on the discrimination of classes of bacteria
                       with DAPI. In more recent years, another fluorochrome belonging
                       to this family and derived from actinomycin-D, called 7-amino
                       actinomycin D (7-AD), was proposed for the analysis of DNA in
                       combination with other probes [24]. The physicochemical charac-
                       teristics of 7-AD, and in particular its deep red emission, allow a
                       good separation of its fluorescence even in the presence of the
                       popular yellow-orange probes. Since 7-AD can penetrate through
                       the membrane of unfixed cells, it has been proposed for the DNA
                       multiparametric determination in unfixed cells previously immuno-
                       labeled for different antigenic markers using FITC- and phycoery-
                       thrin (PE)-conjugated antibodies [25].
4.2 A-T Base-          Some very important fluorochromes for the role they have played in
Specific               FC applications belong to this class. DAPI and its analogue DIPI
Fluorochromes          have contributed to the development of a family of “European
                       cytometers,” substantially derived from the fluorescence micro-
                       scope and thus using lamps as excitation sources [19, 40]. Instead,
                       another family of instruments born in the USA exploited the power
                       of the new argon ion lasers in place of lamps. Both types of instru-
                       ments had ideal fluorochromes fitting their different excitation
                       performances: FITC fits the argon line at 488 nm while DAPI is
                       optimally excited by the UV band of the mercury lamp. Its maxi-
                       mum absorption is in the ultraviolet where mercury has a very
                       powerful emission line (at 365 nm). DAPI has a high quantum
                       efficiency that, combined with the high excitation energy, leads to
                       an extraordinary intensity of fluorescence emission. These findings
             Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes          9
                        ensued an excellent result, in terms of coefficient of variation of the
                        DNA data, as reported in the literature about the DAPI-DNA
                        analysis carried out with lamp instruments.
                             Other A-T-specific fluorochromes are those developed by
                        Hoechst and named as HO followed by a number [41]. Among
                        others the HO33258 e HO33342 became very popular in FC; in
                        particular, HO33342 is now the probe of choice for cell viability
                        studies [42, 43], as it can cross the cell membrane and stain the
                        nucleus in supravital conditions (see below Subheading 7.1). Two
                        other fluorochromes from the A-T family are quinacrine (QC,
                        already well known for its use in chromosome banding) and the
                        more recently proposed LC585 [44]. This latter has interaction
                        characteristics similar to HO3342 (therefore with the possibility to
                        be used as viability probe) but with excitation spectrum in the
                        visible light range.
4.3 Intercalating       Although acridine derivatives, and AO in particular, are the most
Dyes                    famous intercalating fluorochromes, in the history of DNA cyto-
                        chemistry [39], the family of phenanthridine derivatives EB and PI
                        has made the most relevant contribution to FC, from the practical
                        point of view [33]. EB has been extensively studied from a physi-
                        cochemical point of view and its interactions with DNA described
                        in detail even at the ultrastructural level. Its analog, PI, had a wider
                        methodological application, thanks to its spectrofluorometric char-
                        acteristics that make it more suitable, especially for multiparametric
                        FC. Phenanthridines have the peculiar characteristic of being
                        almost non-fluorescent as free molecules in the solvent while
                        increasing considerably their quantum efficiency when intercalated
                        in double-stranded DNA. The explanation for this phenomenon
                        lies in the change of microenvironment that intercalated molecules
                        acquire, compared to those free in the surrounding dye solution.
                        The latter, after light excitation, from the higher electronic level can
                        disperse much of the absorbed energy, exchanging it with the
                        surrounding water molecules (polar and very mobile); thus, their
                        energy is not emitted as fluorescence. On the contrary, the inter-
                        calated molecules become electronically shielded from each other
                        and especially from the external water dipoles. In this state, much of
                        the energy absorbed by excitation is returned into the form of
                        fluorescence. It means that only the intercalated molecules contrib-
                        ute to the generation of the fluorescence signal emitted by the
                        nucleus. This peculiarity, together with its spectrofluorometric
                        characteristics, made PI the probe of choice for DNA quantitation
                        by FC. Regarding the spectral characteristics, it should be noted
                        that PI has a wide absorption band in the visible, with best absorp-
                        tion in the blue/green region and another band in the UV. It is
                        therefore widely used both with laser-based instruments, where it is
                        typically excited by the 488 nm argon line, and with lamp instru-
                        ments where the 546 nm mercury line is exploited. The emission
10      Giuliano Mazzini and Marco Danova
                        spectrum is fairly located in the red, with a maximum around
                        610 nm: this allows it to be widely used in multiparametric FC in
                        combination, usually, with FITC and PE, although with a discrete
                        spectral overlap with the latter. Although other fluorochromes with
                        narrow red emission have been recently proposed (to minimize
                        cross-talking between probes), PI maintain its wide popularity as a
                        marker of choice for DNA. Phenanthridines have a single draw-
                        back, as their binding mechanism does not allow an absolute speci-
                        ficity toward DNA: they can, in fact, bind also double-stranded
                        RNA (typically t-RNA). The high-resolution DNA measurement
                        with EB or PI therefore requires a pretreatment for the enzymatic
                        digestion of RNA. To overcome this event and thus avoid the use of
                        enzyme, a specific methodology was proposed [19] that involves
                        the use of a mixture of MM and EB in equimolar combination and
                        exploit the principle of energy transfer from one to the other. After
                        dual staining, the double-stranded DNA will bind EB
                        (by intercalation) and MM (by interaction with the G-C base
                        pairs), while RNA will have only EB intercalated (because MM
                        does not bind to RNA). Using an excitation light beam around
                        430 nm (e.g., by a mercury lamp), only MM will be excited,
                        because EB does not absorb light at this wavelength. However,
                        given the proximity (less than 100 A ) of the molecules of MM and
                        EB in DNA, the former can transfer directly the absorbed energy to
                        the molecules of EB that finally emit its typical fluorescence: the
                        intensity of this fluorescence emission is thus proportional to the
                        DNA amount.
5    RNA Probes
                        As far as RNA is concerned, its typical probe is AO, already
                        described in the previous section. Thanks to the very intense meta-
                        chromatic effect, AO can act as a versatile bifunctional probe able to
                        bind both DNA and RNA with two different emission signals.
                        Intercalated inside the double-stranded DNA may fluoresce
                        green, while externally bounded to RNA turn its fluorescence to
                        red [39]. Before the advent of the so-calledproliferation markers,
                        now widely used for studies of cell proliferation, the interest was in
                        fact focused on RNA as a cellular component (of second level after
                        DNA) to “monitor” cell proliferation. Many contributions refer
                        the importance of assessing the ratio DNA/RNA performed by FC
                        via AO labeling, especially in the field of oncohematology [22].
                             Another more tedious method was based on the use of phe-
                        nanthridines (as mentioned above) with a reverse procedure to
                        what is done for DNA. Following digestion with DNase, the resid-
                        ual fluorescence refers to RNA.
                             Another RNA-specific probe, already widely used as a conven-
                        tional histochemical dye, is pyronin Y (PY). Together with methyl
           Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes       11
                      green, it has given rise to one of the first biparametric methods in
                      absorption microphotometry. In cytometry, this method was then
                      modified by combining PY with Hoechst, which replaced methyl
                      green as a DNA fluorochrome [25]. The results obtained with PY
                      have never been without criticism and its routine use has found the
                      same obstacles already mentioned for AO.
                          A specific clinical application of RNA probes was dealing with
                      the counting of reticulocytes in peripheral blood. The RNA resi-
                      dues in the cytoplasm of immature erythrocytes were in fact labeled
                      with different fluorochromes including DiOC1, thioflavin T, and
                      thiazole orange in addition to PY. Among these, the method most
                      frequently applied in the literature is the one using thiazole orange
                      that, despite not being exclusively specific for RNA (as it binds also
                      DNA), has shown good sensitivity in the automatic counting of the
                      anucleated reticulocytes in peripheral blood [25].
6   Protein Probes
                      The most popular protein-specific fluorescent probe is surely fluo-
                      rescein isothiocyanate (FITC), which was also one of the first
                      fluorochromes used in fluorescence microscopy. This probe has
                      practically promoted the amazing development of immunofluores-
                      cence techniques [22]. Like most of the protein-specific dyes, FITC
                      establishes a covalent bond between the thiocyanate radical and the
                      primary amine groups spread everywhere in the biological tissues.
                      Thanks to the chemical stability of the complex, all the necessary
                      washing procedures can be performed, in both conventional cyto-
                      chemistry and immunocytochemistry, without loss of the reaction
                      products: careful washing is necessary because free and bound
                      FITC are equally fluorescent, thus being crucial to eliminate
                      unbound FITC to make a proper quantitative analysis. The spec-
                      trofluorometric characteristics of FDITC are ideal for an excitation
                      with the 488 nm line of the argon laser, being the absorption
                      maximum around 490 nm, while the emission spectrum is in the
                      green region, with a maximum at 520 nm. FITC has metachro-
                      matic properties similar to those described for AO, i.e., it changes
                      its spectroscopic structure depending on its concentration. For
                      many years, FITC has been used as the classical probe for total
                      cellular proteins, thanks also to the biparametric method in combi-
                      nation with PI, for simultaneous DNA determination [33].
                           Other historical protein markers are ortho-phthalaldehyde and
                      fluorescamine, which are excited by UV light and emit blue-white
                      fluorescence [44]. They were not widely applied since the required
                      UV excitation generates a significant level of background fluores-
                      cence and also because more efficient fluorochromes became soon
                      available.
12   Giuliano Mazzini and Marco Danova
                          An important group of fluorochromes with a FITC-like reac-
                     tion mechanism is the rhodamine family. Among these, sulforoda-
                     mine 101 (SR101) and tetramethylrhodamine-isothiocyanate
                     (TRITC) have been the most widely used in FC [25]. Important
                     was then the setting of a method that, using SR101 together with
                     DAPI, with a single UV excitation, allows measuring the blue
                     fluorescence of DAPI and the red emission of SR101. This method
                     has been extensively used with mercury lamp cytometers and is still
                     in use in some laboratories. The results are generally very good, and
                     often the CV of the DNA is even smaller than in single-stained
                     DAPI samples (it is not easy to explain this phenomenon, and one
                     can only speculate that the presence of SR101 prevents the nonspe-
                     cific interaction of DAPI outside DNA). Even more surprising are
                     the SR101 data (which follow those of FITC on the same samples)
                     taking into account the crosstalk between the two emission spectra.
                          Some coumarin derivatives such as 7-amino-coumarin
                     (AMCA) and N-(7-dimethylamino-4-methylcoumarinyl) malei-
                     mide (DACM) are very interesting for their spectrofluorometric
                     properties: high absorption in UV, emission in the first part of the
                     visible light that allows obtaining a brilliant white-blue fluores-
                     cence. The amine-reactive AMCA was rather widely used in the
                     field of immunofluorescence as AMCA conjugates became com-
                     mercially available and proved to be useful for multiparametric
                     analyses in combination with other green- and red-emitting probes
                     [45]. Another coumarin derivative, DACM, has similar fluores-
                     cence properties as AMCA, but a different reaction mechanism
                     being specific for the protein sulfhydryl (-SH) groups
                     [46]. DACM was initially applied to detect SH-rich proteins in
                     the skin [47, 48] and to investigate the thiol-to-disulfide transition
                     in nuclear protamines during mouse sperm maturation
                     [49]. Thanks to their spectral characteristics, DACM and PI were
                     used as a dye pair for studying DNA and proteins in nuclear
                     chromatin by fluorescence resonance energy transfer [50]. This
                     couple of probes were also applied in lamp-based FC, thanks to
                     the high performance UV excitation of this type of
                     instruments [51].
                          To complete the list of protein probes, there are the so-called
                     “phyco” derivatives. These organic complexes, called phycobilipro-
                     teins, are molecules of natural origin (from marine algae or cyano-
                     bacteria) and exhibit very interesting photophysical properties that
                     make them suitable for FC application and, in particular, for immu-
                     nofluorescence labeling [51–55]. In nature, phycobiliproteins are
                     components of the photosynthetic light-harvesting antenna com-
                     plexes of red algae and cyanobacteria; they absorb the sun’s energy
                     and efficiently transfer it to chlorophyll pigments by fluorescence
                     resonance energy transfer, for the photosynthetic reactions. Phyco-
                     biliproteins are characterized by a high extinction coefficient (which
                     is fundamental for a suitable fluorescence emission) and are
Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes        13
           commercially available as three fluorochromes: B-phycoerythrin
           (B-PE), R-phycoerythrin (R-PE), and allophycocyanin (ApC).
           Phycobiliproteins are characterized by a high molecular weight,
           resulting from the very complex organic structure, which can
           include up to 34 chromophore groups per molecule. PEs reach a
           molecular weight around 240 kDa, while ApC is about 104 kDa;
           they have common quite broad absorption spectra in the visible
           band beyond 450 nm. In particular, R-PE has a specific absorption
           peak around 490 nm, which makes this fluorochrome particularly
           suitable to be excited with the 488 nm line of the argon laser. B-PE
           has its excitation maximum more shifted toward the green and is
           therefore better excited in this spectral region. In contrast, the
           excitation peak of ApC is shifted to the red region with a maximum
           around 650 nm. As mentioned above the peculiarity of these fluor-
           ochromes is to be very efficient in terms of fluorescence emission, as
           a result of the high specific absorption of photons and an equally
           high fluorescence quantum yield. The absorption is characterized
           by the molar extinction coefficient, which represents the statistical
           probability that the molecule has the ability to absorb a photon of a
           given wavelength. This value, relative to the wavelength of 488 nm,
           is, for example, for R-PE, equal to 2  106, while it is only 86  103
           in the case of FITC. For ApC this value is 7  105 at 650 nm. It is
           therefore evident that the ability of these fluorochromes to absorb
           light is very high as compared to FITC. As far as quantum yield is
           concerned, from the theoretical value of 1, PE has a value of 0.98
           and ApC of 0.68, while FITC, which is known to be a brilliant
           fluorochrome, is only 0.5. Thus, it is quite clear that phycobilipro-
           teins are definitely the fluorochromes of choice, in terms of sensi-
           tivity (i.e., for the measurement of small amount of antigens/
           proteins) [25].
                 From the application point of view, these fluorochromes have
           been very successful, having become, in a few years, the first coun-
           terparts to FITC in FC. Actually, in FC the single-parameter immu-
           nofluorescence analysis may be performed using just FITC as probe
           of choice, while FITC may be combined with PE in dual-parameter
           measurements, with the further addition of ApC in case of triple
           labeling. In this latter case, a dual-laser excitation system must be
           available to properly excite ApC in the red region.
                 In the case of single-laser blue excitation, the third probe must
           be a “tandem” fluorochrome. This belongs to the family of syn-
           thetic probes developed by joining together two molecules with
           complementary photophysical properties, to exploit the principle
           of energy transfer from one (the donor) to the other (the acceptor).
           They have various commercial names and generally use PE, as a
           donor coupled to another chromophore, which receives the energy
           from this latter and finally emits a more red-shifted fluorescence.
           They were specifically developed to solve the problem of the
           so-called multilabeling immunofluorescence based on the use of a
14       Giuliano Mazzini and Marco Danova
                         single blue excitation, for the measurement of three signals: green
                         (FITC), yellow (PE), and red (tandem) [53].
                             Cyanines (known with the trade names Cy2–7) belong to a new
                         family of protein probes: they are also synthetic fluorochromes
                         designed to mimic the characteristics (viz., the advantages) of the
                         natural phycobiliproteins. They have a specific high light-
                         absorption coefficient (~ 2  103) and a good fluorescence quan-
                         tum efficiency (0.1  0.3). Compared to the natural parental
                         molecules, cyanines have narrower absorption-emission spectra,
                         which offer better emission selectivity and less mutual reabsorption,
                         when used in multiparametric analysis. The most interesting and
                         promising are those that are excited in the red (exploiting the lines
                         of the He-Ne laser or the solid-state lasers) and emit in the far red,
                         up to over 800 nm [44].
7     Cell Function Probes
7.1   Viability Probes   The fluorochromes described so far are the most historical and did
                         contribute to the progress of the microfluorometric techniques,
                         having been developed to specifically and stoichiometrically bind
                         different cellular components to obtain their quantitative determi-
                         nation. Thanks to histochemists’ efforts, perfectly controlled and
                         reproducible conditions of dye concentration, pH, reaction time,
                         and temperature have been defined to ensure a perfect correlation
                         between fluorescence intensity and probe content, as the funda-
                         mental concept of any cytometric techniques is the stoichiometry of
                         the probe toward the cellular component to be quantified.
                              More recently, however, it has become interesting to use some
                         fluorescent probes not for “quantitative” investigations but to
                         obtain information on specific cellular features or functions.
                              Evaluating cell viability is crucial in biology and is a basic
                         finding in many experimental studies. Cell viability is mainly
                         assessed through the integrity (impermeability) of the plasma mem-
                         brane. Most of the fluorochromes described above are unable to
                         penetrate the intact cell membrane due to their chemical structure
                         and high molecular mass. However, there are some of them able to
                         do that. Among these, a specific probe has become very popular for
                         this property. It belongs to the “Hoechst” series of DNA-binding
                         fluorochromes characterized by the initials HO, which has become
                         the progenitor of a family of markers used for this purpose. Specifi-
                         cally, the HO33342 under appropriate (physiological) incubation
                         conditions it is easily internalized in all (both living and dead) cells.
                         In living cells, however, a metabolic pump is active, capable of
                         expelling most of the internalized fluorochrome [43], whereas in
                         dead cells this pump is off and all the fluorochrome molecules that
                         had crossed the membrane are kept inside: due to the DNA speci-
                         ficity of HO33342, the nuclei of dead cells will thus have a higher
             Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes        15
                        fluorescence than those of living cells. In addition, the metachro-
                        masia of HO33342 makes a further decisive contribution to the
                        differentiation between life and death: at low concentration its
                        fluorescence emission is typically white/blue, whereas in conditions
                        of higher concentration the emission turns toward the yellow.
                        Thanks to these two coexisting phenomena (i.e., concentration
                        and metachromatic effect), it is simple to discriminate living from
                        dead cells, both by fluorescence microscope and FC.
                             HO33342 can also be used in combination with another
                        “functionally” different fluorescent probe, namely, PI that cannot
                        penetrate the intact membrane of living cells and therefore cannot
                        intercalate into nuclear DNA. Using a mixture HO33342/PI on a
                        cell sample, an impressive rainbow-color result is obtained that
                        characterizes the different cell viability status: viable intact cells
                        are only labeled by HO33342 and show a faint blue fluorescence;
                        mildly damaged cells may be only strongly labeled by HO and
                        fluoresce brilliant white/blue; more damaged cells are stained by
                        both dyes and exhibit a brilliant pink (white plus red) fluorescence;
                        and dead cells are strongly stained by both probes and fluoresce
                        deeply red.
                             Other DNA-specific fluorochromes can be used in microscopy
                        and FC as viability probes: 7-AAD is capable of crossing the cell
                        membrane of all cells and accumulate more in the nuclei of the dead
                        ones. On the contrary, LDS 751 like PI is not able to enter intact
                        viable cells but can instead stain only the nuclei of dead cells. The
                        emission spectra are in the deep red and therefore better than PI;
                        these fluorochromes are suitable for multiparametric analyses with
                        other green-emitting cell markers [56].
7.2 Proliferation       Cell proliferation, among the cellular functions, is of particular
Markers                 interest in the biomedical field. The nuclear DNA content is cer-
                        tainly the most significant marker to estimate cell proliferation in
                        normal cell populations as well as in tumors [57, 58], and the
                        cytometric evaluation of DNA histograms is one of the most widely
                        studied biological indicators.
                             A limitation of this methodological approach, however, is the
                        fact that DNA content is a “static” probe as it just shows the cell
                        distribution through the cell cycle, at the time of sample collection.
                        The alternative may be the “active” study of cell proliferation
                        through the labeling of S-phase cells, which involves the use of
                        DNA precursors such as tritiated thymidine (3H-TdR) or bromo-
                        deoxyuridine (BrdU) [59–62].
                             The cyto-autoradiographic method based on the incorporation
                        of 3H-TdR is a classic approach to the study of proliferative kinet-
                        ics, and in recent years there has been a progressive validation of the
                        so-called labeling index, in the clinical field [36]. Obviously, this
                        method has some disadvantages including the need to use radioac-
                        tive material and the time-consuming procedure that makes it
16      Giuliano Mazzini and Marco Danova
                        unsuitable for the clinical studies that require rapid answers. The
                        availability of the new DNA precursor, BrdU, opened new horizons
                        in cell proliferation studies. BrdU tagging is comparable to that of
                        3
                          H-TdR without the disadvantages of radioactivity and with a
                        number of advantages related to its labeling with specific monoclo-
                        nal antibody, which may be detected by microscopy and
                        FC. Following the administration of BrdU in vivo and the analysis
                        by dual-parameter flow cytometry of the BrdU labeling and DNA
                        content, it is possible to measure the S-phase cell fraction and to
                        assess dynamic proliferation parameters, such as the duration of the
                        S phase (or DNA synthesis time, TS) and the potential doubling
                        time of the normal or tumor cell population (Tpot). This approach
                        has been the first example of DNA multiparametric analysis where
                        the classical “DNA content” can be associated with other kinetic
                        parameters that can increase the intrinsic value of the data [63–66].
                             Later on, other markers of potential diagnostic or prognostic
                        importance (surface antigens, intracytoplasmic antigens, nuclear or
                        nucleolar antigens, hormonal receptors, molecules related to par-
                        ticular cell functions, etc.) have been proposed to be simultaneously
                        correlated to the DNA content. This approach allows a quantitative
                        and statistically significant analysis of the cellular components in
                        direct correlation with the cell cycle, resulting in a more accurate
                        assessment of the potential clinical significance of these parameters.
                             The multiparametric FC evaluation of the expression of anti-
                        gens (such as the one recognized by the Ki-67 antibody, PCNA/
                        cyclin, and other cell cycle-related antigens) allows a precise assess-
                        ment of the proliferative status in various clinical diseases [67–
                        75]. Again, the quantification of other nuclear or nucleolar anti-
                        gens (e.g., p105) may be useful for a more objective assessment of
                        the degree of anaplasia. Some products of cellular oncogenes have
                        proved promising as markers of tumor aggressiveness, while few
                        glycoproteins localized on the cytoplasmic membrane have been
                        shown to be related to the process of anticancer drug
                        resistance [64].
7.3 Other Probes (for   A large family of fluorescent tracers has become commercially
Mitochondrial           available, in recent years, to study specific cellular conditions related
Intermembrane           to both the plasma membrane function and the cytoplasmic orga-
Potential, pH, Ca++     nelles. These tracers are often complex molecules characterized by
Content, and Others)    distinctive commercial acronyms [44].
                             Among the cationic lipophilic markers, JC1 is widely used
                        especially in confocal microscopy but also in FC for studies of
                        mitochondrial function. In viable mitochondria with high inter-
                        membrane potential (ΔΨm), the probe is concentrated inside the
                        organelles in the form of aggregates and metachromatically emits
                        red fluorescence; in mitochondria with low ΔΨm, the dye remains
                        in a less concentrated status and its fluorescence emission is typically
                        green. Rhodamine 123 (Rh123) is also a viable fluorochrome quite
          Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes       17
                     specific to mitochondria. Its non-fluorescent derivative, dihydror-
                     hodamine 123 (DHR), is able to penetrate viable cells where in
                     presence of oxidative radicals (especially H2O2) it may be converted
                     to Rh123: the resulting green fluorescence allows easy monitoring
                     of the fraction of cells in which reactive oxygen species are present
                     [25]. The cationic rhodamine derivative, tetramethylrhodamine
                     (TMRE), is able to accumulate inside mitochondria according to
                     their membrane potential, and the level of emitted fluorescence
                     allows monitoring the mitochondrial functional status. Informa-
                     tion on the density (or mitochondrial mass) can be obtained with
                     two probes whose fluorescence is independent from the potential
                     and/or the energy metabolism: nonyl acridine orange (NAO) and
                     MitoTracker Green passively accumulate inside the mitochondria,
                     and the emitted fluorescence by the cells is a function of the
                     mitochondrial mass. However, it should be kept in mind that all
                     these mitochondrial markers do not bind stoichiometrically the
                     target and may therefore provide pseudo/quantitative information
                     only. Other markers such as chloromethyl-X-rosamine (CMXRos)
                     and MitoTracker Red give information on metabolic mitochondrial
                     activity; the latter, in particular, turns from a non-fluorescent to a
                     fluorescent form induced by intracellular oxidative processes.
                          For the evaluation of intracellular pH, there are several probes
                     such as 20 ,70 -Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein
                     (BCECF) and seminaphtorhodafluor-1 (SNARF-1) that are called
                     ratiometric probes because they show different emission spectra as a
                     function of pH [44].
                          In many cell biology researches, there is the need to know the
                     concentration levels of the Ca++ ion that is involved in many pro-
                     cesses such as muscle contraction, movement, secretion, etc. For
                     this purpose several markers have been proposed: Indo 1 that is
                     excitable in UV and Fluo-3, Fluo-4, Oregon Green, and Fura that
                     are excitable at 488 nm, thus being of choice for argon laser-based
                     FC [24, 25].
8   Quantum Dots
                     Most of the fluorochromes described so far belong to the family of
                     organic compounds. Many of them are synthetic products designed
                     and produced by the chemical industry, but some are instead of
                     natural origin. The latter, playing the role of “light detectors” in
                     nature, are characterized by high absorption/emission efficiency of
                     light. All fluorochromes of organic nature are characterized by
                     molecules with a complex chemical structure rich in aromatic
                     rings and double bonds [76–79].
                         This structural complexity is related to a great variety of energy
                     levels that the molecule can assume which in turn allows the com-
                     plexity of their spectrofluorometric characteristics. In other words,
18   Giuliano Mazzini and Marco Danova
                     their absorption/emission spectra are very broad, practically
                     extended over most of the frequencies of the visible spectrum.
                     There is also frequently a significant overlap between absorption
                     and emission spectra (very short Stokes shift). All these are unde-
                     sirable characteristics in FC especially in the case of multiparametric
                     tests: broadband fluorescence emission obviously entails the risk of
                     overlapping between the emission spectra of the different probes
                     and may cause possible errors in their quantitative measurements.
                          To try to eliminate (or reduce) these drawbacks, a new family of
                     fluorochromes called nanocrystals or QDs has recently been devel-
                     oped. Unlike all the above described fluorochromes, they are inor-
                     ganic compounds derived from research on semiconductor
                     materials: their development derives in fact from the enormous
                     advances in the world of microelectronics and nanotechnology.
                     QDs are currently composed mainly of cadmium/selenide and
                     cadmium/telluride compounds. Compared to the large organic
                     molecules of traditional fluorochromes, their crystal size is in the
                     order of a few nanometers. Their optical characteristics are a func-
                     tion of their size and not of their chemical nature. In particular,
                     with the same composition but increasing the crystal size, the
                     emission of fluorescence shifts to the right in the visible spectrum.
                     So, a QD of 2 nm in diameter can have an emission spectrum in the
                     violet, whereas a crystal of 12 nm has an emission spectrum in the
                     red. Very peculiarly instead, their absorption spectrum is more or
                     less constant and mainly located in the first part of the visible (from
                     ultraviolet to blue). For these spectrofluorometric characteristics,
                     they proved to be of choice for multiparametric applications in FC
                     [80]. Due to their exceptionally large Stokes shifts (up to 400 nm),
                     these probes can contribute to the setting of very large analytical
                     panels with small spectral overlaps. This allows multiparametric FC
                     analyses even with a single excitation without the need of complex
                     compensation procedures [45].
                          As mentioned before, these probes are inorganic crystals of very
                     small size that do not have chemical functional groups or radicals
                     that could make them chemically reactive. Being chemically inert,
                     they cannot practically be conjugated to antibodies or specific cell
                     targets, hence the need to coat them with organic polymers to make
                     them suitable for conjugation chemistry. This organic coating
                     increases their solubility in water and enriches them with functional
                     groups (such as NH2, NH3) for subsequent conjugation to anti-
                     bodies, streptavidin, or nucleic acids. Their final size thus becomes
                     close to that of fluorochromes commonly used to label antibodies,
                     such as PE. The QDs’ quantum efficiency is similar to that of PE or
                     APC and sometimes even higher. Unlike the generally used
                     fluorochromes that have a rather limited emission range (in the
                     green-to-red spectrum), QDs are extremely versatile in terms of
                     spectrofluorometric properties.
          Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes         19
                         There is a wide range of products characterized by commercial
                     labels (QD 450, QD 500, QD 510, . . .QD 630) that indicate their
                     emission peak, practically over the entire spectrum from blue
                     to red.
                         Theoretically, QDs are the ideal fluorescent markers and appar-
                     ently without any bugs or limitations; obviously, all these merits
                     have a price and QDs are currently more expensive than the classic
                     fluorochromes. They are still subject to development especially in
                     the coating: those of the latest generation have a shell modified
                     with long polyethylene glycol (PEG) chains rich in amino groups
                     that allow QDs to more easily conjugate to antibodies [81, 82].
9   Mass Cytometry
                     We have seen in previous sections how the increasing demand for
                     new markers has contributed to the design of more sophisticated
                     panels for multiparametric analyses, especially in the field of clinical
                     diagnostics. Nevertheless, the use of conventional fluorescent
                     probes is limited by the mutual crosstalk, which limits the number
                     of those that can be simultaneously used on a single sample. The
                     instrumental strategy of using multiple excitation sources (lasers)
                     only partially allows the number of markers to be increased. It is
                     also possible to divide the sample into several aliquots, subjected to
                     different analytical panels of probes, and finally sequentially ana-
                     lyzed. This obviously increases the costs and, primarily, the time
                     required for the analyses.
                          A new FC approach has recently been proposed [83–86] using
                     a fully innovative labeling strategy. It uses heavy metal isotopes
                     instead of fluorochromes. The detection of these probes obviously
                     cannot be performed by an optical mode (through spectrofluorom-
                     etry) but is made by emulating what happens in mass spectrometry
                     by “time-of-flight” detection (FC is thus replaced by cytometry by
                     time-of-flight, CyTOF).
                          The mass isotopes used as probes are not naturally present in
                     biological samples and are therefore used to tag specific reagents
                     (e.g., antibodies) similar to what is done with fluorochromes. Bio-
                     chemical research has made available several binding processes for
                     specific custom-labeling recipes.
                          The sample preparation is very similar to that required for the
                     more traditional FC mode, but the analytical strategy is completely
                     different. The labeled sample (the cell suspension) once introduced
                     into the system is nebulized and further completely ionized. Clouds
                     of molecules and particles are then further disrupted at the atomic
                     level. The sequence of atomic particles generated by each single cell
                     is analyzed by CyTOF, which allows associating a specific set of
                     markers to each single cell. The data collection, handling, and
                     display software are completely similar to the ones of the
20   Giuliano Mazzini and Marco Danova
                     conventional cytometers. The three-dimensional representation of
                     complex multiparametric panels characterizing the immunopheno-
                     type analyses is now routine in many clinical laboratories [87–89].
                         The great commercial boost driving the field of clinical diag-
                     nostics has already made a very wide range of specific markers
                     available [90, 91]. The first field of interest is certainly that of
                     monoclonal antibodies. It is therefore foreseeable in the short
                     period a sort of war between the two fronts: “fluorescence versus
                     mass.” The panels with conventional fluorescent probes have
                     become increasingly sophisticated and efficient but still require
                     operator adjustments (compensation) on the acquired data. On
                     the contrary, the panels with mass markers should not have this
                     problem.
                         Obviously, both analytical approaches (fluorescence vs mass)
                     have specific advantages and limitations:
                      1. Fluorescence FC allows the analysis of thousands of cells in very
                         short times and reliable results in many fields of clinical diag-
                         nostics. Classical FC is nowadays the routine analytical tech-
                         nique in research centers and hospitals. The instrumentation
                         and the related methodology, after more than 40 years of
                         development and progress, have reached absolute levels of
                         performances and reliability. The analytical power covers a
                         very wide range of particle sizes, from whole cells to bacteria,
                         to subcellular constituents such as the microvesicles. Even the
                         various cellular functions have been considered for specific
                         analytical approaches. The cells analyzed can also be separated
                         (with flow sorters) into subpopulations identified with specific
                         markers to be subjected to further molecular investigations.
                         Some instruments (image in flow) even allow storing image
                         files for subsequent correlation between quantitative fluores-
                         cence data and detailed morphology of the relevant cells. This
                         technology has a great diagnostic power as it combines the
                         information of the microscope with those from the FC.
                      2. The CyTOF boasts as a special feature the possibility to per-
                         form multi-parameter analysis (in a compensation-free mode)
                         with dozens of markers in simultaneous analysis. Of great
                         strength is the detection without mutual probe crosstalk and
                         the consequent ability to measure a very high number of mar-
                         kers (actually 40–100) on a single sample aliquot. This
                         approach seems therefore to be of choice for the complex
                         panels of immunophenotype analyses that are nowadays very
                         popular (and powerful) in various fields of immunohematolo-
                         gical diseases. However, one of the main limitations is the need
                         to destroy the cells to be measured and the consequent loss of
                         morphometric information. Of course in the wide panel of
                         results, the classical scatter parameters are missed (worldwide
                         used in classical CF analysis) which must be surrogated by other
               Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes                 21
                                  markers. The analysis time is longer than in FC because the
                                  sample undergoes a series of destructive treatments to get from
                                  cells to clouds of atoms.
                                  In summary, CyTOF could be defined as a “high-content
                             analysis,” compared to conventional CF, as it allows acquiring a
                             very high number of information on a more limited number of
                             cells. In the decade to come, we will see if CyTOF may replace FC
                             or if, more likely, these two approaches will integrate.
10    Concluding Remarks
                             For over half a century, fluorescence has been the milestone for all
                             quantitative analyses both at chemical/biochemical level (in tubes,
                             vials, cuvettes) and in cytometry (in both sections, cell smears, and
                             suspensions). In particular, FC (especially thanks to immunofluo-
                             rescence) promoted the development of multiparametric analytical
                             panels that are now routinely used in many areas of clinical diag-
                             nostics. Due to the continuous development of new fluorescent
                             molecules, a wide variety of markers have become available for the
                             determination of both cell components and cellular functions. The
                             fluorescent markers of the latest generation have chemical/physical
                             characteristics that can ensure quantitative multiparametric analysis
                             with high sensitivity, efficiency, and reliability.
                                  New horizons in cytometry are now emerging, following the
                             development of a new analytical strategy based on the use of mass
                             isotope markers. These probes seem to represent the ideal way for
                             the setting of high-performance multiparametric analyses. How-
                             ever, we will have to wait a few years of application to understand if
                             the costs/benefits of this new analytical strategy will really be able
                             to replace the classic “old fluorescence.”
References
 1. Franklin RE, Gosling RG (1953) Evidence for         5. Gil JE, Jotz MM (1976) Further observations
    2-chain helix in crystalline structure of sodium       on the chemistry of pararosaniline-Feulgen
    Deoxyribonucleate. Nature 172:156–157                  staining. Histochemistry 46:147–160
 2. Watson JD, Crick FH (1953) Molecular struc-         6. Kjellstrand PTT (1977) Temperature and acid
    ture of nucleic acids: a structure for deoxyri-        concentration in the search for optimum Feul-
    bose nucleic acid. Nature 171:737–738                  gen hydrolysis conditions. J Histochem Cyto-
 3. Kasten FH (2003) Robert Feulgen and his                chem 25:129–134
    histochemical reaction for DNA. Biotech His-        7. Chieco P, Derenzini M (1999) The Feulgen
    tochem 78:45–49                                        reaction 75 years on. Histochem Cell Biol
 4. Böhm N, Sprenger E (1968) Fluorescence                111:345–358
    cytophotometry: a valuable method for the           8. Vialli M, Reggiani M (1948) Dispositivo per lo
    quantitative    determination       of    nuclear      studio colorimetrico e fotometrico di preparati
    Feulgen-DNA. Histochemie 16:100–118                    microscopici. Boll Soc Med Chirur Pavia 62:
                                                           299–301
22        Giuliano Mazzini and Marco Danova
 9. Vialli M, Romanini G (1950) Dispositivi sem-         26. Prenna G, De Paoli AM (I964) Derivati tiazo-
    plificati di istofotometria nel visibile. Boll Soc       lici come reagenti tipo Schiff fluorescenti. Rend
    Ital Biol Sperim 26:1633                                 Ist Lomb Sc Lett B 98:267–273
10. Vialli M, Perugini S (1954) Due nuovi modelli        27. Prenna G, Bianchi UA (1964) Reazioni di
    di apparecchiature istofotometriche. Riv Istoch          Feulgen fluorescenti e loro possibilità citofluor-
    Norm Pat 1(2):149–170                                    ometriche quantitative. 5) Citofotometria
11. Deeley EM (1955) An integrating microdensi-              quantitativa in fluorescenza ed in assorbimento
    tometer for biological cells. J Sci Instrum 31:          della reazione di Feulgen eseguita con
    263–267                                                  acriflavina-SO2. Riv Istoch Norm Pat 10:
12. Benedetti PA, Viola-Magni MP (1966) A scan-              667–676
    ning integrating histophotometer. J Sci              28. Prenna G, De Paoli AM (1968) Impiego del
    Instrum 43:141–143                                       Rivanol come reagente tipo Schiff fluorescente
13. Ploem JS (1967) The use of vertical illuminator          nella reazione di Feulgen. Riv Istoch Norm Pat
    with interchangeable dichroic mirrors for fluo-          14:169–170
    rescence microscopy with incident light. Z Wiss      29. Trujillo TT, Van Dilla MA (1972) Adaptation
    Mikrosk 68:129–142                                       of the fluorescent Feulgen reaction to cells in
14. Prenna G, Mazzini G, Cova S (1974) Method-               suspension for flow microfluorometry. Acta
    ological and instrumentational aspects of cyto-          Cytol 16:26–30
    fluorometry. Histochem J 6:259–278                   30. Mazzini G, Giordano P (1980) Effects of some
15. Cova S, Prenna G, Mazzini G (1974) Digital               solvents on the fluorescence intensity of phe-
    microscpectrofluorometry by multichannel                 nantridinic derivatives-DNA complexes: flow
    scaling and single photon detection. Histo-              cytofluorometric application. In: Laerum OD,
    chem J 6:279–299                                         Lindmo T, Thorud E (eds) Flow cytometry
                                                             IV.      Universitetsforlaget,    Bergen/Oslo/
16. Prenna G, Leiva S, Mazzini G (1974) Quanti-              Trondheim
    tation of DNA by cytofluorometry of the con-
    ventional Feulgen reaction. Histochem J 6:           31. Mazzini G, Giordano P, Riccardi A, Monte-
    467–489                                                  cucco CM (1980) Biological significance of
                                                             flow cytometric application of phenantridinic
17. Kamentsky LA, Melamed MR, Derman H                       dyes at low concentration. Basic Appl Histo-
    (1969) Spectrophotometer: new instrument                 chem 24:264
    for ultrarapid cell analysis. Science 150:630–
    631                                                  32. Mazzini G, Giordano PA (1981) Flow cytome-
                                                             try: a methodologic approach for fast quantita-
18. Van Dilla MA, Trujillo TT, Mullaney PF, Coul-            tive cytochemical measurements and its use for
    ter JR (1969) Cell microfluorometry: a method            the study of the chromatin structure. Basic
    for rapid fluorescence measurement. Science              Appl Histochem 25:303
    163:1213
                                                         33. Crissman HA, Steinkamp JA (1973) Rapid
19. Dittrich W, Göhde W (1969) Impulsfluorome-              simultaneous measurement of DNA, protein,
    trie bei einzelzellen in suspension. Z Natur-            and cell volume in single cells from large mam-
    forsch 24b:360–361                                       malian cell populations. J Cell Biol 59:766–
20. Göhde W, Dittrich W (1970) Simultane                    771
    Impulsfluorimetrie des DNS und Proteinge-            34. Krishan A (1975) Rapid flow cytofluorometric
    haltes von Tumorzellen. Z Anal Chem 352:                 analysis of mammalian cell cycle by propidium
    328–330                                                  iodide staining. J Cell Biol 66:188–193
21. Ormerod MG (1990) Flow cytometry: a prac-            35. Fried J, Perez AG, Clarkson BD (1976) Flow
    tical approach. IRL Press, Oxford/New York/              cytofluorometric analysis of cell cycle distribu-
    Tokyo                                                    tions using propidium iodide. Properties of the
22. Melamed MR, Lindmo T, Mendelsohn ML                      method and mathematical analysis of the data. J
    (1991) Flow cytometry and sorting. Wiley-                Cell Biol 71:172–181
    Liss, New York                                       36. Giordano P, Mazzini G, Riccardi A, Monte-
23. Laerum OD, Farsund T (1981) Clinical appli-              cucco CM, Ucci G, Danova M (1985) Propi-
    cations of flow cytometry: a review. Cytometry           dium iodide staining of cytoautoradiographic
    2:1–13                                                   preparations for the simultaneous determina-
24. Robinson JP (1993) Handbook of flow cyto-                tion of DNA content and grain count. Histo-
    metry methods. Wiley-Liss, New York                      chem J 17(11):1259–1270
25. Shapiro HM (2005) Practical flow cytometry,          37. Mazzini G, Giordano P, Montecucco CM, Ric-
    4th edn. Alan R Liss Inc, New York                       cardi A (1980) A rapid cytofluorometric
                   Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes                            23
    method for quantitative DNA determination                            study of nuclear sulphydryl and disulphide
    on fixed smears. Histochem J 12:153–168                              groups during sperm maturation in the
38. Rigler R Jr (1966) Microfluorometric charac-                         mouse. J Reprod Fertil 68(2):371–376.
    terization of intracellular nucleic acids and                        https://doi.org/10.1530/jrf.0.0680371
    nucleo-proteins by Acridine Orange. Acta                         50. Bottiroli G, Croce AC, Pellicciari C, Ramponi
    Physiol Scand 67(267):1–122                                          R (1994) Propidium iodide and the thiol-
39. Darzynkiewicz Z (1979) Acridine orange as a                          specific reagent DACM as a dye pair for fluo-
    molecular probe in studies of nucleic acids. In:                     rescence resonance energy transfer analysis: an
    Melamed MR, Mullaney PF, Mendelsohn (eds)                            application to mouse sperm chromatin. Cyto-
    Flow cytometry and sorting. Wiley, New York                          metry 15(2):106–116. https://doi.org/10.
40. Göhde W (1972) Automation of cytofluoro-                            1002/cyto.990150204
    metry           by            use             of          the    51. Mazzini G, Giordano PA, Pellicciari C,
    impulsmicrophotometer. In: Thaer A, Sernetz                          Costa A, Marchese G (1987) A double staining
    M (eds) Fluorescence techniques in cell biol-                        method for the cytometric quantitation of
    ogy. Springer, New York                                              DNA and thiol groups. In: Burger G, Ploem
41. Latt SA, Stetten G (1976) Spectral studies on                        JS, Goerttler K (eds) Clinical cytometry and
    33258 Hoechst and related bisbenzimidazole                           histometry. Academic Press, pp 149–152
    dyes useful for fluorescent detection of deoxyr-                 52. Bryant DA, Glazer AN, Eiserling FA (1976)
    ibonucleic acid synthesis. J Histochem Cyto-                         Characterization and structural properties of
    chem 24:24–33. https://doi.org/10.1177/                              the major biliproteins of Anabaena sp. Arch
    24.1.943439                                                          Microbiol 110:61–75
42. Ellwart JW, Dormer P (1990) Viability mea-                       53. Oi VT, Glazer AN, Stryer L (1982) Fluores-
    surement using spectrum shift in Hoechst                             cent phycobiliprotein conjugates for analyses of
    33342 stained cells. Cytometry 11:239–243                            cells and molecules. J Cell Biol 93:981–986
43. Mazzini G, Ferrari C, Erba E (2003) Dual                         54. Kronick MN, Grossman PD (1983) Immuno-
    excitation multi-fluorescence flow cytometry                         assay techniques with fluorescent phycobilipro-
    for detailed analyses of viability and apoptotic                     tein conjugates. Clin Chem 29(9):1582–1586
    cell transition. Eur J Histochem 47:289–298                      55. Telford WG, Moss MW, Morseman JP, Allnutt
44. Haugland RP, Larison KD (2002) Handbook                              FC (2001) Cyanobacterial stabilized phycobili-
    of fluorescent probes and research chemicals,                        somes as fluorochromes for extracellular anti-
    8th edn. Molecular Probes, Inc., Eugene,                             gen detection by flow cytometry. J Immunol
    OR, USA                                                              Methods 254:13–30
45. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A                   56. Puzorjov A, Mccormick AJ (2020) Phycobili-
    (2016) Flow cytometry: basic principles and                          proteins from extreme environments and their
    applications. Crit Rev Biotechnol 14:1–14                            potential applications. J Exp Bot 71(13):
46. Yamamoto K, Sekine T (1978) Fluorescent                              3827–3842
    tracer method for protein SH groups. III. Use                    57. Zembruski NCL, Nadine CL, Stache V, Weiss J
    of N-(7-dimethylamino-4-methylcoumarinyl)                            (2012) 7-Aminoactinomycin D for apoptosis
    maleimide as a tracer of cysteine-containing                         staining in flow cytometry. Anal Biochem
    peptides. Anal Biochem 90(1):300–308.                                429(1):179–181. https://doi.org/10.1016/j.
    https://doi.org/10.1016/0003-2697(78)                                ab.2012.07.005
    90034-9                                                          58. Costa A, Mazzini G, Del Bino G, Silvestrini R
47. Ogawa H, Taneda A, Kanaoka Y, Sekine T                               (1981) DNA content and kinetic characteris-
    (1979) The histochemical distribution of pro-                        tics of non-Hodgkin’s lymphoma determined
    tein bound sulfhydryl groups in human epider-                        by flow cytometry and autoradiography. Cyto-
    mis by the new staining method. J Histochem                          metry 2(3):185–188. https://doi.org/10.
    Cytochem 27(5):942–946. https://doi.org/                             1002/cyto.990020310
    10.1177/27.5.90070                                               59. Zippel R, Martegani E, Vanoni M, Mazzini G,
48. Taneda A, Ogawa H, Hashimoto K (1980) The                            Alberghina L (1982) Cell cycle analysis in a
    histochemical demonstration of protein-bound                         human cell line (EUE cells). Cytometry 2(6):
    sulfhydryl groups and disulfide bonds in                             426–430. https://doi.org/10.1002/cyto.
    human hair by a new staining method                                  990020612
    (DACM staining). J Invest Dermatol 75(4):                        60. Danova M, Riccardi A, Gaetani P, Wilson GD,
    3 6 5 – 3 6 9 . h t t p s : // d o i . o r g / 1 0 . 1 1 1 1 /       Mazzini G, Brugnatelli S et al (1988) Cell
    1523-1747.ep12531243                                                 kinetics of human brain tumors: in vivo study
49. Pellicciari C, Hosokawa Y, Fukuda M, Man-                            with bromodeoxyuridine and flow cytometry.
    fredi Romanini MG (1983) Cytofluorometric                            Eur J Cancer Clin Oncol 24(5):873–880
24       Giuliano Mazzini and Marco Danova
61. Riccardi A, Danova M, Wilson G, Ucci G,                 dyscrasias: a flow cytofluorimetric study. Br J
    Dörmer P, Mazzini G et al (1988) Cell kinetics         Cancer 62(5):781–785
    in human malignancies studied with in vivo          72. Rosti V, Bergamaschi G, Lucotti C, Danova M,
    administration of bromodeoxyuridine and                 Carlo-Stella C, Locatelli F et al (1995) Oligo-
    flow cytometry. Cancer Res 48(21):                      deoxynucleotides antisense to c-abl specifically
    6238–6245                                               inhibit entry into S-phase of CD34+ hemato-
62. Riccardi A, Danova M, Dionigi P, Gaetani P,             poietic cells and their differentiation to
    Cebrelli T, Butti G et al (1989) Cell kinetics in       granulocyte-macrophage progenitors. Blood
    leukaemia and solid tumours studied with                86(9):3387–3393
    in vivo bromodeoxyuridine and flow cytome-          73. Bozzetti C, Nizzoli R, Camisa R, Guazzi A,
    try. Br J Cancer 59(6):898–903                          Ceci G, Cocconi G et al (1997) Comparison
63. Giordano M, Riccardi A, Danova M, Gobbi P,              between Ki-67 index and S-phase fraction on
    Riccardi A (1991) Cell proliferation of human           fine-needle aspiration samples from breast car-
    leukemia and solid tumors studied with in vivo          cinoma. Cancer 81(5):287–292
    bromodeoxyuridine and flow cytometry. Can-          74. Cova E, Cereda C, Galli A, Curti D, Finotti C,
    cer Detect Prev 15(5):391–396                           Di Poto C et al (2006) Modified expression of
64. Giordano M, Danova M, Mazzini G, Gobbi P,               Bcl-2 and SOD1 proteins in lymphocytes from
    Riccardi A (1993) Cell kinetics with in vivo:           sporadic ALS patients. Neurosci Lett 399(3):
    bromodeoxyuridine assay, proliferating cell             186–190. https://doi.org/10.1016/j.neulet.
    nuclear antigen expression, and flow cyto-              2006.01.057
    metric analysis. Prognostic significance in         75. Montanaro L, Mazzini G, Barbieri S, Vici M,
    acute nonlymphoblastic leukemia. Cancer                 Nardi-Pantoli A, Govoni M et al (2007) Dif-
    71(9):2739–2745                                         ferent effects of ribosome biogenesis inhibition
65. Erba E, Giordano M, Danova M, Mazzini G,                on cell proliferation in retinoblastoma protein-
    Ubezio P, Torri V et al (1994) Cell kinetics of         and p53-deficient and proficient human osteo-
    human ovarian cancer with in vivo administra-           sarcoma cell lines. Cell Prolif 40(4):532–549.
    tion of bromodeoxyuridine. Ann Oncol 5(7):              https://doi.org/10.1111/j.1365-2184.2007.
    627–634                                                 00448.x
66. Mazzini G, Danova M, Ferrari C, Dionigi P,          76. Cova E, Ghiroldi A, Guareschi S, Mazzini G,
    Riccardi A (1996) Cell proliferation and ploidy         Gagliardi S, Davin A et al (2010) G93A SOD1
    of human solid tumours: methodological expe-            alters cell cycle in a cellular model of Amyo-
    rience with in vivo bromodeoxyuridine and               trophic Lateral Sclerosis. Cell Signal 22(10):
    DNA flow cytometry. Anal Cell Pathol 10(2):             1477–1484. https://doi.org/10.1016/j.
    101–113                                                 cellsig.2010.05.016
67. Robinson JP, Roederer M (2015) History of           77. Vesey G, Deere D, Gauci MR, Griffiths KR,
    science. Flow cytometry strikes gold. Science.          Williams KL, Veal DA (1997) Evaluation of
    https://doi.org/10.1126/science.aad6770                 fluorochromes for immunofluorescent labeling
68. Pellicciari C, Danova M, Giordano M, Conti A,           of microorganisms in environmental water
    Mazzini G, Wang E et al (1991) Expression of            samples. Cytometry 29:147–154
    cell cycle related proteins proliferating cell      78. Chan WCW, Nie S (1998) Quantum dot bio-
    nuclear antigen (PCNA) and statin during                conjugates for ultrasensitive nonisotopic detec-
    adaptation and de-adaptation of EUE cells to            tion. Science 281:2016–2018
    a hypertonic medium. Cell Prolif 24(5):             79. Bruchez M, Moronne M, Gin P et al (1998)
    469–479. https://doi.org/10.1111/j.                     Semiconductor nanocrystals as fluorescent
    1365-2184.1991.tb01175.x                                biological labels. Science 281:2013–2016
69. Giordano M, Danova M, Riccardi A, Mazzini           80. Han M, Gao X, Su JZ, Nie S (2001) Quantum-
    G (1989) Simultaneous detection of cellular ras         dot-tagged microbeads for multiplexed optical
    p21 oncogene product and DNA content by                 coding of biomolecules. Nat Biotechnol 19:
    two-parameter flow cytometry. Anticancer Res            631–635
    9(3):799–803                                        81. Lee LY, Ong SL, Hu JY, Ng WJ, Feng Y, Tan X
70. Danova M, Riccardi A, Mazzini G (1990) Cell             (2004) Use of semiconductor quantum dots
    cycle-related proteins and flow cytometry. Hae-         for photostable immunofluorescence labeling
    matologica 75(3):252–264                                of Cryptosporidium parvum. Appl Environ
71. Danova M, Riccardi A, Ucci G, Luoni R,                  Microbiol 70:5732–5736
    Giordano M, Mazzini G (1990) Ras oncogene           82. Mattoussi H, Mauro JM, Goldman ER, Ander-
    expression and DNA content in plasma cell               son GP, Sundar VC, Mikulec FV et al (2000)
                                                            Self-assembly of CdSe-ZnS quantum dot
              Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes                 25
    bioconjugates using in engineered recombi-        87. Gautreau G, Pejoski D, Le Grand R, Cosma A,
    nant protein. J Am Chem Soc 122:12142–                Beignon A-S, Tchitchek N (2017) SPADE-
    12150                                                 VizR: an R package for visualization, analysis
83. Bendall SC, Simonds EF, Qiu P, Amir ED,               and integration of SPADE results. Bioinfor-
    Krutzik PO, Finck R et al (2011) Single-cell          matics 33:779–781
    mass cytometry of differential immune and         88. Weber LM, Robinson MD (2016) Comparison
    drug responses across a human hematopoietic           of clustering methods for high-dimensional
    continuum. Science 332:687–696                        single-cell flow and mass cytometry data. Cyto-
84. Irish J, Doxie D (2014) High-dimensional sin-         metry A 89:1084–1096
    gle-cell cancer biology. In: Fienberg H, Nolan    89. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr,
    G (eds) High-dimensional single cell analysis.        Bruggner RV, Linderman MD et al (2011)
    Current topics in microbiology and immunol-           Extracting a cellular hierarchy from high-
    ogy. Springer, Berlin, Heidelberg                     dimensional cytometry data with SPADE. Nat
85. Levine J, Simonds E, Bendall S (2015) Data-           Biotechnol 29:886–891
    driven phenotypic dissection of AML reveals       90. Spitzer MH, Nolan GP (2016) Mass cytome-
    progenitor-like cells that correlate with prog-       try: single cells, many features. Cell 165:780–
    nosis. Cell 162(1):184–197                            791
86. Atkuri KR, Stevens JC, Neubert H (2015)           91. Huang A, Postow M, Wherry EJ (2017) T-cell
    Mass cytometry: a highly multiplexed single-          invigoration to tumour burden ratio associated
    cell technology for advancing drug develop-           with anti-PD-1 response. Nature 545:60–65
    ment. Drug Metab Dispos 43:227–233
Another Random Scribd Document
     with Unrelated Content
pahempi seikka, sellainen, jota hän ei ensin aavistanutkaan, oli se,
että osa niitä pahansuopia tietoja, jotka Rudolf hänestä sai, oli
lähtenyt Ernestin suusta. Tuo pikkulurjus ymmärsi kyllä Christophen
ja Rudolfin erilaisen arvon: ei ollut epäilemistäkään, että hän tunsi
Christophen ylemmyyden ja että hän ehkä oli suopeakin hänelle
hänen vilpittömyytensä tähden, joskin hiukan ivallisella tavalla. Mutta
hän piti hyvän huolen siitä, että voi käyttää tuota vilpittömyyttä
hyväksensä; ja samalla, kun hän halveksi Rudolfin mataluutta, kiskoi
hän siitäkin hävyttömästi itselleen hyötyä. Ernest mairitteli Rudolfin
turhamaisuutta ja kateutta, otti nöyrästi vastaan hänen
haukkumisensa, varusti hänet tuoreilla tiedoilla kaupungin julkisista
juoruista, varsinkin Christophea koskevista, — ja niistä onki hän aina
ihmeellisen tarkat tiedot. Hän saavutti tarkoituksensa; ja vaikka
Rudolf olikin kovin saita, antoi hän Ernestin kyniä itseään, samoin
kuin Christophekin.
  Siten kiskoi Ernest heitä molempia ja pilkkasi samalla mitalla heitä
kumpaakin. Ja molemmat he pitivät hänestä.
   Kaikesta ovelista tempuistaan huolimatta oli Ernest kurjassa tilassa
nyt äitinsä luokse ilmestyessään. Hän tuli Münchenistä, jossa hän oli
saanut ja melkein heti tapansa mukaan menettänyt paikkansa.
Hänen oli täytynyt kulkea jalkaisin suurin osa matkaa, pahimpana
sade-aikana ja nukkuen Herra tiesi missä. Hän oli loan vallassa,
vaatteet rikki, kuin mikä kerjäläinen, ja hän yski surkeasti; sillä hän
oli matkalla saanut pahan keuhkokatarrin. Louisa tyrmistyi, ja
Christophe juoksi liikutettuna hänen luokseen heti, kun he näkivät
hänen astuvan sisään. Ernestin oli helppo heruttaa kyyneleitä, eikä
hän jättänyt tätä vaikuttavaa keinoa käyttämättä; kohtauksesta tuli
yleinen heltyminen: he itkivät kaikki kolme sylitysten.
  Christophe antoi Ernestille huoneensa; hankittiin sängynlämmitin,
ja sairas, joka näytti tuossa paikassa heittävän henkensä, sijoitettiin
vuoteeseen. Louisa ja Christophe istuivat hänen pääpuolessaan
vuorotellen öisin häntä vaalimassa. Tarvittiin lääkäri, lääkettä,
lämmittää kamari hyvin, erikoista ruokaa.
    Sitten täytyi hänet hommata uusiin vaatteisiin kiireestä kantaan:
aluspuvut, kengät, päällysasu, kaikki oli hankittava kokonaan
uudestaan. Ernest antoi hoidella itseään. Louisa ja Christophe iskivät
ankarasti suontansa saadakseen jotain säästymään näihin menoihin.
Heidän raha-asiansa olivat nykyään sangen vaikeat: muutto uuteen
paikkaan, kalliimpi huoneisto kuin entinen, joskin yhtä epämukava,
Christophella entistä vähemmän tunteja ja kuitenkin menot
lisääntyneet. He tuskin saivat pysymään asiat tasapainossa. Heidän
täytyi ponnistaa kaikki voimansa. Christophe olisi kyllä saattanut
kääntyä Rudolfin puoleen, joka oli paremmissa varoissa kuin hän;
mutta sitä hän ei tahtonut tehdä: hänestä oli kunnianasia pitää itse
huoli veljestänsä. Hän luuli sen velvollisuudekseen, koska hän oli
veljeksistä vanhin, — ja koska hän oli Christophe. Häpeästä
suunniltaan täytyi hänen nyt lähteä itse hyväksymään eräs tarjous,
jonka hän oli pari viikkoa sitten vihoissaan hyljännyt, nimittäin erään
rikkaan ja maineettoman amatöörin ehdotus, jonka jälleen muuan
välittäjä oli esittänyt Christophelle: tuo amatööri tahtoi ostaa
Christophelta jonkin sävellyksen julkaistakseen sen omalla nimellään.
Louisa taas sitoutui korjailemaan kaiket päivät ihmisten
liinavaatteita. Hän ja Christophe salasivat toisiltaan nämä
uhrautumishommansa. He valehtelivat toisilleen, mistä olivat saaneet
rahaa, kun toivat sitä kotiin.
   Taudista toipuessaan tunnusti Ernest eräänä päivänä istuen
kuurussa takkavalkean ääressä ja yskien rajusti pitkän aikaa, että
hänellä oli eräitä velkojakin. Ne velat maksettiin. Kukaan ei häntä
niistä soimannut. Sellainen ei olisi ollut kaunista sairasta ja
tuhlaajapoikaa kohtaan, joka tuli katuvaisena kotiin. Sillä
koettelemukset näyttivät Ernestin muuttaneen. Hän puhui kyyneleet
silmissä entisistä harha-askeleistaan. Ja Louisa syleili häntä ja pyysi
häntä olemaan enää niitä ajattelematta. Ernest oli mielistelevä
olento: hän oli aina osannut mairia äitiään hellyydellä; Christophe oli
ennen ollut siitä hänelle hiukan kateellinenkin. Mutta nyt oli hänestä
luonnollista, että nuorempi ja heikompi veli sai enemmän
rakkauttakin osakseen. Hän itse piti Ernestiä paremminkin poikanaan
kuin veljenään, vaikka heidän ikäeronsa olikin vähäinen. Ernest
käyttäytyi sangen kunnioittavaisesti häntä kohtaan; hän vihjaili
joskus, minkälaisen taakan Christophe oli ottanut hartioilleen, puhui
hänen rahallisista uhrauksistaan…; mutta silloin ei Christophe
antanut hänen jatkaa, ja Ernest alistui kiittämään ainoastaan
nöyrällä ja liikutetulla katseella. Hän myönteli Christophen neuvot
oikeiksi; hän näytti voivan alkaa uutta elämää, pystyvän ryhtymään
parannuttuaan vakavasti työhön.
   Ernest parani; mutta toipumisaika oli pitkä. Lääkäri selitti, että
hänen kovin väärinkäytetty terveytensä tarvitsi vielä varovaista
hoitelua. Ernest jäi siis yhä edelleen kotiin äidin luokse, jäi osille
Christophen vuoteesta, söi hyvällä ruokahalulla veljensä ansaitsemaa
leipää ja pieniä herkkuruokia, joita Louisa koetti kaikin keinoin
hänelle hankkia. Hän ei ollut lähdöstä tietääkseenkään. Eivätkä
Louisa ja Christophe siitä hänelle suinkaan puhuneet. He olivat liian
onnellisia, kun olivat jälleen löytäneet rakastetun pojan ja veljen.
   Vähitellen alkoi Christophe viettäessään illat pitkät Ernestin kanssa
jutella hänelle välittömämmin omia asioitaan. Hänen teki mieli avata
sydäntänsä jollekulle. Ernest oli älykäs; hänellä oli nopea tajunta ja
hän ymmärsi — tai näytti ymmärtävän — kaiken puolella sanalla.
Hänen kanssaan oli ilo jutella. Kuitenkaan ei Christophe uskaltanut
virkkaa vielä mitään siitä, mikä oli lähinnä hänen sydäntään:
rakkaudestaan. Sillä häntä hillitsi jonkinlainen kainous. Ernest, joka
tiesi jo kaikki, ei ollut tietävinään mitään.
   Eräänä päivänä lähti Ernest, nyt täysin terveenä, kävelemään
iltapuolella auringon paisteessa pitkin Rheinin rantaa. Vähän matkaa
kaupungista huomasi hän eräässä hälisevässä ravintolassa, jonne
kaupungista tultiin sunnuntaisin tanssimaan ja kallistamaan pikaria,
Christophen Aadan ja Myrrhan seurassa samassa pöydässä. Tytöt
pitivät kovaa ääntä. Christophe näki puolestaan Ernestin ja punastui.
Ernest tekeytyi hienotunteiseksi, ja meni ohitse tulematta heidän
luokseen.
   Christophe oli kovin hämillään tästä kohtauksesta: se sai
tuntemaan hänet paremmin, millaisessa seurassa hän oleskeli; ja
hänestä oli tuskallista, että veli hänet näki siellä: ei ainoastaan siksi,
että hän arveli tästä lähtien menettävänsä oikeutensa tuomita
Ernestin käytöstä, vaan myöskin sen tähden, että hänellä oli
vanhimman veljen velvollisuuksista sangen korkea, yksinkertainen ja
hieman arkamainen käsitys, sellainen, että se olisi monista muista
tuntunut suorastaan naurettavalta: hän ajatteli, että jos hän löi
laimin velvollisuutensa niinkuin hän teki, alensi hän itseään omissa
silmissään.
  Kun Christophe ja Ernest tulivat molemmat illalla yhteiseen
kamariinsa, odotti Christophe, että Ernest vihjailisi jollakin tavalla
tuohon päivän tapahtumaan, mutta Ernest oli viisaasti vaiti, ja
hänkin odotti. Silloin, riisutuessaan, päätti Christophe puhua hänelle
rakkaudestaan. Christophe oli niin hämmennyksissään, ettei hän
tohtinut katsoa Ernestiin; ja arkuudessaan turvautui hän jöröön ja
katkonaiseen puhetapaan. Ernest ei auttanut häntä sulavuuteen; hän
oli vaiti, eikä katsonut myöskään puolestaan Christopheen, mutta
näki hänet kuitenkin: häneltä ei jäänyt huomaamatta, miten paljon
Christophen kömpelöissä ja avuttomissa sanoissa oli koomillista.
Christophe tuskin uskalsi hiiskua Aadan nimeä; ja kuva, jonka hän
Aadasta antoi, olisi sopinut mihin rakastettavaan naiseen tahansa.
Mutta hän puhui rakkaudestaan; ja heittäytyen vähitellen hellyyden
valtaan, joka täytti hänen sydämensä, hän sanoi, mikä onni on
rakastaa, kuinka ihminen on viheliäinen ennen kuin hän on nähnyt
tuon valonsa yössä, ja ettei elämä ole mitään ilman pyhää ja syvää
rakkautta. Toinen kuunteli vakavana; hän vastasi hienovaistoisesti
eikä tehnyt minkäänlaisia kysymyksiä; mutta heltynyt kädenpuristus
osoitti muka, että hän oli samaa mieltä kuin Christophe. He purkivat
toisilleen ajatuksiaan rakkaudesta ja elämästä. Christophe oli
onnellinen, että häntä oli niin ymmärretty. He syleilivät toisiaan
veljellisesti ennenkuin asettuivat nukkumaan.
   Christophelle tuli sitten tavaksi uskoa rakkausasioitaan Ernestille,
jonka vaiteliaisuus oli hänet aivan rauhoittanut, mutta teki sen
kuitenkin hyvin arkatuntoisesti eikä paljastanut mitään liikaa. Hän
antoi Ernestin huomata kautta rantain huolensa Aadaan nähden;
mutta koskaan ei hän Aadaa syyttänyt: hän soimasi ainoastaan
itseään, ja kyyneleet silmissä hän julisti, ettei hän voisi elää jos
Aadan kadottaisi.
  Hän ei unohtanut puhua Aadalle myöskään Ernestistä: hän kiitti
Ernestin älyä ja kauneutta.
   Ernest ei pyytänyt Christophea esittelemään itseään Aadalle;
mutta hän sulkeutui alakuloisesti kamariin ja kieltäytyi lähtemästä
sieltä mihinkään, sanoen, ettei hän tuntenut kaupungissa ketään.
Christophe moitti itseään siitä, että hän lähti sunnuntaisin maalle
kävelyretkille Aadan kanssa ja jätti veljensä yksin kotiin. Kuitenkin
tuntui hänestä kiusalliselta, ettei hän olisi saanut olla yksin
ystävättärensä kanssa; mutta hän syytti itseään itsekkäisyydestä ja
ehdotti viimein, että Ernest tulisi heidän mukaansa.
   Esittely tapahtui Aadan ovella, hänen asuintalonsa sisäportailla.
Ernest ja Aada tervehtivät toisiaan jäykän kohteliaasti. Aada tuli
sitten ulos, ja hänen perästään hänen eroittamaton ystävättärensä
Myrrha. Kun viimemainittu näki Ernestin, puhkesi hänen huuliltaan
hämmästyksen huudahdus. Ernest hymyili, lähestyi ja syleili Myrrhaa,
joka näytti pitävän sitä aivan luonnollisena asiana.
  — Kuinka! Tehän tunnette toisenne? kysyi Christophe ällistyneenä.
  — Erinomaisesti! vastasi Myrrha nauraen.
  — Milloinka te olette tutustuneet?'
  — Kauan sitten!
  — Ja sinä tiesit sen? kysyi Christophe Aadalta? Miksi et sitä minulle
sanonut?
  — Minä nyt muka tuntisin Myrrhan kaikki rakastajat, virkkoi Aada
kohauttaen olkapäitään.
  Myrrha sai puheen jälleen vilkastumaan ollen muka suuttuvinaan.
Christophen tiedot supistuivat siihen. Hän oli tullut surulliseksi.
Hänestä tuntui, että Ernest, Myrrha ja Aada olivat olleet hänelle
vilpillisiä, vaikka hän ei totta sanoen voinut syyttää heitä mistään
valheesta; mutta olihan vaikea uskoa, että Myrrha, jolla ei ollut
mitään salaisuutta Aadalle, olisi peitellyt tätäkään asiaa häneltä,
enempää kuin sitäkään, etteivät Ernest ja Aada olisi tunteneet
toisiaan jo aikaisemmin. Christophe piti heitä silmällä. Mutta Ernest
ja Aada puhuivat keskenään vain jonkun jokapäiväisen sanan ja koko
kävelyretken aikana ei Ernest sitten välittänyt muusta kuin
Myrrhasta. Aada puolestaan puheli ainoastaan Christophelle; ja hän
oli Christophea kohtaan paljoa rakastettavampi kuin tavallisesti.
   Siitä alkaen tuli Ernest mukaan kaikille heidän kävelyretkilleen.
Christophe olisi mielellään tahtonut hänestä päästä, mutta hän ei
uskaltanut sitä sanoa. Ei silti, että hänellä olisi ollut muita syitä
erottaa veljeään seurasta kuin se, että hän häpesi pitää häntä
huvittelu-toverinaan. Christophe ei epäillyt mitään eikä Ernest
antanutkaan hänelle siihen aihetta. Hän näytti kiintyneen Myrrhaan,
ja Aadaa kohtaan käyttäytyi hän kohteliaasti ja syrjään vetäytyvästi,
jopa melkein sopimattoman hienotunteisesti; näytti kuin hän olisi
tahtonut antaa hieman veljensä rakastajattarellekin sitä kunnioitusta,
jota hän tunsi Christophea itseään kohtaan. Aada ei sitä
kummastunut, ja hän piti tarkan vaarin itsestään.
   He tekivät yhdessä pitkiä kävelyretkiä. Veljekset kulkivat edeltä;
Aada ja Myrrha seurasivat heitä, nauraen ja supatellen, parin
askeleen päässä. He pysähtyivät usein pitkäksi aikaa juttelemaan
toistensa kanssa, keskellä maantietä. Christophe ja Ernest
seisahtuivat myöskin heitä odottamaan. Viimein tuli Christophe
kärsimättömäksi ja lähti menemään; mutta pian hän kääntyi
harmissaan takaisin, kuin kuuli Ernestin nauravan ja puhuvan jotakin
noiden kahden lavertelijan kanssa. Hän olisi tahtonut tietää, mitä he
keskustelivat; mutta kun hän pääsi heidän luoksensa lakkasi heidän
pakinansa.
   — Mitä salavehkeitä teillä aina on? kysyi hän. Hänelle vastattiin
jotain leikillistä. Nuo kolme vetivät yhtä köyttä kuin varkaat.
    Christophe riiteli eräänä sunnuntai-aamuna Aadan kanssa. Sitten
mököttivät he toisilleen koko alkupuolen huvimatkaa. Aada ei ollut
arvokkaan ja loukatun näköinen niinkuin hän tavallisesti sellaisissa
tapauksissa menetteli, kostaen siten, että koetti olla niin
sietämättömän ikävä kuin mahdollista. Tällä kertaa hän sensijaan ei
ollut muka tietääkseen koko Christophesta, vaan pakisi kävelyretkellä
toisten toverusten kanssa ja oli erinomaisella tuulella heidän
seurassaan. Tuntui kuin hän pohjaltaan olisi oikein toivonut tätä
riitaa.
   Christophe olisi hyvin mielellänsä tahtonut tehdä jälleen sovinnon;
hän oli rakastuneempi kuin koskaan ennen. Hänen hellyyteensä yhtyi
kiitollisuus kaikesta, mitä hyvää heidän rakkautensa oli hänelle
tuonut, ja hän suri, että he tuhlasivat aikaa tällaisilla älyttömillä
riidoilla, — ja pelkäsikin jotain merkillistä: se oli salaperäistä
tunnetta, että tämä rakkaus oli loppuva. Hän katseli alakuloisena
Aadan kauniita kasvoja, Aadan, joka ei nyt ollut häntä
näkevinäänkään, vaan naureskeli toisten kanssa; nuo kasvot
herättivät hänessä niin paljon kalliita muistoja, hyvän rakkauden ja
läheisen yhdessäolon muistoja; ja niissä hurmaavissa kasvoissa oli
joskus, — (samoin tälläkin hetkellä) — niin paljon hyvää ja puhtaan
hymyilevää, että Christophe kummasteli mielessään, miksi heidän
välinsä eivät olleet paremmat, miksi he turmelivat tahallaan ilonsa,
miksi Aada koetti itsepintaisesti unohtaa heidän onnelliset hetkensä,
väittää ne olemattomiksi, ja taistella kaikkea vastaan, mikä hänessä
oli hyvää ja kunniallista; — mitä omituista tyydytystä Aadalle
tuottikaan häiritä ja tahrata heidän tunteittensa puhtautta, vaikkapa
ainoastaan ajatuksilla. Christophe kaipasi suunnattomasti saada
uskoa siihen olentoon, jota hän rakasti, ja hän koetti nyt viimeisen
kerran rauhoittaa itseään kuvitelmilla. Hän syytti itseään: hän oli
muka väärässä; hänen tuntonsa kolkutti, kun hän ajatteli, millaiseksi
hän syytti Aadaa mielessään; ja hän oli muka itse liian tyly.
  Christophe lähestyi Aadaa, hän koetti päästä puheisiin hänen
kanssaan: Aada ei vastannut hänelle muuta kuin pari kuivaa sanaa:
hän ei tahtonut laisinkaan tehdä hänen kanssaan sovintoa.
Christophe toivoi sitä ehdottomasti, hän kuiskasi Aadan korvaan ja
pyysi häntä hiukan puheilleen, syrjemmällä muista. Aada seurasi
häntä nyrpeän näköisenä. Kun he olivat jääneet jonkun askeleen
päähän toisista eivätkä Myrrha ja Ernest voineet heitä enää nähdä,
tarttui Christophe rajusti Aadan käsiin, hän pyysi häneltä anteeksi,
polvistui hänen eteensä, metsässä, keskellä lakastuneita lehtiä.
Christophe sanoi, ettei hän voinut elää näin, riidassa Aadan kanssa;
hän ei voinut enää nauttia koko kävelyretkestä, ei kauniista päivästä,
hän ei voinut nauttia mistään, ei enää edes hengittääkään, kun tiesi
Aadan häntä vihaavan; hän kaipasi niin suuresti Aadan rakkautta.
Niin, hän oli usein väärämielinen, väkivaltainen, epämiellyttävä; hän
pyysi Aadaa antamaan hänelle anteeksi: syynä siihen kaikkeen oli
hänen rakkautensa; hän ei voinut sietää Aadassa mitään
keskinkertaista, mitään joka ei ollut Aadan ja heidän kauniin
yhdessäolonsa muistojen arvoista. Christophe palautti ne muistot
Aadan mieleen, kertoi hänelle heidän ensimmäisen kohtauksensa,
ensimmäiset yhdessä vietetyt päivät; hän sanoi, että hän rakasti
Aadaa yhä niinkuin ennen, että hän rakastaisi häntä aina. Älköön
Aada jättäkö häntä! Aada oli hänelle kaikki kaikessa… Aada kuunteli
häntä, hymyillen, hämmentyneenä, melkein heltyneenä. Hän katseli
Christophea jälleen suloisin silmin, katsein, jotka ilmaisivat, että
rakkaus eli ja etteivät he enää olleet toisilleen suutuksissa. He
suutelivat toisiaan ja painuivat kädet tiukasti toistensa ympärillä
edelleen lehdettömään metsään. Christophe oli Aadasta kiltti, ja hän
oli kiitollinen hänelle noista hellistä sanoista; mutta hän ei silti
luopunut pahankurisista oikuistaan, jotka hän oli saanut päähänsä.
Kumminkin hän nyt epäröi hiukan, hän ei ollut aivan luja
päätöksessään. Ja sittenkään ei hän jättänyt tekemättä, mitä oli
ajatellut. Minkä tähden? Kuka sen voi selittää?… Senkö vuoksi, että
hän oli varmasti päättänyt sen tehdä?… Kuka tietää? Hänestä tuntui
ehkä omintakeisemmalta ja makeammalta pettää ystäväänsä juuri
sinä päivänä, näyttääkseen hänelle ja itselleen, että hän oli vapaa.
Hän ei ajatellut, että hän voisi kadottaa Christophen: sitä ei hän olisi
tahtonut. Hän luuli olevansa hänestä varmempi kuin koskaan ennen.
   Seurue oli tullut aholle. Siitä haarautui kaksi eri tietä! Christophe
lähti menemään toista niistä. Ernest väitti, että toinen veisi
suorempaan sille kukkulalle, jonne he nyt aikoivat mennä. Aada oli
samaa mieltä hänen kanssaan. Christophe tunsi tien hyvin, sillä hän
oli kulkenut sitä usein, ja väitti, että nuo toiset olivat väärässä. He
pysyivät jyrkästi mielipiteessään, ja silloin sovittiin, että koetettaisiin;
ja kumpikin puoli löi vetoa saapuvansa omaa tietänsä ensin perille.
Aada lähti Ernestin kanssa toista polkua, Myrrha seurasi Christophea;
hän oli muka aivan vakuutettu että Christophe oli oikeassa; ja siihen
hän lisäsi:
   "Kuten aina." Christophe oli käsittänyt vedon vakavasti; ja kun hän
ei koskaan halunnut joutua tappiolle, kulki hän nopein askelin, niin,
liian nopeasti Myrrhan mielestä, jolla ei ollut laisinkaan niin kiire kuin
Christophella.
  — Älä hätäile, hyvä ystävä, sanoi hän Christophelle pilkallisesti ja
tyynesti; kyllä me joka tapauksessa joudumme ennen.
  Christophelle tuli jokin epäilys:
  — Se on totta, sanoi hän; ehkä kuljemme liian nopeasti: se ei
kuulu vetoon.
  Hän hiljensi askeleitaan.
  — Mutta minä tunnen heidät, jatkoi Christophe; olen varma, että
he juoksevat ennättääkseen sinne ennen meitä.
  Myrrha purskahti nauruun:
  — Ei ei, älä ole milläsikään siitä!
   Myrrha riippui Christophen käsipuolessa, hän painautui aivan
Christophea vasten. Hän oli hiukan lyhyempi kuin Christophe ja
katseli kävellessään ylös häneen, älykkäin ja hyväilevin silmin. Hän
oli tosiaan sievä ja kiehtova. Christophe tuskin tunsi häntä nyt:
kukaan ei ollut alttiimpi hetkellisille muutoksille kuin Myrrha;
tavallisesti olivat hänen kasvonsa kelmeät ja pöhöiset; mutta ei
tarvittu muuta kuin pieni kiihdytys, jokin iloinen ajatus tai halu
miellyttää, niin tuo vanhamainen ilme katosi ja Myrrhan poskille
syttyi puna, rypyt silmäluomista, silmien alta ja ympäriltä hävisivät,
hänen katseensa syttyi, ja hänen koko muotonsa sai sellaisen
nuoruuden, elämän ja älykkyyden sävyn, ettei Aadan piirteissä ollut
moisesta      merkkiäkään.   Christophe      hämmästyi     Myrrhassa
huomaamaansa muutosta, hän käänsi katseensa pois välttäen
Myrrhan silmiä: hän oli hieman hämmennyksissään, näin kahden
kesken Myrrhan kanssa. Myrrhan läsnäolo vaivasi häntä; hän ei
kuunnellut, mitä tyttö sanoi, eikä vastannut hänelle, tai hän vastasi
aivan päin honkia: hän ajatteli, tahtoi ajatella pelkästään Aadaa. Hän
muisteli miten kauniisti Aada oli juuri äsken häneen katsellut,
muisteli hänen hymyään, hänen suudelmaansa; ja hänen sydämensä
täytti ylenpalttinen rakkaus. Myrrha koetti puhua hänelle, kuinka
kaunis metsä oli: nuo pienet ja hienot oksat, taustanaan kuulas
taivas; niin, kaikki oli kaunista: pilvi oli haihtunut, Christophe oli
saanut Aadan takaisin; hänen oli onnistunut sulattaa jää heidän
väliltään, he rakastivat jälleen toisiaan; olivatpa toisiaan lähellä tai
kaukana ja erillään, olivat he kuitenkin aivan yhtä. Christophe
huokaisi helpoituksesta; kuinka keveä ilma nyt oli! Aada oli tullut
hänelle takaisin… Kaikki muistutti hänelle Aadasta… Sää oli hiukan
kostea: eiköhän Aadalla ollut kylmät… Kauniita puita verhosi kuura:
mikä vahinko, ettei Aada niitä puita nähnyt!… Mutta Christophe
muisti lyödyn vedon, ja hän kiirehti taas askeleitaan; hän varoi
tarkoin, ettei vain eksyisi tieltä. Ja hän huudahti riemuissaan
päästyään perille:
  — Me jouduttiin ensimmäisinä.
  Hän heilutti iloisesti hattuaan. Myrrha katseli häneen hymyillen.
    Kukkula, jonka laella he nyt seisoivat, oli pitkä kalliojyrkänne
keskellä metsää. Tuota huippua ympäröivät pähkinä- ja
vaivaistammipensaat, ja sieltä näkyi kauas: metsäisiä rinteitä
punasinervien ja usvan harsoamien kuusenlatvojen takaa, sekä
Rhein-virta, joka kiemurteli nauhana sinertävässä laaksossa. Ei
linnunviserrystä kuulunut. Ei ääntä, ei tuulen henkäystä. Oli
liikkumaton ja hartaan-tyyni talvinen päivä, joka lämmitteli viluissaan
värähdellen auringon turtuneessa valossa. Silloin tällöin kajahti
kaukaa laaksosta junan lyhyt vihellys. Christophe seisoi jyrkänteen
reunalla ja katseli maisemaa. Myrrha tarkasteli Christophea.
  Christophe kääntyi Myrrhan puoleen, selvästi oikein hyvällä
tuulella.
  — Kas niin, ne laiskurit, virkkoi hän; johan sanoin sen heille!… No,
mitäpä muuta, täytyy heitä odottaa…
   Hän heittäytyi loikomaan auringonpaisteeseen, pengermälle, joka
oli rakoillut kuivuudesta.
  — Aivan niin, odotetaan, sanoi Myrrha ottaen hatun pois päästään.
  Myrrhan äänessä oli jotain niin pilkallista, että Christophe
kohottausi ylös ja katsoi häneen.
  — No, mitä nyt? kysyi Myrrha rauhallisesti.
  — Mitä sinä sanoit?
  — Minä sanoin, että odotetaan vaan. Ei kannattanut, kuten näet,
juoksuttaa minua niin kiireesti.
  — Se on totta.
  He odottivat, loikoen molemmat rosoisella pengermällä. Myrrha
hyräili jotakin laulua. Christophe hyräili myöskin muutamia säkeitä.
Mutta hän keskeytti vähän väliä kuunnellen korva tarkkana:
  — Nyt he taitavat tulla, olin kuulevinani. Myrrha lauloi yhä vaan.
  — Ole nyt hiljaa, hetkinen. Myrrha keskeytti.
  — Ei, se ei ollut mitään. Myrrha alkoi taas laulaa. Christophe ei
pysynyt enää paikallaan:
  — Ehkäpä he ovat eksyneet.
  — Eksyneetkö? Ei täällä voi eksyä. Ernest tuntee kaikki tiet.
  Omituinen ajatus pälkähti Christophen päähän.
  — Jospa he pääsivät tänne ennen meitä, ja lähtivät takaisin jo
ennenkuin me tulimme?
  Myrrha makasi seljällään maassa ja katseli taivaaseen, ja puhkesi
keskellä lauluaan niin hurjaan nauruun, että oli tikahtua. Christophe
pysyi itsepintaisesti mielipiteessään. Hän tahtoi nyt lähteä asemalle,
ja sanoi, että ystävät olivat varmaan jo siellä. Myrrha päätti jättää
kylmän salailunsa.
   — Se olisi hyvä keino juuri joutuaksemme heistä erilleen!… Eihän
ole sovittu mitään asemalla kohtaamisesta. Mehän päätimme tavata
toisemme täällä.
  Christophe istahti häntä lähelle. Myrrhaa Christophen odottelu
huvitti. Christophe tunsi, että Myrrha tarkasteli häntä ivallisin silmin.
Hän alkoi nyt tosiaan tulla rauhattomaksi, — rauhattomaksi, mihin
Aada ja Ernest olivat joutuneet: hän ei heitä laisinkaan epäillyt. Hän
nousi jälleen ylös. Hän sanoi, että nyt täytyisi mennä takaisin
metsään, etsiä ja huutaa heitä. Myrrhan kurkusta kuului silloin pieni
naurunkurahdus; hän oli ottanut taskustaan neulan ja sakset, alkoi
nyt ratkoa hatustaan irti sulkia, ja ompeli sitten ne siihen kiinni
uudella tavalla: hän näytti aikovan jäädä tähän kaikeksi päivää.
  — Ei, hölmöseni, vastasi hän Christophelle. Jos he tahtoisivat tulla,
luuletko, etteivät he osaisi tänne?
  Se iski Christophea suoraan sydämeen. Hän käännähti Myrrhaan
päin; tyttö ei häneen katsellut, vaan jatkoi työtään. Christophe meni
lähemmäksi häntä:
  Myrrha! sanoi hän.
  — No? äännähti Myrrha keskeyttämättä ompeluaan.
  Christophe    asettui   polvilleen   voidakseen   tarkastaa    häntä
paremmin.
  — Myrrha! toisti Christophe.
  — No, mikä nyt? kysyi Myrrha nostaen silmänsä työstä ja katsellen
häneen hymyillen. Mikä sinulla on?
   Nähdessään, että Christophe oli aivan tyrmistynyt, tuli Myrrha
ilveilevän näköiseksi.
   — Myrrha! kysyi Christophe kurkkuun takertuvin äänin, sano, mitä
sinä tästä ajattelet…
  Myrrha kohautti olkapäitään, hymyili, ja ryhtyi jälleen työhönsä.
   Christophe tarttui hänen käteensä ja tempaisi häneltä pois hatun,
jota hän korjaili:
  — Jätä tuo, jätä, ja sano minulle… Myrrha katsoi häntä silmiin ja
odotti. Hän näki Christophen huulten vapisevan.
  — Sinä ajattelet, virkkoi Christophe hiljaa, että Ernest ja Aada…?
  Myrrha hymyili:
  — Hm, mitäs muuta!
  Christophe ponnahti loukkautuneena ylös:
  — Ei, ei! Se ei ole mahdollista. Et ajattele sellaista!… Ei! Ei!
  Myrrha pisti kätensä hänen olkapäälleen ja vääntelehti naurusta.
  — Kuinka sinä olet tuhma, niin tuhma, ystäväni!
  Christophe ravisti häntä rajusti:
   — Älä naura! Minkä tähden sinä naurat? Sinä et nauraisi, jos se
olisi totta! Sinä pidät Ernestistä…
   Myrrha nauroi vain. Ja vetäen Christophea luokseen suuteli hän
häntä. Vasten tahtoaankin Christophe suuteli Myrrhaa. Mutta kun
hän tunsi hänen huultensa kosketusten, noiden huulten, jotka olivat
vielä lämpöiset hänen veljensä suudelmista, riuhtausi hän
taaksepäin, piti Myrrhan päätä kiinni edessään ja kysyi:
  — Sinä tiesit sen? Oliko se teidän kesken sovittu?
  Myrrha äännähti: "Oli", ja nauroi.
  Christophelta ei päässyt ääntä, hänessä ei näkynyt vihan
merkkiäkään. Hän aukoi suutansa, niinkuin hänen olisi ollut vaikea
hengittää; hän sulki silmänsä, ja pusersi käsin rintaansa: hänen
sydämensä oli pakahtua. Sitten hän heittäytyi maahan, painoi
päänsä käsiinsä, ja häntä täristi raju inhon ja epätoivon puuska,
samanlainen kuin usein ennen lapsena.
   Myrrhan tuli sääli häntä, vaikkei hän yleensä ollutkaan kovin
helläluonteinen; tiedottomasti valtasi hänet äidillinen hellyyden
tunne. Hän kumartui Christophen puoleen, hän puhui hänelle
lohdutellen, hän tahtoi, että hänen olisi pitänyt haistella hänen
hajuvesipulloaan. Mutta Christophe sysäsi sen kauhuissaan luotaan
ja nousi ylös niin rajusti, että Myrrhaa peloitti. Christophella ei ollut
voimaa eikä halua kostaa. Hän katseli Myrrhaa, ja hänen kasvonsa
olivat tuskasta väännyksissä:
  — Viheliäinen, sanoi hän menehtyvällä äänellä; sinä et tiedä, mitä
pahaa sinä teet…
   Myrrha koetti estää Christophea lähtemästä. Christophe ryntäsi
pois kukkulalta, läpi metsän, syljeskellen inhosta ajatellessaan
moista julkeaa törkeyttä, moisia saastaisia sieluja ja sukurutsaista
jakelua, johon he tahtoivat häntä osalliseksi. Hän itki, hän vapisi,
nyyhkytti inhosta. Hänelle tuli kauhu Aadaa, kaikkea, omaa itseään,
ruumistaan ja sydäntään kohtaan. Halveksimisen myrsky purkausi
hänessä valloilleen: kauan aikaa oli se jo uhkaavana kohonnut;
ennemmin tai myöhemmin täytyi hänessä syntyä vastarinta tuollaista
mataluutta, moisia häpäiseviä sovinnoita ja ummehtunutta ja
myrkyllistä ilmapiiriä vastaan, jossa hän oli elänyt muutamia
kuukausia; mutta hänen kaipuunsa rakastaa ja pettää itseään
näkemästä oikeassa muodossaan sitä olentoa, jota hän rakasti, oli
viivyttänyt tuota auttamatonta purkausta, niin kauan kuin se oli
suinkin mahdollista. Nyt se kuohahti ilmi yhtäkkiä; ja näin oli
parempi. Vapauttava, raitis ja tuiman puhdas tuulenhenkäys,
jääkylmä viima pyyhkäisi tuossa tuokiossa pois hänestä nuo
myrkkyhöyryt. Inho tappoi yhdellä iskulla hänen rakkautensa Aadaa
kohtaan.
  Jos Aada oli luullut vahvistavansa valtaansa Christopheen tällä
teollaan, todisti se vain vielä kerran, miten typerän törkeästi hän
ymmärsi sen olennon, joka häntä rakasti. Mustasukkaisuus, joka
kyllä saattaa kiinnittää toisiinsa tahraisia sydämiä, nosti ainoastaan
kapinaan sellaisen nuoren, ylpeän ja puhtaan luonteen kuin
Christophe. Mutta varsinkin eräs seikka, jota Christophe ei antanut
anteeksi, jota hän ei voinut antaa koskaan anteeksi, se, ettei tämä
Aadan petos johtunut intohimosta eikä varmaankaan edes noista
mielettömistä      ja      turmeltuneista      oikuistakaan,    joiden
vastustamattomia puuskia naisen äly ei juuri jaksa estää. Ei, — nyt
Christophe sen ymmärsi, — se johtui Aadassa vaan salaisesta
halusta alentaa häntä, nöyryyttää häntä, rangaista häntä hänen
moraalisen jäykkyytensä tähden, hänen uskonsa tähden, joka oli
Aadalle vihallinen; saada hänet suistumaan alas yleiselle matalalle
tasolle, polkea hänet jalkoihinsa, tuntea oma epäterveellinen
voimansa. Ja kauhuissaan Christophe ajatteli: mikä ihmeellinen halu
onkaan enimmillä ihmisillä tahrata: — tahrata kaikkea, mikä heissä ja
muissa on puhdasta, — noilla tunkiosieluilla, jotka nauttivat
hekkumaa saadessaan kieriskellä loassa, jotka ovat onnellisia, kun
heidän pinnassaan ei ole enää yhtään ainoaa puhdasta paikkaa!…
   Aada odotti kaksi päivää, että Christophe tulisi takaisin. Sitten alkoi
hän tulla levottomaksi ja hän lähetti Christophelle suloisen kirjeen,
jossa hän ei vihjaillut vähääkään tapahtuneeseen. Christophe ei
siihen edes vastannut. Hän vihasi Aadaa nyt niin syvästi, ettei
hänellä ollut enää edes sanoja vihaansa ilmaistakseen. Hän oli
pyyhkäissyt Aadan pois elämästään. Aadaa ei ollut hänelle enää
olemassa.
   Christophe oli vapautunut Aadasta, mutta itsestään ei hän ollut
vapautunut. Turhaan koetti hän sitä kuvitella ja päästä takaisin
entiseen puhtaaseen ja voimakkaaseen tyyneyteen. Entisyyteensä ei
ihminen koskaan palaa. Hänen täytyy jatkaa matkaansa; eikä
hyödytä kääntyä takaisin, paitsi katsoakseen niitä paikkoja, joiden
ohitse kulki, niiden majain sauhuja, joiden katon alla nukkui, kuinka
ne haipuvat ilmanrannalla muistojen utuun. Mutta mikään ei vie
meitä nopeammin erillemme entisestä sielustamme kuin lyhyet
intohimon ajat. Tie kääntyy yhtäkkiä, maisema muuttuu uudeksi;
tuntuu kuin joutuisimme sanomaan viimeisen kerran hyvästit sille,
jonka jätämme taaksemme. Christophe ei voinut alistua sellaiseen.
Hän ojensi käsiään menneisyyttä kohti. Hän koetti itsepintaisesti
saada jälleen heräämään eloon entisen sielunsa, yksinäisenä ja
alistuvana. Mutta sitä sielua ei enää ollut olemassa. Intohimo on
vaarattomampi itsessään kuin sen kasaamien raunioiden tähden.
Christophe saattoi kyllä olla enää rakastamatta, hän saattoi halveksia
rakkautta: — lyhyen aikaa, — se oli jo kuitenkin jättänyt häneen
kyntensä merkit; hänen sydämeensä oli jäänyt tyhjyys, joka täytyi
täyttää. Tuon hirvittävän hellyyden ja ilon kaipuun vuoksi, joka
kalvaa elämän onnea maistaneita olentoja, tarvitsi hän jotain muuta
intohimoa, vaikkapa jotakin aivan entiselle vastaista: halveksumisen,
ylpeilevän puhtauden, hyveeseen uskomisen intohimoa. — Ne
tunteet eivät kuitenkaan riittäneet; ne eivät jaksaneet enää
masentaa hänen nälkäänsä; ne eivät olleet muuta kuin tuokion
ravintoa. Hänen elämänsä oli yhtäjaksoisia rajuja vastavaikutuksia,
— hyppyjä yhdestä äärimmäisyydestä toiseen. Milloin tahtoi hän nyt
pakoittaa itsensä epäinhimillisen pidättyväisyyden sääntöihin; hän ei
syönyt enää, joi vain vettä, kiusasi ruumistaan kävelyillä,
ponnistuksilla, valvomalla, kielsi itseltään kaiken ilon. Milloin hän
jälleen vakuutti itselleen, että voima on hänenlaistensa ihmisten
ainoa moraali; ja hän syöksyi tavoittelemaan ainoastaan iloa.
Kummassakin tapauksessa oli hän onneton. Hän ei enää voinut olla
yksin. Se kävi hänelle yhä mahdottomammaksi.
   Hänen ainoa pelastuksensa olisi löytää ollut oikeaa ystävyyttä, —
esimerkiksi Rosan: siitä hän olisi saanut turvansa. Mutta noiden
kahden perheen välit olivat nykyään auttamattomasti rikki; ne eivät
enää tavanneetkaan toisiaan. Yhden ainoan kerran oli Christophe
kohdannut Rosan. Nuori tyttö tuli kirkosta. Christophe epäröi,
yrittääkö hänen seuraansa; ja Rosa puolestaan teki hänet
nähdessään sellaisen liikkeen, kuin olisi aikonut tulla häntä
tapaamaan; mutta kun Christophe jo halusi mennä Rosan luokse,
läpi uskovaisten tungoksen, joka laskeutui alas portaita, käänsi Rosa
katseensa hänestä pois; ja kun Christophe tuli häntä lähelle, tervehti
Rosa häntä kylmästi, ja meni sivuitse. Hän tunsi, että nuori tyttö
halveksi häntä perinpohjaisesti ja kylmäsydämisesti. Eikä Christophe
tuntenut, että Rosa rakasti häntä yhä ja olisi tahtonut sen hänelle
sanoa, vaikka hän moittikin sentähden itseään kuin jostakin viasta tai
typeryydestä; hän piti Christophea kunnottomana ja turmeltuneena,
itselleen kaukaisempana kuin koskaan ennen. Sitten kadottivat he
toisensa ainaiseksi. Se oli ehkä hyväksi heille molemmille.
Hyvyydestään huolimatta ei Rosa ollut tarpeeksi eloisa Christophea
ymmärtämään. Vaikka Christophe tarvitsi kiihkeästi hellyyttä ja
kunnioitusta, olisi hän tukehtunut keskinkertaisessa ja suljetussa
elämässä, jossa ei ollut iloa eikä tuskaa, ei ilmaa. He olisivat
kärsineet kumpikin. Olisivat kärsineet siitä, että olisivat tuottaneet —
toisilleen kärsimyksiä. Kova onni, joka heidät eroitti toisistaan, oli siis
ehkä lopultakin hyvä onni, niinkuin usein on, — ja on aina niiden,
jotka ovat väkeviä ja kestävät.
  Mutta tällä hetkellä oli se heille suuri surun syy ja suuri
onnettomuus.     Varsinkin   Christophelle. Moinen     hyveellinen
suvaitsemattomuus, henkinen ahtaus, joka joskus näyttää
kadottavan täydellisesti älyn juuri niiden päästä, joilla sitä on
enimmän, ja hyvyyden niiden sydämestä, jotka ovat parhaita, ärsytti,
loukkasi Christophea, syöksi hänet uhmaan ja entistä vapaampaan
elämään.
   Kierrellessään ennen Aadan kanssa ulkoravintoloissa kaupungin
ympärillä oli Christophe tutustunut eräihin reiluihin poikiin —
bohêmeihin, joiden huolettomuus ja tapojen vapaus eivät olleet
hänestä liioin vastenmielisiä. Eräs heistä, nimeltään Friedemann,
muusikko niinkuin Christophe, kolmisenkymmentä vuotta urkurina
elänyt mies, ei ollut henkisyyttä vailla, ja tunsi hyvin ammattinsa,
mutta oli auttamattoman laiska ja olisi mieluummin kuollut nälkään,
jopa janoonkin, kuin ponnistanut hiukan voimiaan päästäkseen
keskolaisuudestaan.     Hän      lohdutti   vetelyydessään      itseään
haukkumalla niitä, jotka elämässä touhuavat; ja hänen hieman
kömpelöt pilapuheensa olivat naurattavan sukkeliakin. Hän oli
tovereitaan vapaampi eikä peljännyt singota tyytymättömyyttään
vallassa oleviin henkilöihin, — vaikka hän tekikin sen vielä arasti,
ikäänkuin silmää iskien, salavihjauksilla —; olipa hän kyllin uskalikko
hyljätäkseen valmiit ja yleisesti hyväksytyt mielipiteet musiikista, ja
salasisuisesti iski hän piikkinsä päivän suuruuksiin, jotka olivat
anastamalla siepanneet maineensa. Naiset eivät saaneet myöskään
häneltä armoa. Hän omisti heille leikkiä laskien erään muinaisen
naisia vihaavan munkin lauselman, jonka tuimuudesta Christophe
nautti nykyään hartaammin kuin moni muu:
  "Femina mors animae."