Function
Function
6
  Functions
                                                                                       buprly
                                                                                                            Quantity
                                                                                               Economics
                                                                                              economics lo analyze and model
                                                                       Functions are tIsed in
                                                                                                   such as supply and demand
                                                                       various economic phenomena,      utility functions, and
                                                                       production and cost functions,
                                                                       optimization problems.
                                                         Chapter Outline
                                                                           Algebra of functions
                                                                 6.2
i6.1           Function
Quick Review
                                                                                Inverse of a function:
                                               Xto set Y, if                                              onto function, then
                f: X’ Y’fisa function from set                                  If f: X ’ Y be a one-one,
               to cach clementxeX,a unique element
                                                     yE Y.
                                                                                the mapping f : Y ’ X    such that f ) =x,
                                                                                                               of the function
               Domain and Range:                                                xe X, ye Y is called inverse
                                                     which fx)
               Domain: All possible values of x for
                                                                                f:X’ Y.
                                                                                                             Numerical
               exists.
                                                  for all values                Modulus or Absolute value or
   ii.         Range: Allpossible values of f(r),                               function:
               of x.                                                                =x, ifx >0
               i.e., R= ly e Y:y= f(x)}                                             =-X, ifx <0
   iii.        Rc Co-domain                                                         =0,     ifx =0
               One-One function or Injection:                                   For f: R’R, D;= R, Rç= RU{0}
                                               (injective) iff
                 Afunction f: X ’ Y is one-one                                  Signum function:
   i.           x*y’fx) +f(y)
   i.          f(x) =fy) ’x*y                                                   sign (r) = H ifr 0
                                                                                          =0    ifx=0
               Onto function or Surjection:
                                          (surjective) iff                      Or, sign (r) =1 ifx >0
               A function f: X ’Y is onto
               Range of f= Co-domain of f.                                                      =-1 ifx <0
                                                                                                =0 ifx =0
                Into Function:
                                                 function, if there              For f: R ’R, D;=R
                  Afunction f: X Y is an into
                                                  pre-image in X.                R(={-1, 0, 1}
                exists an element in Y having no
                                                                                                               or step
                Many-One function:                                               The Greatest Integer function
                                                    x, y e X                     function or floor function:
                f: X ’ Y is a many-one function, if                                xeRLet [x]denotes the greatest Integer in x.
                such thatx#y, but f(x) = fy)
                                                                                 [x]=x when xe I
                Bijective function:                                       ii.    [x]=0 when 0<x<|
                  function both injective and surjective is called
                  A                                                       ii.     x]<x when x I
                bijectíve function.
         118
x=kvhen  ksx<k+
x]Sx<x] +1
                             1, ifk el
                                                          ii:        (f- gx) = f(r) - g(x)
                                                          iii.       (f g)) =f(x)ga)
Even and Odd Function:
 Even function: If f(-)= f(x)                             iv.        (f/g) (r) = f(«) gr) +0
                                                                                       gx)
Odd function: If              Vxe domain
                 f-)=- xe domain
                          f()                              V.        (kf)(x) = kf(r), k e R
Periodic function:                                         A         Some spccial functions:
A function f(x) is                                                                                       = kr, keR
                                                                     If f(x +y)= f() + f), then f(x)
fx+ T) = f() xesaiddomain.
                        to be periodic
                                       function if                   If f(xy) = f(r) + fy), then f(x) = log x
                               Here the
value ofT is called the period of the least +ve
                                                           i.
                                                                                                                        2T
 where, o(A) = m, o(B) = n and m 2n is
  n
 r=l
                                                                             1+cosx                                 2T
                                 finite set A                     Vcosx ,
 The number of bijections from a                                                   2
                      1                    f(r) 0
                    f(r)                                                                                                          119
MHT-CET Triumph Maths (MCQS)
                                                  Classical Thinking
                                                                                                     g(-4) and g'
 6.1 Function                                                8.     Using the graph ofy= g), find
1.    Let A={1, 2, 3} and                                                       (-lt
      B= (2, 3, 4}, then which of the following is a
     function from A to B?
     (A) (1. 2). (1, 3), (2, 3), (3, 3)}
     (B) ((0, 3), (2, 4)}                                           -6-5
      (C)    {(1, 3), (2, 3), (3, 3)}
      (D) ((1,2), (2, 3), (3, 4), (3, 2)}
                                      N is defined by
2.     If the function f: N                                             -6,4)                    (3,-5)
                            f(25)   is equal to
      f(r) =x, then      f(16)+ f()
                                             5                     (A) 0,-6                 (B) 0, -5
                5
      (A)                          (B)       7                     (C) -6, 0                (D) -5, 0
                6
                                                                                                for which f(r) =4
                5                  (D)       1              9.     From the graph below, find x
      (C)       3
                                         =x-3x +2
3.    If afunction f(r) is given as f(x)                                                     4y= f(r)
      for all x eR, then f(-1)=
     (A) 6                      (B) 0                                                         y=4
                               (D) 8
     (C) 2
4.   Let f: R’R be defined by
            (2x ;       x>3
     .fr)=x; l<1<3.
                                                                                                        X
            |3x ;       xs1
                                                                  (A) 3 and -1               (B) 4 and 0
     Then f(-1) + f(2) + f(4) is                                                             (D) 0and -1
                                   (B) 14                         (C) 3 and 0
     (A) 9                         (D) 10                  10.                         f(1) = 11, then a =
                                                                   If f(x)= ax + 6 and 17
     (C)    5                                                                                (C) 11        (D) 5
                                                                  (A) 6         (B)
                                 as f(r) =x- 3x + 2
5.    If afunction f(r) is given                                                      1) - f[a - 1) =
     for allx e R, then f(a + h)=                           11. Iff()= 4xx, then f(a+
                                                                                    (B)    2(4-a)
                                +2 +h                           (A) 4(2 - a)
     (A) a+ (2a +3)h- 3a                                          (C)    4(2+a)              (D) 2(4 + a)
                              +h
     (B) a + (2a-3)h + 3a + 2                                                                       period T, then
                              +h                                  If f(r) is periodic function with> 0, is periodic
     (C) a+ (2a - 3)h- 3a +2
                                                           12.
                              +h                                  the function f(ar + b) where a
     (D) a+ (2a +3)h + 3a + 2                                     with period
                                                                  (A) Tb                     (B) aT
                                                                                             (D)  T/a
6.   If f(r) = x'+-,x*0then
                    X
                                                                  (C) bT
                                                           13.    Let f = {(1, 1), (2, 4), (0, -2), (-1, -5)} be a
                                (B)          +                    linear function from Z into Z. Then,
                                                                                                       fx) is
     (A)            *                    X
                                              injective
                                                      may
                                                  injective
                                                      them
                                                                         =
                                                                         fx)
                                                                             2
                                                                                                        then                 E
                                                                                                                             x
                                                                                                                                    then (C) ,
                                                                                                                                    k=
                                                                                                                                                cos[-
                                                                                                                                                                          2,
                                                                                                                                                                       function
                                                                                                                                                                          =
                                                                                                                                                                       line
                                                                                                                                                                             x
                                                                                                                                                                                            *0,
                                                                                                                                                                                                  and
                                                                                                                                                                                                    one
                                                                                                                                                                                                         S
                                                                                                                                                                                                         then two
                                                                                                                                                                               f(2-x)-2) 3k,x f(-)};twothan
     then
            (B)                         thenshould
                                    functions  be be
                                                should
                                         surjective,fshould
                                                       of injective
                                                                         function
                                                                               =  -y)2f(x).fiy)
                                                                                      (A)
                                                                                                                               10-x.
                                                                                                                            10+x
                                                                                                                                          0.6
                                                                                                                                                + ]x
                                                                                                                                                cos[r'
                                                                                                                                                      ()-2          thethe=-f-) f(r 2 -
                                                                                                                                                                       about        f(x)=f-x)
                                                                                                                                                                                    (C)          =
                                                                                                                                                                                                 f)
                                                                                                                                                                                                    exactly
                                                                                                                                                                                                        exactly
                                                                                                                                                                                                           moreset
                    3x+4                     f                                                                                     200x (B)                    (C) of
                                                                                                                                                               =|
                                                                                                                                                               f(r)             = =                            empty
                            -41
                             (A)             gand       None                      f(x                    log                                                                    +x)     2)          Contains
                                                                                                                                                                                                        Contains
                                                                                                                                                                                                           Contains
     Iff)= 0         11. -x
                     =
                     Iff(r)      (C) two                                     the + f(x) f()              = [f(A)2f(:)
                                                                                                                ()                                                  graphsymmetrical
                                                                                                                                                                            f()         +        R:
            (A)                      for
                                                 g
                                                                             Given+y)                    {)           )If                 0.5 =
                                                                                                                                              Iff)                              f(2     f(r   +
                                                                                                                                                                                              f) xe            an
                                     If and(A)(B)(C) (D)                          f(x (C)                 IF                                      (A)                      .(A)                                Is
                                                                    Thinking
                                                                    Critical                                                              (A)                          The      (B) (D) If S=(A)(B) (C) (D)
     0.                                  12.                                                                                                    10.                    11.                         12.
                                                                             7.                             8.                9.
    is                                                                                                                                                           -1!
   ()            by                                                               real                           for     (D)3 where
                                                                                                                           identity
                                                                                                  1
   (fo) +2r'+2
           these given
                             (+1)
                             -(D)                                                 all
                                                                                                  (D)            x                     -1c=
                                                                                                                                       b=4, 1c=
                                                                                                                                             b=-1,                      =!-s,                                         0
                                                                                                                            thesatisfied,
                                                                                  for                            of                                              (D)                                                  (D)
                of be (r) -1                                                                                                                                                              -b')
                                                                                                                                                                                          2(a
                                                                                                                                                                                       3(2b-3a)
                none (fog)(B)
   of                                                                             f(y)                           value
                                                       1+x
   value
(MCQs)              R                                                                    then:                   the 1
                                                                                                                             which                       -3                                        a+b                -2
                (D) ’
                       then                                (D)                    =                     2
                                                                                                                                is                                                            6
   the (B)          R =x+1,                          (B)                          f(y) 4,         (C)            then (C) for 3 (B) (D)                  (C)             b+              (B) (D)              = (C)
                                                                                                                                                                                                              fiy)]
Mathsthen           g:                    fthen                                    fr) =
                                                                                         f(2)
                                                                                                                                 +
                                                                                                                 3, is 1/3 c 8r are
                                                                                                                                                   that                   afy)    =                      then
                    and                                                            satisfy                       + 1)        and                    such                          (2)                         + ;
    1,        +'+1 g(r)
                 ’R               ,                                                       If      (B)   4
                                                                                                                  2x f(r+(B)
                                                                                                                                 =
                                                                                                                                 f() d, =4    cb=-1,=xt, 3(B)             x,non-zerofthen -b')           x), -iy)
    +
Triumph                                                                             y.                                       b       cx+1                                                  2(a'
                                                                                                                                                                                              3(3a-b')
                                                                                                                                                                                              -2b)2(a' cos(log  -1
                                                                                                                                                                                                                (B)
                                                                                                                                                                                                                (A)
           +1        and+1 (-I)
                              (C) -                                               R’R
                                                                                    and                           -
                                                                                                                     =       of       bx+ c=                                      b,
                                                                                                                                                                                       3a)
                                                                                                                                                                                       3(2b
                                                                                                                                                                                       +
    f)
    If=                           1
                                  =                                                                                          value-        2,          x
                                                                                                                  = f(r)1/2
                                                                                           xnumbers0                                       b=
                                                                                                                                                                                                         f)fã)
                 R =x                                                     6.1
                                                                          Function                                               1)                                                                      =
        to
        equal
MHT-CET (A)(C) f:Let f(r) (A)
                                  Iffo)                                           f:               (A)            fx)which                          (r)   1(A)            fIfor   a
                                                                                                                                                                                  where                       f{%)
                                        (A)                                       Let                             If     (A) The+     =
                                                                                                                                  f(x f(x)(A)(C) Iff                                      (A) (C) If
     7.             8.                    9.                                       1.                             2.         3.                       4.                     5.
                                                                                                                                                                                                         6.
                                                                                                   Chapter 6: Functions
  13.     If [x] denotes the greatest integer < , then                                                          then fis
                                                                22.         Iff:(0, o) ’ [0, o) andf ) =
                                                                        (A) One-onc and onto
                                                                            One-onc but not onto
         (A) 99                       (B)   98                          (B)  Ontobut not one-one
         (C) 66                       (D)   65                          (C)
                                                                                    onc-one nor onto
                                                                        (D) Neither
 14.     Let fbe a real valued function, satisfying                                                defined by
         f(r+y) = f() fo) for all x, ye R                       23.     If f: R - (3} ’ R - {1} be
                                                                                x-2
         Such that, f(1)= a. Then, f(¢) =                               f(x)= x-3
                                                                                       then fis
         (A)     a                 (B)      ax
                                                                                one-one into       (B)     one-one onto
         (C)                       (D)    log x                        (A)                         (D)   many-one onto
                                                                       (C) many-one into
 15.     Consider the function f(x) = cos x. Then                                                       numbers, then the
          (A) fis of period 2                                  24.     If R denotes the set of all real
         (B) fis of period 2n                                          function f: R’R defined by f(r) =(x] is
                                                                       (A)      One-one only
         (C) fis not periodic                                                   Onto only
         (D) fis of periodic n                                         (B)
                                                                       (C)      Both one-one and onto
 16.     Which of the following is an even function?                   (D)      Neither one-one nor onto
         (A) *                    (B) x+ sin x                                                    defined as
                                                               25.     Mapping f: R ’ R which is
         (C) sin x                (D) all of above                     f(x) = cos x, x e R willbe
                                                                               Neither one-one nor onto
 17.     Which of the following functions is an odd                    (A)
         function?                                                     (B)     One-one
                                                                       (C)     Onto
         (A) f() = V+x+*- I-x+*                                                One-one onto
                                                                       (D)
                                                                                                                 number
         (B)                                                   26.    A is a set having 6 distinct elements. The
                                                                      of distinct functions from A to A which are not
                                                                      bijection is
         (C) f() = log10                                                                          (B)     6-6
                                                                      (A) 6!-6
        (D) f(x) =k(constant)                                         (C) 6-6!                    (D)     6!
      (A)
                                                                                    |0, x= 0
                                                                         (A)        x, x>0            (B)
      (B)          +/+4log, 1)                                                      |-r,x<0
      (C)         -l+ 4log, x)                                           (C)
                                                                                   0, xs0
                                                                                                      (D)       none of these
      (D)    Not defined
                                                                  9       If f be the greatest integer function      and gbe the
2.    The inverse of the function f(x) = e-e           + 2 is
                                            e+e                         modulus function, then (gof)
                                                                        (A)     1                    (B)     -1
       (A) loge                                                                                      (D)     4
                                                                        (C)     2
      () log.       2-x
                                   (D)    loge                   10.    If f(x) = sin x +
                 2x-1
                          (x+5), then f() is equal to                   f(f({(2) is
5.    If f() =   x+5                                                   (A) 1                       (B)      2
             x+5                          5x+1                         (C) 3                       (D)      4
      (A)    2x-1,                 (B)    2-x
             5x-1                         X-5          1        13.     Iffr) l-x then f[f(cos 20)] =
                                                                              1+x
      (C)           -,X*2          (D)    2x+1*
             2-x                                                       (A)     tan 20             (B)       sec 20
                                                                       (C)     COs 20             (D)       cot 20
                                         10*-10 is
      The inverse of the
6.
                        functiono-g010-%                        14.    If f(r) = (25 - x         for 0 < x < 5, then
                                       1+x
      (A)   logio(2 -x)       (B) 10gio-x
                                   2
                                                 2x
      (C) log,(2x -1)              (D)                                 (A) 2-4                    (B) 23
                                                 2-x                   (C) 22                     (D) 2l
7.    f:R’ R and g: [0, o) ’              Ris defined by        15.    If f(x) =        , X*-1, then for what value of a
      f(x) =x and g () = Vx. Which one of the
      following is not true?                                           is f(f(r)) x
      (A) fog(-4) =4              (B)    gof(-2) =2                    (A)     V2                 (B)       -2
      (C) gof(4) = 4              (D)    fog(2) =2                     (C)     1                  (D)       -1
                                                                                                            -
126
                                                                                          uOMfi Chapter 6: Functions
      16.    If f(r) =ar + b and g(x) = cx + d, then                    21.   Let fr)=x and g() - sin xfor allx e R. Then
            flg(r)) = g(f)) is cquivalent to                                  the set of all x satisfying
             (A) (¢) =g(a)                                                    (fogogo) (r) = (gogof) (x), where
            (B) f(d) = g(b)                                                   (fog) (*) = f(g(x)) is
            (C) f(a) = g(c)                                                   (A) t /nn,ne {0, 1, 2, ...}
            (D) f(b) = g(b)                                                   (B)    Vnn,ne {1, 2, ...}
      17.    If f(r) = 2x + 1 and g(x) =              for all real x,          (C)+2
                                                                                      2nn , n e {.., -2, -1, 0, 1, 2, ...}
                                                                              (D)    2nT, n e {.., -2, -1, 0, 1, 2, ..}
            then (fog)"            is equal to
                                                                        22.   Let f, g:R ’       R be two functions defined as
                                                  1                           f(r) =|x| +x and g) =            -xtxe R. Then
             (A) x                          (B)
                                                                               (fog) (r) for x<0 is
                                                                        00 (A) 0                         (B) 4x
             (C)   -x                       (D)                               (C) -4x                    (D) 2x
                                                             Concept Fusion
                                                                        2.     Let the function f:R ’ R be defined by
       1.    The range of the function f(x) = tan,-x                           f(x) =2x+ sinx, xeR. Then fis
             is                                                               (A) One-to-one and onto
                                            (B)                               (B) One-to-one but not onto
              (A) [0, 3]                                                      (C) Onto but not one-to-one
              (C) [3.]                      (0)       V53]                    (D) Neither one-to-one nor onto
                                                                                                                                127
              Triumph Maths (MCQs)
                                         MHT-CET Preious Years' Questions
1.
      If f: R -                                                                             xe
       f()    -4
                {2} >R ’      is a function defined by                 11. If|3r - 2|s.then
                                                                                       2
                                                                                                                                        (2020%
                 . then its                    |2018|
                            range is                                             (A)
                                                                                                                (B)
      (A)     R
      (C) R- (4}                    (B) R- (2}
                                    (D) R--2, 2}                                 (C)                            (D)
2.
        Which of the following is an even function?
                                                  [2019]              12.        If f: R ’R is given by f(x) = 7x + 8 an
      (A) f()=3cosx+4 (B) fo) = 2sin x+3                                     f(12) = , then the value of kis
                                                                                        k
      (C) f() =x+x               (D) fr) = sin
                                                                                                              (B)          7
                                                                                                                                        [2020)
3.    The                                                                        (A) 1
                  domain           of           the      function                                             (D)          8
       f(r) = sin x+ 16-r is                                                     (C) 4
                                                            [2019]               If a function f :          R ’ Riis               defined
      (A) -4,0) w   (0, ] (B)                   (4, 4)
                                                                     13.
      (C)     4, -]U[0, ] (D)                   [4, a]                           f() =5 +3, then f)=                                    [20201
4.    If f()= 3x-2 and g(x) =x, then fog(<) =                                           S(*-3)                (B)           4(x +3)
                                                                             (A)                                               5
                                                            [2019]
      (A)     3x-2                  (B)         2-3x2                                   4(x-3)                             5(x+3)
      (C)     3x2                                                            (C)                             (D)
                                    (D)         3x+2                                         5
                                                                                                                               4
130
                                                                                                       Chapter 6: Functions
62:      1. (B)    2. (B)   3.. (C)     4. (D)    5. (B)      6. (B)   7.(A)       2. (3)    2A)        16. (5)
        11. (B)   12. (C)   13. (C)    14. (D)    15. (D)    16. (9)   17. (B)    18.(9)     19.(B)     20. (A)
       21. (A)    22. (C)   23. (B)    24.(C)    25. (B)     26. (C)
Concept Fusion
1. (B) 2. (A)