0% found this document useful (0 votes)
29 views67 pages

M 6

The document contains a series of mathematical problems and formulas related to trigonometric functions, angles, and properties of triangles. It includes various equations and identities that require solving for specific values or proving relationships among trigonometric expressions. Additionally, it features questions from past exams, emphasizing the application of trigonometric concepts in problem-solving.

Uploaded by

Tamjidur Rahman
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views67 pages

M 6

The document contains a series of mathematical problems and formulas related to trigonometric functions, angles, and properties of triangles. It includes various equations and identities that require solving for specific values or proving relationships among trigonometric expressions. Additionally, it features questions from past exams, emphasizing the application of trigonometric concepts in problem-solving.

Uploaded by

Tamjidur Rahman
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 67

Related to Series

2 2 2 2
❖ sin 18° + sin 36° + sin 54° + sin 72° =? [BUTEX’12-13]

(a) − 2

(b) ± 2

c 0

d 2
Related to Series
π
❑ If θ = , then determine the value of sin 3θ + sin 4θ + sin 5θ +. . . . . . + sin 15θ.
2 2 2 2
36

[BUET’13-14]
Related to Series
2 2 2 2
❑ sin 3° + sin 9° + sin 15° + … … … … … … + sin 177° =?
Related to Series
π
❑ If θ = , then determine the value of cot θ . cot 3θ . cot 5θ … … cot 19θ. [BUET’11-12]
20
Related to Compound/Multiple/Sub-Multiple Angle
Formulae: 2 tan θ
(i) sin 2θ = 2 sin θ. cos θ =
1+tan2 θ
(i) sin A + B + sin A − B = 2 sin A. cos B
2 tan θ
(ii) sin A + B − sin A − B = 2 cos A. sin B (ii) tan 2θ = 1−tan2 θ

(iii) cos A + B + cos A − B = 2 cos A. cos B (iii) 2


cos 2θ = cos θ − sin θ 2

2
(iv) cos A − B − cos A + B = 2 sin A. sin B = 2 cos θ − 1
2
= 1 − 2 sin θ
1−tan2 θ
C+D C−D =
(i) sin C + sin D = 2. sin
2
. cos
2 1+tan2 θ
2
C+D C−D 1 + cos 2θ = 2 cos θ
(ii) sin C − sin D = 2. cos . sin
2 2 2
C+D C−D
1 − cos 2θ = 2 sin θ
(iii) cos C + cos D = 2. cos . cos
2 2 3
C+D D−C
(i) sin 3θ = 3 sin θ − 4 sin θ
(iv) cos C − cos D = 2. sin . sin 3
2 2 (ii) cos 3θ = 4 cos θ − 3 cos θ
3 tan θ−tan3 θ
(iii) tan 3θ =
1−3 tan2 θ
cs Method

1 n
sin 2 A
❑ Prove that, cos A . cos 2A . cos 2 A . cos 2 A … … cos 2
2 3 n−1
A= .
2n sin A
cs Method

2π 4π 8π 14π
❑ Show that, 16 cos cos cos cos =1 [BUET’00-01]
15 15 15 15
cs Method
π π π π
❖ Which of the following is the value of cos 2 ⋅ cos 3 … … … cos 10 sin 10 ?
2 2 2 2

[2019 Main, 10 Jan II]

1
(a)
1024

1
(b)
2

1
(c)
512

1
(d)
256
cs Method

π 5π 7π
❑ sin sin sin =?
18 18 18
𝟐
𝟏 + 𝐜𝐨𝐬 𝐀 𝟏 + 𝐜𝐨𝐬 𝛑 − 𝐀 = 𝐬𝐢𝐧 𝐀

π 3π 5π 7π
❖ The value of 1 + cos 1+ cos 1+ cos 1+ cos is- [1984, 3M]
8 8 8 8

1
(a)
2

π
(b) cos
18

1
(c)
8

1+ 2
(d)
2 2
𝟏 + 𝐭𝐚𝐧 𝐱 𝟏 + 𝐭𝐚𝐧 𝟒𝟓° − 𝐱 =𝟐

❑ (1 + tan 1°) 1 + tan 2° 1 + tan 3° … … 1 + tan 45° =?


Related to Compound/Multiple/Sub-Multiple Angle

❖ What is the value of 3 sin x − cos x 4


+ 6 sin x + cos x 2 6 6
+ 4(sin x + cos x)?

[1995, 2M]

(a) 11

(b) 12

(c) 13

(d) 14
Related to Compound/Multiple/Sub-Multiple Angle

1 3
❑ − =? [BUTEX’16-17]
sin 10° cos 10°

(a) 4

1
(b)
4

(c) 0

(d) 3
Related to Compound/Multiple/Sub-Multiple Angle

❖ If tan α − tan β = p, cot β − cot α = q, α − β = θ, then what is the value of cot θ?

[KUET’12-13, BUTEX’15-16]

1 1
(a) −
p q

1 1
(b) −
q p

1 1
(c) +
p q

p
(d) 1 −
q
Related to Compound/Multiple/Sub-Multiple Angle

❖ If cos A + B sin(C + D) = cos(A − B) sin(C − D), then what is the value of tan D?

[KUET’15-16]

(a) tan A tan B tan C

(b) cot A cot B cot C

(c) sin A sin B sin C

(d) cos A cos B cos C

(e) sec A sec B sec C


Related to Compound/Multiple/Sub-Multiple Angle

❑ The angle  is divided into  and  in such a way that tan = k tan, prove that,
k−1
sin( α − β) = sin θ . [KUET’03-04]
k+1
Related to Compound/Multiple/Sub-Multiple Angle

❑ Prove that, tan 20° tan 40° tan 80° = 3 [BUET’04-05, BUTEX’11-12]
Related to Compound/Multiple/Sub-Multiple Angle

θ 1−p ϕ cos θ−p


❑ If tan = tan then show that, cos ϕ = [BUET’14-15]
2 1+p 2 1−p cos θ
Related to Compound/Multiple/Sub-Multiple Angle
θ
a cos ϕ−b tan
❖ If cos θ = then what is the value of 2
ϕ ? [KUET’13-14]
a−b cos ϕ tan
2

a+b sin ϕ
(a)
b−a sin ϕ

a+b cos ϕ
(b)
a−b sin ϕ

a+b
(c)
a−b

a+b
(d)
b

a+b 2
(e)
a−b
Related to Compound/Multiple/Sub-Multiple Angle

❖ If cos x + cos y = a and sin x + sin y = b then,


(i) cos x − y =? [CUET’14-15(similar)] (ii) sin x − y =? (iii) tan x − y =?
x−y x−y x−y
(iv) cos =? (v) sin =? [BUET’16-17] (vi) tan =?
2 2 2
Related to Compound/Multiple/Sub-Multiple Angle

❖ If cos x + cos y = a and sin x + sin y = b then,


x+y x+y x+y
(i) cos =? (ii) sin =? (iii) tan =?
2 2 2
(iv) cos x + y =? [BUET’19-20, CUET’14-15, KUET’10-11, 11-12]
(v) sin x + y =? (vi) tan x + y =?
Related to Compound/Multiple/Sub-Multiple Angle

❖ If sinx + siny = 1 and cosx + cosy = 0 then prove that, x + y = π.

[BUET’02-03, RUET’18-19]
Related to Compound/Multiple/Sub-Multiple Angle

❖ If sin A + cos A = sin B + cos B, then which of the following is correct? [BUTEX’14-15]


(a) A − B =
4


(b) A + B =
6


(c) A + B =
2


(d) A − B =
2
Related to Compound/Multiple/Sub-Multiple Angle

❑ Prove that, 4(sin 25° + cos 5°) = 3 3 sin 55°


3 3
[CUET’13-14]
Related to Compound/Multiple/Sub-Multiple Angle

3 3 o 3 o
❖ sin x + sin ( 120 + x) + sin ( 240 + x) =? [RUET’11-12]

(a) −3 sin 3x

1
(b) − sin 3x
4

3
(c) sin 3x
4

3
(d) − sin 3x
4

1
(e) − sin 3x
3
…… ……

π
❑ Prove that: 2 sin o ′
= 2 sin 11 15 = 2 − 2 + 2. [CUET’05-06, BUTEX’07-08]
16
…… ……


(i) 2 cos n = 2 + 2 + 2 + ⋯ n − 1 no. of 2s
2


(ii) 2 sin = 2 − 2 + 2 + ⋯ n − 1 no. of 2s
2n


❑ 2 sin =?
32


❑ 2 sin =?
64


❑ tan =?
64
Quiz–01
π
❑ sec =?
64
1
(a)
2+ 2+ 2+ 2

2
(b)
2+ 2+ 2+ 2

2
(c)
2+ 2+ 2

2
(d)
2− 2+ 2

(e) None
…… ……


(iii) 2 cos n = 2 + 2 + 2 + ⋯ n − 1 no. of 2s + 3
3⋅2


(iv) 2 sin = 2 − 2 + 2 + ⋯ n − 1 no. of 2s + 3
3⋅2n


❑ 2 cos =?
96

❑ 2 sin =?
48
Related to Trigonometric Expressions
π
❖ If A + B + C = 2n + 1 for n ∈ ℤ then value of tan A tan B + tan B tan C +
2

tan C tan A is- [CUET’15-16, IUT’19-20]

3 1
(a) (b) 1 (c) (d) 3
2 3
Related to Trigonometric Expressions

❑ ABC is an obtuse triangle. Prove that, cot A cot B + cot B cot C + cot C cot A = 1.

[BUET’05-06, RUET’12-13]
Related to Trigonometric Expressions

❑ If A + B + C = π then show that, cos A + cos B + cos C + 2 cos A . cos B . cos C = 1


2 2 2
Related to Trigonometric Expressions
π
❖ In PQR triangle ∠R = , if the roots of the equation ax + bx + c = 0 a ≠ 0 are
2
2

p Q
tan and tan then, [1999, 2M]
2 2

(a) a + b = c

(b) b + c = a

(c) a + c = b

(d) b = c
Related to Properties of Triangle

a b c
❑ Sine Rule: = = = 2R; [R Radius of the Circumcircle]
sinA sin B sin c

2 2
b +c −a 2 2 2
c +a −b2 2 2
a +b −c 2
❑ Cosine Rule: cos A = ; cos B = ; cos C =
2bc 2ca 2ab

1 1 1
❑ ∆= ab sin C = bc sin A = ca sin B = s s − a s − b s − c where half of the
2 2 2

a+b+c abc
perimeter, s = ; ∆= sr [r= radius of the inner circle]; ∆=
2 4R
Related to Properties of Triangle
 a = b cos C + c cos B Tangent Rule:
 b = c cos A + a cos C  tan
A−B
=
a−b
cot
C
2 a+b 2
 c = a cos B + b cos A
B−C b−c A
 tan = cot
2 b+c 2
C−A c−a B
 tan = cot
2 c+a 2

A s−b s−c B s−c s−a C s−a s−b


 sin =  sin =  sin =
2 bc 2 ca 2 ab

A s s−a B s s−b C s s−c


 cos =  cos =  cos =
2 bc 2 ca 2 ab

A s−b s−c B s−c s−a C s−a s−b


 tan =  tan =  tan =
2 s s−a 2 s s−b 2 s s−c
Related to Properties of Triangle

❑ The sides of a triangle are of length 3,5,7. Determine largest angle, area, inner
circle radius, circumcircle radius and the nature of the triangle.
Related to Properties of Triangle

❑ Say, in-center of triangle ABC is I and radius of the inner circle is r. Again, let D,E,F
are the foot of the perpendicular line drawn to BC, CA and AB. If r1 , r2 , r3 are the
radius of the inner circle of AFIE, BDIF, CEID quadrilaterals respectively. Prove that,
r1 r2 r3 r1 r2 r3
+ + = . [2000, 3M]
r−r1 r−r2 r−r3 r−r1 r−r2 r−r3
Related to Properties of Triangle

❖ Sum of the two sides of a triangle is x and product is y. If x − c = y, where c is


2 2

the third side of that triangle, then determine the ratio of radius of inner circle and
circumcircle. [2014 Adv]

3y
(a)
2x x+c

3y
(b)
2c x+c

3y
(c)
4x x+c

3y
(d)
4c x+c
Related to Properties of Triangle

❖ If the sides of a triangle are 2x + 3, x + 3x + 3 and x + 2x, then the greatest


2 2

angle is: [BUET’11-12, IUT’14-15]

(a) 90 o

(b) 120 o

(c) 60o

(d) 180 o
Related to Properties of Triangle
b+c c+a a+b
❑ If in ∆ABC, = = then determine the value of A, B, C.
11 12 13
Related to Properties of Triangle
❑ If the length of the sides of a triangle are three consecutive numbers and maximum
angle is twice the minimum angle, determine the length of the sides of that
triangle. [1991, 4M]
Related to Properties of Triangle

❑ The length of two corresponding sides of a quadrilateral of area 4 3 square unit


inscribed in a circle are 2 and 5 unit and angle between those sides is 60°.
Determine the length of the other two sides.
Quiz–02

❖ In the triangle ABC, AB = 5 cm, BC = 6 cm and area of triangle is 11.25 cm .


2

What is the value of angle ABC? [IUT’19-20]

4
(a) sin−1
5

3
(b) sin −1
5

−1 3
(c) sin
4

−1 2
(d) sin
5
Related to Properties of Triangle

❖ What is perimeter of ∆ABC? [IUT’17-18]

(a) 48

(b) 48 + 12 2

(c) 60 + 6 3

(d) 48 + 12 3
Related to Properties of Triangle

❑ Length of the sides of a triangle are 9, 40 and 41. What is the radius of the
circumcircle of the triangle? [BUET’13-14]

(a) 24.5

(b) 30.0

(c) 20.5

(d) 25.0
Related to Properties of Triangle

❑ If in ∆ABC, A ∶ B ∶ C = 1 ∶ 2 ∶ 3, then a ∶ b ∶ c =?
Related to Properties of Triangle

❑ If a = 2b and A = 3B, then determine the angles of the triangle.


[IUT’18-19, BUET’03-04]
Related to Properties of Triangle

❖ If the adjacent angles of a side of length 3 + 1 cm of a triangle are 30° and 45° .

What is the area of the triangle? [CUET’11-12]

1
(a)
2 2

(b) 2

1
(c) 3+1
2

(d) None of these


Related to Properties of Triangle

❑ If in ABC cos A = sin B − cos C then show that, the triangle is a right triangle.

[KUET’13-14, BUET’04-05, 05-06]


Related to Properties of Triangle

❑ If the angles associated with the base of a triangle are of 22.5° and 112.5° and
height is h, then determine the length of the base. [RUET’14-15]
Related to Properties of Triangle

❑ If the median passing through the point A in ΔABC is perpendicular to AB then


prove that, tan A + 2 tan B = 0
C

A B
Related to Properties of Triangle

A A
❑ In triangle ABC prove that, a sin + B = (b + c) sin [RUET’07-08]
2 2
Related to Properties of Triangle

❖ If the area of the triangle PQR is ∆ where the opposite sides of P, Q, R are
7 5 2 sin P−sin 2P
a, b, c respectively a = 2, b = ,c = . Then the value of is-
2 2 2 sin P+sin 2P

[JEE Main 2012]

3
(a)
4∆

45
(b)
4∆

3 2
(c)
4∆

45 5
(d)
4∆
Related to Properties of Triangle

❑ If length of two corresponding sides of a triangle are 3 + 1, 3 − 1 and angle


between them is 60° then solve the triangle. [BUET’02-03]
Related to Properties of Triangle

❑ In a triangle ABC, C = 60° and A = 75°. D is a point on AC such that the area of
∆ABD is 3 times the area of ∆BCD. Determine the value of ∠ABD.
Related to Properties of Triangle

❖ For triangle ABC a + b + c = 2c (a + b ), the value of cosC will be-


4 4 4 2 2 2

[CUET’14-15]

1
(a)
2

1
(b) ±
2

3
(c) ±
2

(d) None of these


Related to Properties of Triangle

1 2
2 A 1 2B 1 2C s
❑ For a triangle ABC show that, cos + cos + cos =
a 2 b 2 c 2 abc

[RUET’03-04, BUET’00-01]
Related to Progression

sin A sin(A−B)
❑ In ∆ABC, if = then show that, a , b , c are in arithmetic progression.
2 2 2
sin C sin(B−C)
Related to Progression

❑ If in ABC the angles A, B, C are in arithmetic progression and the sides a, b, c are in
geometric progression, then prove that, a , b , c are in arithmetic progression.
2 2 2
Miscellaneous

❑ Two circle lies on two sides of the diagonal BD (as shown in the figure) of ABCD
rectangular field with an area of 12 × 5 square unit. Ali stands at OA and Boni at
OB . What is the distance between them? [BUET’15-16 (similar)]

B C
OB
OA

A D

You might also like