A S R
+
Vs - L
𝑑𝑖
𝑉𝑠 = 𝑖𝑅 + 𝐿
𝑑𝑡
𝑑𝑖
0 = 𝑖𝑅 + 𝐿
𝑑𝑡
=− i
Root S=−
𝑖 (𝑡) = 𝐴𝑒
𝑖 (𝑡) = 𝐴𝑒
𝑉𝑠
𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑎𝑐𝑡𝑠 𝑎𝑠 𝑠ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑡 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑖 (𝑡) =
𝑅
𝑖 (𝑡) = 𝑖 (𝑡) + 𝑖 (𝑡)
𝑉𝑠
𝑖 (𝑡) = + 𝐴𝑒
𝑅
Calculating Value of constant “A” by using initial condition at t=0 sec
×
𝑖(0) = + 𝐴𝑒 =0 𝐴=−
𝑖(𝑡) = 1−𝑒 1
Voltage across Inductor 𝑉
𝑑𝑖
𝑉 =𝐿
𝑑𝑡
𝑉 = 𝑉𝑠𝑒
Initial current at t=0 is 10A then
𝑉𝑠 −𝑅×0
𝑖(0) = + 𝐴𝑒 𝐿 = 10
𝑅
𝑉𝑠
𝑖(0) = + 𝐴 = 10
𝑅
𝑉𝑠
𝐴 = 10 −
𝑅
𝑉𝑠
𝑖(𝑡) = 1−𝑒 + 10𝑒
𝑅
Voltage across Inductor 𝑉
𝑑𝑖
𝑉 =𝐿
𝑑𝑡
10𝐿
𝑉 = 𝑉𝑒 + 𝑒
𝑅
In input is Sinusoidal wave input applied voltage Vrms = Vs then
𝑉𝑠
𝑖(𝑡) = < −𝜃
𝑅 + (𝜔𝐿)
√2 × 𝑉𝑠𝑥𝑠𝑖𝑛(𝜔𝑡 − 𝜃)
=
𝑅 + (𝜔𝐿)
√2 × 𝑉𝑠𝑥𝑠𝑖𝑛(𝜔𝑡 − 𝜃) 𝑅
− 𝑡
+ 𝐴𝑒 𝐿 = 0
𝑅 + (𝜔𝐿)
√2 × 𝑉𝑠𝑥𝑠𝑖𝑛(−𝜃)
− =𝐴
𝑅 + (𝜔𝐿)
√2 × 𝑉𝑠𝑥𝑠𝑖𝑛(𝜔𝑡 − 𝜃) √2 × 𝑉𝑠𝑥𝑠𝑖𝑛(−𝜃)
𝑖 (𝑡) = − 𝑒
𝑅 + (𝜔𝐿) 𝑅 + (𝜔𝐿)
A S R
B
+
Vs L
-
𝑑𝑖
0 = 𝑖𝑅 + 𝐿
𝑑𝑡
=− i
S=−
𝑖(𝑡) = 𝐴𝑒
𝑖(𝑡) =0
𝑖(𝑡) = 𝐴𝑒
𝑉𝑠 ×
𝑖(0) = = 𝐴𝑒
𝑅
𝑉𝑠
𝑖(0) = =𝐴
𝑅
𝑉𝑠
𝑖(𝑡) = 𝑒
𝑅
𝑑𝑖
𝑉 =𝐿
𝑑𝑡
𝑉 = −𝑉𝑠𝑒
RC Circuits
A S R
+ B
Vs - C
Switch A is closed
𝑉𝑠 = 𝑖𝑅 + ∫ ∝ 𝑖𝑑𝑡 always add initial value ∫ ∝ 𝑖𝑑𝑡 of voltage in integrator
1 1
𝑉𝑠 = 𝑖𝑅 + 𝑖𝑑𝑡 + 𝑖𝑑𝑡
𝐶 ∝ 𝐶
𝑉𝑐(𝑡 = 0) = ∫ ∝ 𝑖𝑑𝑡 = 0V
1
𝑉𝑠 = 𝑖𝑅 + 𝑖𝑑𝑡
𝐶
By taking derivative at both sides to make it differential Equation
𝑑𝑖
0 = 𝑖/𝐶 + 𝑅
𝑑𝑡
=− i
Root S =−
𝑖(𝑡) = 𝐴𝑒
Initial current at t=0 is 𝑉𝑠/𝑅 then
𝑖(𝑡) (𝑡 = 0) = 𝐴𝑒 = 𝑉𝑠/𝑅
𝑖(𝑡) =0
𝑖(𝑡) = 𝑒
Voltage across Inductor 𝑉 (𝑡)
𝑉𝑐(𝑡) = ∫ 𝑖𝑑𝑡 = Vs(1-𝑒 )
A S R
Vs=0 B C
Switch is connected with point B
1
0 = 𝑖𝑅 + 𝑖𝑑𝑡
𝐶 ∝
1 1
0 = 𝑖𝑅 + 𝑖𝑑𝑡 + 𝑖𝑑𝑡
𝐶 ∝ 𝐶
𝑉𝑐(𝑡 = 0) = ∫ ∝
𝑖𝑑𝑡 = Vs
0 = 𝑖𝑅 + 𝑉𝑠 + ∫ 𝑖𝑑𝑡
By taking derivative at both sides to make it differential Equation
𝑑𝑖
0 = 𝑖/𝐶 + 𝑅
𝑑𝑡
=− i
S=−
𝑖(𝑡) = 𝐴𝑒
𝑖(𝑡) =0
Initial current at t=0 is −𝑉𝑠/𝑅 then
𝑖(𝑡) (𝑡 = 0) = 𝐴𝑒 = −𝑉𝑠/𝑅
𝑉𝑠
𝑖(𝑡) = − 𝑒
𝑅
1 0 1 𝑡
𝑉𝑐 (𝑡) = 𝑖𝑑𝑡 + 𝑖𝑑𝑡
𝐶 −∝ 𝐶 0
1 𝑡
𝑉𝑐 = 𝑉𝑠 + ∫0 𝑖𝑑𝑡 = -Vs(1-𝑒 )+Vs
𝐶
= 𝑉𝑠 𝑒
A S L
+ B
Vs - C
𝑖
0 = 𝐿𝑑 /𝑑𝑡 +
𝐶
𝑆 = −1/𝐿𝐶
𝑆1,2 = ± 𝑗/𝐿𝐶
𝑖 (𝑡) = 𝐴𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡
I(0) = 𝐴𝑐𝑜𝑠𝜔0 + 𝐵𝑠𝑖𝑛𝜔0 = 0
A=0
𝑖 (𝑡) = 𝐵𝑠𝑖𝑛𝜔𝑡
𝑑 𝑑 (𝐵𝑠𝑖𝑛𝜔𝑡 )
𝑖 (𝑡) = = 𝜔𝐵𝑐𝑜𝑠𝜔𝑡
𝑑𝑡 𝑑𝑡
𝑉𝑠
𝜔𝐵𝑐𝑜𝑠𝜔0 =
𝐿
𝑉𝑠
𝐵=
𝐿𝜔
𝑉𝑠
𝑖 (𝑡) = 𝑠𝑖𝑛𝜔𝑡
𝐿𝜔
1 𝑉𝑠
𝑉𝑐 (𝑡) = 𝑠𝑖𝑛𝜔𝑡 + 𝑉𝑐 (𝑡 = 0)
𝐶 𝐿𝜔
1 𝑉𝑠
𝑉𝑐 (𝑡) = 𝑠𝑖𝑛𝜔𝑡 + 𝑉𝑐 (𝑡 = 0)
𝐶 𝐿𝜔
𝑉𝑠 1
𝑉𝑐 (𝑡) = |−𝑐𝑜𝑠𝜔𝑡| 0 𝑡𝑜 𝑡
𝐿𝜔 𝜔𝐶
Current passing through inductor
Vs ,L
1
𝑖 (𝑡) = 𝑉𝑠 𝑑𝑡 + 𝐼(𝑡 = 0)
𝐿
𝑉𝑠
𝑖 (𝑡) = 𝑡
𝐿
Inductor is short circuited
𝑖 (𝑡) = ∫ 0 𝑑𝑡 + 𝐼(𝑡 = 0)=10A
𝑉 (𝑡) = 𝐿 =𝐿 = -α
Equations for defining RC and L
V = IR, V𝜶𝑰
Vs, C
Ic = cdv/dt, Ic 𝜶 dv/dt
Vs, L
VL = L di/dt, VL 𝜶 di/dt