Cancers 13 00068
Cancers 13 00068
Review
Aging of Bone Marrow Mesenchymal Stromal Cells:
Hematopoiesis Disturbances and Potential Role in the
Development of Hematologic Cancers
Fulvio Massaro 1,2,† , Florent Corrillon 3, *,† , Basile Stamatopoulos 3 , Nathalie Meuleman 2 , Laurence Lagneaux 3
and Dominique Bron 2
1 PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia,
41121 Modena, Italy; fulvio.massaro@bordet.be
2 Department of Hematology, Jules Bordet Institute (ULB), 1000 Brussels, Belgium;
nathalie.meuleman@bordet.be (N.M.); dominique.bron@bordet.be (D.B.)
3 Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute,
Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; basile.stamatopoulos@ulb.ac.be (B.S.);
laurence.lagneaux@bordet.be (L.L.)
* Correspondence: florent.corrillon@bordet.be
† These authors contributed equally to this work.
Simple Summary: As for many other cancers, the risk of developing hematologic malignancies
increases considerably as people age. In recent years, a growing number of studies have highlighted
the influence of the aging microenvironment on hematopoiesis and tumor progression. Mesenchymal
stromal cells are a major player in intercellular communication inside the bone marrow microenvi-
ronment involved in hematopoiesis support. With aging, their functions may be altered, leading to
hematopoiesis disturbances which can lead to hematologic cancers. A good understanding of the
mechanisms involved in mesenchymal stem cell aging and the consequences on hematopoiesis and
tumor progression is therefore necessary for a better comprehension of hematologic malignancies
Citation: Massaro, F.; Corrillon, F.; and for the development of therapeutic approaches.
Stamatopoulos, B.; Meuleman, N.;
Lagneaux, L.; Bron, D. Aging of Bone Abstract: Aging of bone marrow is a complex process that is involved in the development of many
Marrow Mesenchymal Stromal Cells: diseases, including hematologic cancers. The results obtained in this field of research, year after
Hematopoiesis Disturbances and
year, underline the important role of cross-talk between hematopoietic stem cells and their close
Potential Role in the Development of
environment. In bone marrow, mesenchymal stromal cells (MSCs) are a major player in cell-to-cell
Hematologic Cancers. Cancers 2021,
communication, presenting a wide range of functionalities, sometimes opposite, depending on the
13, 68. https://doi.org/10.3390/
environmental conditions. Although these cells are actively studied for their therapeutic properties,
cancers13010068
their role in tumor progression remains unclear. One of the reasons for this is that the aging of
Received: 16 November 2020 MSCs has a direct impact on their behavior and on hematopoiesis. In addition, tumor progression
Accepted: 24 December 2020 is accompanied by dynamic remodeling of the bone marrow niche that may interfere with MSC
Published: 29 December 2020 functions. The present review presents the main features of MSC senescence in bone marrow and
their implications in hematologic cancer progression.
Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional claims Keywords: mesenchymal stromal cells; aging; bone marrow niche; hematopoiesis; hematologic
in published maps and institutional malignancies; inflammation; inflammaging
affiliations.
it is also commonly accepted that the microenvironment surrounding cells and the inter-
actions between malignant cells and this microenvironment play crucial roles in tumor
development and growth. Malignant hemopathies represent no exception: they comprise a
wide collection of disorders, all originating from cells of the bone marrow (BM) and the
lymphatic system and accounting for almost 230,000 new cases every year in Europe [4].
The homeostasis and maintenance of BM cells and the immune system require continu-
ous renewal of all types of blood cells. This function is ensured in the BM by hematopoietic
stem cells (HSCs) that can differentiate into myeloid progenitors, giving rise to erythrocytes,
platelets, granulocytes, and monocytes, or into lymphoid progenitors, giving rise to B lym-
phocytes, T lymphocytes and NK cells. The function and regulation of HSCs are supported
by their close environment, the BM niche [5–7]. A growing number of studies point to a
clear link between aging, remodeling of the BM microenvironment and impairment of
hematopoiesis, leading, among other things, to hematologic cancers [8,9]. The BM niche is
a complex and dynamic network that is not yet fully understood and is regulated by a wide
number of cell types: endothelial cells, mesenchymal stromal cells (MSCs), perivascular
stromal cells, osteoblasts, sympathetic neurons, nonmyelinating Schwann cells, adipocytes
and regulatory T cells.
MSCs are multipotent nonhematopoietic cells able to differentiate into osteoblasts,
chondrocytes, adipocytes and fibroblasts [10–12]. They also secrete a wide variety of com-
pounds, such as growth factors, antiapoptotic factors, angiogenic factors and several
cytokines, and thus contribute to the regenerative process, wound healing, hematopoietic
support and regulation of the immune response [13,14]. MSCs also produce a large amount
of extracellular vesicles (EVs), small vesicles playing a major role in cell-to-cell communica-
tion. EVs transport different elements, such as proteins, lipids and microRNAs (miRNAs),
to target cells and are involved in many biological functions of MSCs [15–17]. It is now
known that the aging of MSCs alters their EV production and has a direct impact on their
functions and differentiation capacities [18,19]. Aging is also associated with an increased
incidence of hematologic malignancies such as chronic and acute leukemias, non-Hodgkin
lymphomas and plasma cell disorders: the mean age at diagnosis is 65–70 years, and the
incidence typically increases in groups of older subjects [4,20]. Due to their functions,
MSCs are important actors in the tumoral microenvironment, but their exact role remains
ambiguous. Indeed, different studies carried out to date show both a protumoral and an
antitumoral function of MSCs, as reviewed by Galland and Stamenkovic in The Journal of
Pathology [21]. Although the prominent role of MSCs in vivo seems to be participation in
tumor progression, further studies will be necessary to obtain a deep understanding of
their exact role inside the tumoral microenvironment.
In this review, we will start by highlighting the effects of aging on the functions of
bone marrow mesenchymal stromal cells (BM-MSCs) inside the BM niche and their effects
on hematopoiesis. Then, we will discuss the tumorigenic potential of BM-MSCs in the case
of hematologic cancers.
Figure
Figure 1. With 1. With
aging, aging,
several several
factors inducefactors induce the
the senescence senescence
of bone marrowof bone marrow
mesenchymal mesenchymal
stromal stromal
cells (BM-MSCs) cells
that
accumulate inside the bone
(BM-MSCs) that marrow (BM) inside
accumulate niche. (A)
theThe
bonesenescent
marrowBM-MSCs adopt(A)
(BM) niche. theThe
senescent-associated
senescent BM-MSCssecretory
adopt
phenotype (SASP) enriched in particular with proinflammatory cytokines, and their extracellular vesicle (EV) morphology
and contenttheare
senescent-associated
strongly modified (seesecretory phenotype
Section 2.1). (SASP) enriched properties
(B) The immunomodulatory in particular withBM-MSCs
of aged proinflammatory
are im-
paired. For example, their ability to promote macrophage (MΦ) polarization into the M2 phenotype and theirmodified
cytokines, and their extracellular vesicle (EV) morphology and content are strongly capacity to(see
inhibit T lymphocyte proliferation
Section 2.1). are reduced (see Section properties
(B) The immunomodulatory 2.2). (C) An imbalance between osteogenesis
of aged BM-MSCs and adipogenesis
are impaired. For example,
occurs, leading to a progressive replacement of bone by fat (see Section 2.3). All of these processes are closely intercon-
their ability to promote macrophage (MΦ) polarization into the M2 phenotype and their capacity
nected and can lead to the establishment of low-grade chronic inflammation and hematopoiesis alterations (Figure created
to inhibit T lymphocyte proliferation are reduced (see Section 2.2). (C) An imbalance between
with BioRender).
osteogenesis and adipogenesis occurs, leading to a progressive replacement of bone by fat (see
Section 2.3). All2.1.
of Epigenetic and Secretome
these processes Modifications
are closely Associated
interconnected andwith BM-MSC
can lead to Aging
the establishment of
MSCs are multipotent cells with proliferative properties. However,
low-grade chronic inflammation and hematopoiesis alterations (Figure created with BioRender). similar to any
normal cell, they can only undergo a limited number of cell divisions before entering a
2.1. Epigeneticsenescent
and Secretome Modifications
state. Cellular Associated
senescence with BM-MSC
and its related cell cycle Aging
arrest were observed for the
first time by Hayflick in long-term in vitro culture of human fibroblasts [25]. Since then, a
MSCs are multipotent cells with proliferative properties. However, similar to any
wide variety of factors causing MSC senescence have also been described, such as oxida-
normal cell, they can only undergo a limited number of cell divisions before entering a
tive stress [26], telomere attrition occurring during in vitro expansion [27] or unrepaired
senescent state. Cellular
DNA damages senescence and its related
[28]. Accumulation cell cycle
of senescent arrest
cells was alsowere observed
observed for the
in several aged
first time by Hayflick
tissues, asinit long-term in vitro in
was well illustrated culture of study
a recent human fibroblasts
evaluating [25]. Sinceofthen,
the expression a
p16 and
wide variety of factors
p21, causingofMSC
two markers senescence
senescence, havefrom
in organs alsoyoung
been described,
or old donorssuch
[29].asAn
oxidative
increased
level of p21
stress [26], telomere was also
attrition observedduring
occurring in BM-MSCs fromexpansion
in vitro elderly people,
[27]suggesting that senescent
or unrepaired DNA
damages [28].BM-MSCs
Accumulationaccumulate with physiological
of senescent cells wasaging [30]. Nevertheless,
also observed in severalsome
aged experiments
tissues,
as it was wellstudying MSC senescence
illustrated in a recent dostudy
not useevaluating
cells form elderly donors but rather
the expression of p16in vitro
and stress-
p21,
two markers of senescence, in organs from young or old donors [29]. An increased level
of p21 was also observed in BM-MSCs from elderly people, suggesting that senescent
BM-MSCs accumulate with physiological aging [30]. Nevertheless, some experiments
studying MSC senescence do not use cells form elderly donors but rather in vitro stress-
induced-senescence conditions such as long-term culture expansion or senescence induced
by gamma irradiation. It is therefore necessary to remain cautious when comparing data
concerning in vitro senescence with physiological aging.
Several pathways and actors implicated in MSC senescent cell cycle arrest have
been identified: the well-established p53/p21 and p16/pRB pathways, as well as the
AKT/mTOR pathway [31], JAK/STAT pathway [32], mitogen activated protein kinase
p38MAP [33] and fibroblast growth factor FGF21 [34].
Cancers 2021, 13, 68 4 of 22
varies with age: Maijenburg et al. showed a predominance of CD146+ subset in pediatric
and fetal BM and suggested that variation in MSC subpopulations is a dynamic process
that can change MSC functions during aging of the BM [104].
Other studies using a new method of single cell transcriptional analysis showed age-
related changes in BM-MSCs composition. Duscher et al. identified an age-related depletion
of a subpopulation characterized by a pro-vascular transcriptional profile [105]. More
recently, Khong and colleagues identified a unique quiescent subpopulation exclusively
present in MSCs from young donors and showed that this subpopulation was characterized
by a higher expression of genes involved in tissue regeneration [106].
It has also been described the existence of two populations of MSCs with neural crest
or mesoderm embryonic origins and particularly the neural crest has been proposed as a
source of MSCs with specialized hematopoietic stem cell niche function [107]. Embryonic
origin has also been shown to play an essential role in the age-related decrease in the
functional capacities of BM-MSCs [108].
3.3. Impact of MSC Senescence in MM, CLL and Myelodysplastic Syndrome (MDS)
As described before, aging MSCs deeply modify many of their genetic and epigenetic
activities, acquiring the so-called SASP, a peculiar condition characterized by increased pro-
duction of proinflammatory molecules. Whether this phenotype promotes oncogenesis is
still debated, as conflicting reports are present in the literature, suggesting a key regulatory
role for cancer cells towards MSCs [35]. However, several reports have underlined how
Cancers 2021, 13, 68 9 of 22
both to escape immune control and to reduced apoptosis of MM cells [152]. The studies
evaluating the impact of MSCs in MM are summarized in Table 1.
In CLL, the relationship between MSCs and neoplastic cells has been widely docu-
mented, as discussed previously. CLL-MSCs display intrinsic qualitative and quantitative
abnormalities that may be implicated in disease development and/or progression. The
impaired proliferative potential of CLL-MSCs can be attributed, at least in part, to increased
cell apoptosis. BM-MSCs from CLL patients seem to be less numerous, to present reduced
proliferation potential and to express SASP, particularly characterized by increased pro-
duction of IL-6, IL-8 and VEGF [160]. The documented abnormal production of CXCL12
and TGF-β from MSCs could represent a key mechanism for leukemic progression [161].
However, CLL-MSCs display normal immunosuppressive properties in terms of their
capacity to suppress T-cell proliferative responses [161].
Most of these MSC features seem to be induced by the interaction with CLL cells,
as demonstrated by a coculture experience reported by Ding and colleagues: a transcrip-
tome analysis revealed an altered expression profile concerning genes mostly involved in
senescence and cell cycle regulation, such as LIF, CDKN2B, DKK2, HGF, and FOXQ1 [162].
EVs also play a key role in this cross-talk mechanism among CLL cells and MSCs, as
demonstrated in several studies [163]. In comparison to HD-MSCs, CLL-MSCs produced
more EVs able to rescue CLL cells from apoptosis and induce higher migration activity
and gene modifications than healthy Evs [140]. Moreover, CLL-derived exosomal proteins
and miRNAs can induce an inflammatory phenotype in MSCs, enhancing the proliferation,
migration and secretion of inflammatory cytokines [164]. All of the discussed studies on
MSC aging and CLL are listed in Table 2.
Similar findings were reported in MDS, in which MSCs display reduced colony-
forming and proliferation capacities and activation of the p53-p21 pathway, promoting the
formation of a BM environment hostile towards normal hematopoiesis and finally favoring
oncogenesis [165]. Alterations in cell cycle control have been found in MDS-MSCs: higher
expression of cyclin-dependent kinase inhibitor 2B (CDKN2B) could be responsible for
the low proliferative capacity of MSCs, favoring clonal progression [166]. MDS-MSCs also
displayed a shift towards increased apoptosis, lower expression of VEGF, SCF and ANGPT,
aberrant expression patterns of the Notch signaling pathway and increases in Wnt signal-
ing inhibitors [167]. Among MSCs subpopulations, CD271+ MSCs are expanded in MDS
and are in tight contact with HSCs in perivascular regions: these MSCs express abnormal
levels of CXCL12, a chemokine promoting HSCs homing, and could be responsible for the
abnormal localization of immature precursors (ALIP), a typical feature of the disease [101].
Senescent MSCs, through the increased production of cytokines such as IL-6, show the
ability to stimulate HSC proliferation and differentiation, decreasing stemness capacity and
promoting genome instability [51]. In addition, a recent review emphasizes the deleterious
influence of an inflammatory environment on the selection of mutant HSCs carrying CHIP,
with evident consequences for tumorigenesis [168]. The immunomodulatory capacity of
MDS-MSCs is deeply modified under physiological conditions: the capacity of MDS-MSCs
to inhibit T lymphocyte activation and proliferation is impaired in vitro [169]. Moreover,
global activation of inflammatory patterns (NF-кB, EGF, TGF-β, and TNF signaling) and
overexpression of negative regulators of hematopoiesis were described [170,171]. Epige-
netic regulation, such as hypermethylation, seems to confer reduced growth capacity and
osteogenic differentiation [172]. Hypomethylating agents, often used in high-risk MDS
treatment, have been found to restore a normal MSC phenotype in patients achieving
complete hematologic remission [173]. The level of expression of DICER-1 was lower in
MSCs from MDS patients, altering their miRNA content [174]. Interestingly, some miRNAs
were overexpressed in EVs derived from MDS-MSCs, such as miR-10a and miR-15a, which
are involved in cell cycle proliferation and apoptosis and are able to modify hematopoietic
cell properties [175]. Studies on the role of senescent activity in MDS pathogenesis are
summarized in Table 3.
Cancers 2021, 13, 68 11 of 22
Table 1. Studies evaluating the activity of MSCs in MM setting, with focus on MSCs senescence-like modifications.
Table 2. Studies evaluating the activity of MSCs in CLL setting, with focus on MSCs senescence-like modifications.
Table 3. Studies evaluating the activity of MSCs in MDS, with focus on MSCs senescence-like modifications.
4. Conclusions
MSCs represent a key component of the BM microenvironment, exerting multiple
functions that are fundamental for tissue homeostasis, such as the renewal of bone, adipose
and connective tissues; the support of the hematopoietic niche; and the modulation of
the immune system response. These activities are carried out through the secretion of
a wide variety of compounds, such as growth factors, cytokines and EVs. The aging
process determines profound modifications of both the morphology and functions of
MSCs, of which the main modification is represented by the acquisition of the SASP, which
strongly contributes to the development of a proinflammatory environment. Senescent
MSCs play a key role in the development and progression of several solid tumors, and there
is increasing evidence that they provide the inflammatory microenvironment supporting
the progression of hematologic malignancies: indeed, MSCs reduce the apoptosis of
cancer cells, induce chemoresistance and reduce the support of the hematopoietic niche,
as comprehensively demonstrated in three oncohematologic models, MM, CLL and MDS.
Whether MSC protumoral activity is the primum movens of clonal development or the
effect of neoplastic stimulation still needs to be clarified. However, this activity seems to be
of crucial importance for tumoral progression, opening the field for better comprehension
of these diseases and potential therapeutic approaches.
Author Contributions: Conceptualization, F.M., F.C., L.L., D.B.; writing and editing, F.M., F.C., L.L.,
D.B.; editing, B.S., N.M. All authors have read and agreed to the published version of the manuscript.
Funding: This research was supported by “Fonds Yvonne Boël”, “Les Amis de l’Institut Bordet” and
the FOCA.
Conflicts of Interest: The authors declare no conflict of interest.
References
1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [CrossRef] [PubMed]
2. López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [CrossRef]
[PubMed]
3. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef] [PubMed]
4. Rodriguez-Abreu, D.; Bordoni, A.; Zucca, E. Epidemiology of hematological malignancies. Ann. Oncol. Off. J. Eur. Soc. Med Oncol.
2007, 18 (Suppl. 1), i3–i8. [CrossRef]
Cancers 2021, 13, 68 15 of 22
5. Morrison, S.J.; Scadden, D.T. The bone marrow niche for haematopoietic stem cells. Nature 2014, 505, 327–334. [CrossRef]
[PubMed]
6. Taichman, R.S.; Emerson, S.G. Human osteoblasts support hematopoiesis through the production of granulocyte colony-
stimulating factor. J. Exp. Med. 1994, 179, 1677–1682. [CrossRef]
7. Zhang, J.; Niu, C.; Ye, L.; Huang, H.; He, X.; Tong, W.G.; Ross, J.; Haug, J.; Johnson, T.; Feng, J.Q.; et al. Identification of the
haematopoietic stem cell niche and control of the niche size. Nature 2003, 425, 836–841. [CrossRef]
8. Geiger, H.; Denkinger, M.; Schirmbeck, R. Hematopoietic stem cell aging. Curr. Opin. Immunol. 2014, 29, 86–92. [CrossRef]
9. Hellmich, C.; Moore, J.A.; Bowles, K.M.; Rushworth, S.A. Bone Marrow Senescence and the Microenvironment of Hematological
Malignancies. Front. Oncol. 2020, 10, 230. [CrossRef]
10. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz,
E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position
statement. Cytotherapy 2006, 8, 315–317. [CrossRef]
11. Direkze, N.C.; Hodivala-Dilke, K.; Jeffery, R.; Hunt, T.; Poulsom, R.; Oukrif, D.; Alison, M.R.; Wright, N.A. Bone marrow
contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 2004, 64, 8492–8495. [CrossRef] [PubMed]
12. Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.;
Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science (N. Y.) 1999, 284, 143–147. [CrossRef]
[PubMed]
13. Glenn, J.D.; Whartenby, K.A. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J. Stem
Cells 2014, 6, 526–539. [CrossRef] [PubMed]
14. Majumdar, M.K.; Thiede, M.A.; Haynesworth, S.E.; Bruder, S.P.; Gerson, S.L. Human marrow-derived mesenchymal stem
cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and
osteogenic lineages. J. Hematotherapy Stem Cell Res. 2000, 9, 841–848. [CrossRef]
15. Xie, H.; Sun, L.; Zhang, L.; Liu, T.; Chen, L.; Zhao, A.; Lei, Q.; Gao, F.; Zou, P.; Li, Q.; et al. Mesenchymal Stem Cell-Derived
Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34(+) Cells. Stem Cells Int. 2016, 2016, 6493241. [CrossRef]
16. Mardpour, S.; Hamidieh, A.A.; Taleahmad, S.; Sharifzad, F.; Taghikhani, A.; Baharvand, H. Interaction between mesenchymal
stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J. Cell. Physiol. 2019, 234, 8249–8258.
[CrossRef]
17. Toh, W.S.; Zhang, B.; Lai, R.C.; Lim, S.K. Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular
vesicles in tissue regeneration. Cytotherapy 2018, 20, 1419–1426. [CrossRef]
18. Fafián-Labora, J.A.; Morente-López, M.; Arufe, M.C. Effect of aging on behaviour of mesenchymal stem cells. World J. Stem Cells
2019, 11, 337–346. [CrossRef]
19. Lei, Q.; Liu, T.; Gao, F.; Xie, H.; Sun, L.; Zhao, A.; Ren, W.; Guo, H.; Zhang, L.; Wang, H.; et al. Microvesicles as Potential
Biomarkers for the Identification of Senescence in Human Mesenchymal Stem Cells. Theranostics 2017, 7, 2673–2689. [CrossRef]
20. Bron, D.; Ades, L.; Fulop, T.; Goede, V. Aging and malignant hemopathies. Haematologica 2015, 100, 571–574. [CrossRef]
21. Galland, S.; Stamenkovic, I. Mesenchymal stromal cells in cancer: A review of their immunomodulatory functions and dual
effects on tumor progression. J. Pathol. 2020, 250, 555–572. [CrossRef] [PubMed]
22. Ergen, A.V.; Boles, N.C.; Goodell, M.A. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing.
Blood 2012, 119, 2500–2509. [CrossRef] [PubMed]
23. Berliner, N. Anemia in the elderly. Trans. Am. Clin. Climatol. Assoc. 2013, 124, 230–237. [PubMed]
24. Mejia-Ramirez, E.; Florian, M.C. Understanding intrinsic hematopoietic stem cell aging. Haematologica 2020, 105, 22–37. [CrossRef]
25. Hayflick, L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp. Cell Res. 1965, 37, 614–636.
[CrossRef]
26. Choo, K.B.; Tai, L.; Hymavathee, K.S.; Wong, C.Y.; Nguyen, P.N.; Huang, C.J.; Cheong, S.K.; Kamarul, T. Oxidative stress-induced
premature senescence in Wharton’s jelly-derived mesenchymal stem cells. Int. J. Med Sci. 2014, 11, 1201–1207. [CrossRef]
27. Baxter, M.A.; Wynn, R.F.; Jowitt, S.N.; Wraith, J.E.; Fairbairn, L.J.; Bellantuono, I. Study of telomere length reveals rapid aging of
human marrow stromal cells following in vitro expansion. Stem Cells (Dayt. Ohio) 2004, 22, 675–682. [CrossRef]
28. Cmielova, J.; Havelek, R.; Soukup, T.; Jiroutová, A.; Visek, B.; Suchánek, J.; Vavrova, J.; Mokry, J.; Muthna, D.; Bruckova, L.; et al.
Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int.
J. Radiat. Biol. 2012, 88, 393–404. [CrossRef]
29. Idda, M.L.; McClusky, W.G.; Lodde, V.; Munk, R.; Abdelmohsen, K.; Rossi, M.; Gorospe, M. Survey of senescent cell markers with
age in human tissues. Aging 2020, 12, 4052–4066. [CrossRef]
30. Zhou, S.; Greenberger, J.S.; Epperly, M.W.; Goff, J.P.; Adler, C.; Leboff, M.S.; Glowacki, J. Age-related intrinsic changes in human
bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008, 7, 335–343. [CrossRef]
31. Gharibi, B.; Farzadi, S.; Ghuman, M.; Hughes, F.J. Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem
cells. Stem Cells (Dayt. Ohio) 2014, 32, 2256–2266. [CrossRef] [PubMed]
32. Ji, J.; Wu, Y.; Meng, Y.; Zhang, L.; Feng, G.; Xia, Y.; Xue, W.; Zhao, S.; Gu, Z.; Shao, X. JAK-STAT signaling mediates the senescence
of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients. Acta Biochim. Biophys. Sin. 2017, 49,
208–215. [CrossRef] [PubMed]
Cancers 2021, 13, 68 16 of 22
33. Griukova, A.; Deryabin, P.; Sirotkina, M.; Shatrova, A.; Nikolsky, N.; Borodkina, A. P38 MAPK inhibition prevents polybrene-
induced senescence of human mesenchymal stem cells during viral transduction. PLoS ONE 2018, 13, e0209606. [CrossRef]
[PubMed]
34. Li, X.; Hong, Y.; He, H.; Jiang, G.; You, W.; Liang, X.; Fu, Q.; Han, S.; Lian, Q.; Zhang, Y. FGF21 Mediates Mesenchymal Stem Cell
Senescence via Regulation of Mitochondrial Dynamics. Oxidative Med. Cell. Longev. 2019, 2019, 4915149. [CrossRef]
35. Neri, S.; Borzì, R.M. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020, 10, 340.
[CrossRef]
36. Cakouros, D.; Gronthos, S. Epigenetic Regulation of Bone Marrow Stem Cell Aging: Revealing Epigenetic Signatures associated
with Hematopoietic and Mesenchymal Stem Cell Aging. Aging Dis. 2019, 10, 174–189. [CrossRef]
37. Bork, S.; Pfister, S.; Witt, H.; Horn, P.; Korn, B.; Ho, A.D.; Wagner, W. DNA methylation pattern changes upon long-term culture
and aging of human mesenchymal stromal cells. Aging Cell 2010, 9, 54–63. [CrossRef]
38. Fernández, A.F.; Bayón, G.F.; Urdinguio, R.G.; Toraño, E.G.; García, M.G.; Carella, A.; Petrus-Reurer, S.; Ferrero, C.; Martinez-
Camblor, P.; Cubillo, I.; et al. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated
cells. Genome Res. 2015, 25, 27–40. [CrossRef]
39. Yuan, H.F.; Zhai, C.; Yan, X.L.; Zhao, D.D.; Wang, J.X.; Zeng, Q.; Chen, L.; Nan, X.; He, L.J.; Li, S.T.; et al. SIRT1 is required for
long-term growth of human mesenchymal stem cells. J. Mol. Med. (Berl. Ger.) 2012, 90, 389–400. [CrossRef]
40. Simic, P.; Zainabadi, K.; Bell, E.; Sykes, D.B.; Saez, B.; Lotinun, S.; Baron, R.; Scadden, D.; Schipani, E.; Guarente, L. SIRT1 regulates
differentiation of mesenchymal stem cells by deacetylating β-catenin. EMBO Mol. Med. 2013, 5, 430–440. [CrossRef]
41. Peffers, M.J.; Collins, J.; Fang, Y.; Goljanek-Whysall, K.; Rushton, M.; Loughlin, J.; Proctor, C.; Clegg, P.D. Age-related changes in
mesenchymal stem cells identified using a multi-omics approach. Eur. Cells Mater. 2016, 31, 136–159. [CrossRef] [PubMed]
42. Pan, H.; Guan, D.; Liu, X.; Li, J.; Wang, L.; Wu, J.; Zhou, J.; Zhang, W.; Ren, R.; Zhang, W.; et al. SIRT6 safeguards human
mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016, 26, 190–205. [CrossRef] [PubMed]
43. Kurosawa, S.; Iwama, A. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions. Inflamm.
Regen. 2020, 40, 29. [CrossRef] [PubMed]
44. So, A.Y.; Jung, J.W.; Lee, S.; Kim, H.S.; Kang, K.S. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2
through microRNAs. PLoS ONE 2011, 6, e19503. [CrossRef]
45. Yang, R.; Yu, T.; Kou, X.; Gao, X.; Chen, C.; Liu, D.; Zhou, Y.; Shi, S. Tet1 and Tet2 maintain mesenchymal stem cell homeostasis
via demethylation of the P2rX7 promoter. Nat. Commun. 2018, 9, 2143. [CrossRef]
46. Li, R.; Zhou, Y.; Cao, Z.; Liu, L.; Wang, J.; Chen, Z.; Xing, W.; Chen, S.; Bai, J.; Yuan, W.; et al. TET2 Loss Dysregulates the Behavior
of Bone Marrow Mesenchymal Stromal Cells and Accelerates Tet2(−/−)-Driven Myeloid Malignancy Progression. Stem Cell Rep.
2018, 10, 166–179. [CrossRef]
47. Zhang, P.; Chen, Z.; Li, R.; Guo, Y.; Shi, H.; Bai, J.; Yang, H.; Sheng, M.; Li, Z.; Li, Z.; et al. Loss of ASXL1 in the bone marrow niche
dysregulates hematopoietic stem and progenitor cell fates. Cell Discov. 2018, 4, 4. [CrossRef]
48. Malaquin, N.; Martinez, A.; Rodier, F. Keeping the senescence secretome under control: Molecular reins on the senescence-
associated secretory phenotype. Exp. Gerontol. 2016, 82, 39–49. [CrossRef]
49. Mavrogonatou, E.; Pratsinis, H.; Papadopoulou, A.; Karamanos, N.K.; Kletsas, D. Extracellular matrix alterations in senescent
cells and their significance in tissue homeostasis. Matrix Biol. J. Int. Soc. Matrix Biol. 2019, 75–76, 27–42. [CrossRef]
50. Lee, B.C.; Yu, K.R. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep. 2020, 53, 65–73. [CrossRef]
51. O’Hagan-Wong, K.; Nadeau, S.; Carrier-Leclerc, A.; Apablaza, F.; Hamdy, R.; Shum-Tim, D.; Rodier, F.; Colmegna, I. Increased IL-6
secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells’ homeostasis. Oncotarget
2016, 7, 13285–13296. [CrossRef] [PubMed]
52. Gnani, D.; Crippa, S.; Della Volpe, L.; Rossella, V.; Conti, A.; Lettera, E.; Rivis, S.; Ometti, M.; Fraschini, G.; Bernardo, M.E.; et al.
An early-senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic
impairment through the activation of a pro-inflammatory program. Aging Cell 2019, 18, e12933. [CrossRef] [PubMed]
53. Urbanelli, L.; Buratta, S.; Sagini, K.; Tancini, B.; Emiliani, C. Extracellular Vesicles as New Players in Cellular Senescence. Int. J.
Mol. Sci. 2016, 17, 1408. [CrossRef] [PubMed]
54. Kulkarni, R.; Bajaj, M.; Ghode, S.; Jalnapurkar, S.; Limaye, L.; Kale, V.P. Intercellular Transfer of Microvesicles from Young
Mesenchymal Stromal Cells Rejuvenates Aged Murine Hematopoietic Stem Cells. Stem Cells (Dayt. Ohio) 2018, 36, 420–433.
[CrossRef]
55. Terlecki-Zaniewicz, L.; Lämmermann, I.; Latreille, J.; Bobbili, M.R.; Pils, V.; Schosserer, M.; Weinmüllner, R.; Dellago, H.; Skalicky,
S.; Pum, D.; et al. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated
secretory phenotype. Aging 2018, 10, 1103–1132. [CrossRef]
56. Robbins, P.D. Extracellular vesicles and aging. Stem Cell Investig. 2017, 4, 98. [CrossRef]
57. Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J.
Gerontol. Ser. ABiol. Sci. Med Sci. 2014, 69 (Suppl. 1), S4–S9. [CrossRef]
58. Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E.; Alexander, H.D.; Ross, O.A. Age and Age-Related Diseases: Role of
Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [CrossRef]
59. Najar, M.; Ouhaddi, Y.; Bouhtit, F.; Melki, R.; Afif, H.; Boukhatem, N.; Merimi, M.; Fahmi, H. Empowering the immune fate of
bone marrow mesenchymal stromal cells: Gene and protein changes. Inflamm. Res. 2019, 68, 167–176. [CrossRef]
Cancers 2021, 13, 68 17 of 22
60. Romieu-Mourez, R.; François, M.; Boivin, M.N.; Bouchentouf, M.; Spaner, D.E.; Galipeau, J. Cytokine modulation of TLR
expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J. Immunol. 2009, 182, 7963–7973.
[CrossRef]
61. Minciullo, P.L.; Catalano, A.; Mandraffino, G.; Casciaro, M.; Crucitti, A.; Maltese, G.; Morabito, N.; Lasco, A.; Gangemi, S.; Basile,
G. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Arch. Immunol. Ther. Exp. 2016, 64,
111–126. [CrossRef] [PubMed]
62. Fulop, T.; Witkowski, J.M.; Olivieri, F.; Larbi, A. The integration of inflammaging in age-related diseases. Semin. Immunol. 2018,
40, 17–35. [CrossRef] [PubMed]
63. Zhao, J.L.; Ma, C.; O’Connell, R.M.; Mehta, A.; DiLoreto, R.; Heath, J.R.; Baltimore, D. Conversion of danger signals into cytokine
signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 2014, 14, 445–459.
[CrossRef] [PubMed]
64. Ratushnyy, A.; Ezdakova, M.; Buravkova, L. Secretome of Senescent Adipose-Derived Mesenchymal Stem Cells Negatively
Regulates Angiogenesis. Int. J. Mol. Sci. 2020, 21, 1802. [CrossRef] [PubMed]
65. Goedhart, M.; Cornelissen, A.S.; Kuijk, C.; Geerman, S.; Kleijer, M.; van Buul, J.D.; Huveneers, S.; Raaijmakers, M.; Young, H.A.;
Wolkers, M.C.; et al. Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal
Stromal Cells. Stem Cells Dev. 2018, 27, 579–589. [CrossRef] [PubMed]
66. Waterman, R.S.; Tomchuck, S.L.; Henkle, S.L.; Betancourt, A.M. A new mesenchymal stem cell (MSC) paradigm: Polarization into
a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE 2010, 5, e10088. [CrossRef]
67. Ren, G.; Zhang, L.; Zhao, X.; Xu, G.; Zhang, Y.; Roberts, A.I.; Zhao, R.C.; Shi, Y. Mesenchymal stem cell-mediated immunosup-
pression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008, 2, 141–150. [CrossRef]
68. Kim, J.; Hematti, P. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Exp.
Hematol. 2009, 37, 1445–1453. [CrossRef]
69. Sepúlveda, J.C.; Tomé, M.; Fernández, M.E.; Delgado, M.; Campisi, J.; Bernad, A.; González, M.A. Cell senescence abrogates
the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells (Dayt. Ohio) 2014, 32,
1865–1877. [CrossRef]
70. Yu, K.R.; Lee, J.Y.; Kim, H.S.; Hong, I.S.; Choi, S.W.; Seo, Y.; Kang, I.; Kim, J.J.; Lee, B.C.; Lee, S.; et al. A p38 MAPK-mediated
alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging. PLoS ONE 2014, 9,
e102426. [CrossRef]
71. Yin, Y.; Wu, R.X.; He, X.T.; Xu, X.Y.; Wang, J.; Chen, F.M. Influences of age-related changes in mesenchymal stem cells on
macrophages during in-vitro culture. Stem Cell Res. Ther. 2017, 8, 153. [CrossRef] [PubMed]
72. Huang, R.; Qin, C.; Wang, J.; Hu, Y.; Zheng, G.; Qiu, G.; Ge, M.; Tao, H.; Shu, Q.; Xu, J. Differential effects of extracellular vesicles
from aging and young mesenchymal stem cells in acute lung injury. Aging 2019, 11, 7996–8014. [CrossRef]
73. Ziegler, P.; Boettcher, S.; Takizawa, H.; Manz, M.G.; Brümmendorf, T.H. LPS-stimulated human bone marrow stroma cells support
myeloid cell development and progenitor cell maintenance. Ann. Hematol. 2016, 95, 173–178. [CrossRef] [PubMed]
74. Shi, C.; Jia, T.; Mendez-Ferrer, S.; Hohl, T.M.; Serbina, N.V.; Lipuma, L.; Leiner, I.; Li, M.O.; Frenette, P.S.; Pamer, E.G. Bone
marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands.
Immunity 2011, 34, 590–601. [CrossRef] [PubMed]
75. Granero-Moltó, F.; Weis, J.A.; Miga, M.I.; Landis, B.; Myers, T.J.; O’Rear, L.; Longobardi, L.; Jansen, E.D.; Mortlock, D.P.; Spagnoli,
A. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells (Dayt. Ohio) 2009, 27, 1887–1898.
[CrossRef] [PubMed]
76. Coipeau, P.; Rosset, P.; Langonne, A.; Gaillard, J.; Delorme, B.; Rico, A.; Domenech, J.; Charbord, P.; Sensebe, L. Impaired
differentiation potential of human trabecular bone mesenchymal stromal cells from elderly patients. Cytotherapy 2009, 11, 584–594.
[CrossRef] [PubMed]
77. Wagner, W.; Horn, P.; Castoldi, M.; Diehlmann, A.; Bork, S.; Saffrich, R.; Benes, V.; Blake, J.; Pfister, S.; Eckstein, V.; et al. Replicative
senescence of mesenchymal stem cells: A continuous and organized process. PLoS ONE 2008, 3, e2213. [CrossRef]
78. Justesen, J.; Stenderup, K.; Eriksen, E.F.; Kassem, M. Maintenance of osteoblastic and adipocytic differentiation potential with age
and osteoporosis in human marrow stromal cell cultures. Calcif. Tissue Int. 2002, 71, 36–44. [CrossRef]
79. Fickert, S.; Schröter-Bobsin, U.; Gross, A.F.; Hempel, U.; Wojciechowski, C.; Rentsch, C.; Corbeil, D.; Günther, K.P. Human
mesenchymal stem cell proliferation and osteogenic differentiation during long-term ex vivo cultivation is not age dependent. J.
Bone Miner. Metab. 2011, 29, 224–235. [CrossRef]
80. Stolzing, A.; Jones, E.; McGonagle, D.; Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem cells:
Consequences for cell therapies. Mech. Ageing Dev. 2008, 129, 163–173. [CrossRef]
81. Zaim, M.; Karaman, S.; Cetin, G.; Isik, S. Donor age and long-term culture affect differentiation and proliferation of human bone
marrow mesenchymal stem cells. Ann. Hematol. 2012, 91, 1175–1186. [CrossRef] [PubMed]
82. Zhang, W.; Ou, G.; Hamrick, M.; Hill, W.; Borke, J.; Wenger, K.; Chutkan, N.; Yu, J.; Mi, Q.S.; Isales, C.M.; et al. Age-related
changes in the osteogenic differentiation potential of mouse bone marrow stromal cells. J. Bone Miner. Res. Off. J. Am. Soc. Bone
Miner. Res. 2008, 23, 1118–1128. [CrossRef]
Cancers 2021, 13, 68 18 of 22
83. Alameda, D.; Saez, B.; Lara-Astiaso, D.; Sarvide, S.; Lasa, M.; Alignani, D.; Rodriguez, I.; Garate, S.; Vilas, A.; Paiva, B.; et al.
Characterization of freshly isolated mesenchymal stromal cells from healthy and multiple myeloma bone marrow: Transcriptional
modulation of the microenvironment. Haematologica 2020, 105. [CrossRef]
84. Komori, T. Regulation of osteoblast differentiation by transcription factors. J. Cell. Biochem. 2006, 99, 1233–1239. [CrossRef]
[PubMed]
85. Nakashima, K.; Zhou, X.; Kunkel, G.; Zhang, Z.; Deng, J.M.; Behringer, R.R.; de Crombrugghe, B. The novel zinc finger-containing
transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108, 17–29. [CrossRef]
86. Lefterova, M.I.; Zhang, Y.; Steger, D.J.; Schupp, M.; Schug, J.; Cristancho, A.; Feng, D.; Zhuo, D.; Stoeckert, C.J., Jr.; Liu, X.S.; et al.
PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 2008, 22,
2941–2952. [CrossRef] [PubMed]
87. Li, H.; Liu, P.; Xu, S.; Li, Y.; Dekker, J.D.; Li, B.; Fan, Y.; Zhang, Z.; Hong, Y.; Yang, G.; et al. FOXP1 controls mesenchymal stem cell
commitment and senescence during skeletal aging. J. Clin. Investig. 2017, 127, 1241–1253. [CrossRef]
88. Wu, M.; Wang, Y.; Shao, J.Z.; Wang, J.; Chen, W.; Li, Y.P. Cbfβ governs osteoblast-adipocyte lineage commitment through
enhancing β-catenin signaling and suppressing adipogenesis gene expression. Proc. Natl. Acad. Sci. USA 2017, 114, 10119–10124.
[CrossRef]
89. Nishikawa, K.; Nakashima, T.; Takeda, S.; Isogai, M.; Hamada, M.; Kimura, A.; Kodama, T.; Yamaguchi, A.; Owen, M.J.; Takahashi,
S.; et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation.
J. Clin. Investig. 2010, 120, 3455–3465. [CrossRef]
90. Moerman, E.J.; Teng, K.; Lipschitz, D.A.; Lecka-Czernik, B. Aging activates adipogenic and suppresses osteogenic programs in
mesenchymal marrow stroma/stem cells: The role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways.
Aging Cell 2004, 3, 379–389. [CrossRef]
91. Davis, C.; Dukes, A.; Drewry, M.; Helwa, I.; Johnson, M.H.; Isales, C.M.; Hill, W.D.; Liu, Y.; Shi, X.; Fulzele, S.; et al. MicroRNA-
183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation,
and Induces Stem Cell Senescence. Tissue Eng. Part A 2017, 23, 1231–1240. [CrossRef]
92. Xu, R.; Shen, X.; Si, Y.; Fu, Y.; Zhu, W.; Xiao, T.; Fu, Z.; Zhang, P.; Cheng, J.; Jiang, H. MicroRNA-31a-5p from aging BMSCs links
bone formation and resorption in the aged bone marrow microenvironment. Aging Cell 2018, 17, e12794. [CrossRef] [PubMed]
93. Guidi, N.; Sacma, M.; Ständker, L.; Soller, K.; Marka, G.; Eiwen, K.; Weiss, J.M.; Kirchhoff, F.; Weil, T.; Cancelas, J.A.; et al.
Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017, 36, 840–853. [CrossRef] [PubMed]
94. Stier, S.; Ko, Y.; Forkert, R.; Lutz, C.; Neuhaus, T.; Grünewald, E.; Cheng, T.; Dombkowski, D.; Calvi, L.M.; Rittling, S.R.; et al.
Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 2005, 201,
1781–1791. [CrossRef] [PubMed]
95. Kennedy, D.E.; Knight, K.L. Inhibition of B Lymphopoiesis by Adipocytes and IL-1-Producing Myeloid-Derived Suppressor Cells.
J. Immunol. 2015, 195, 2666–2674. [CrossRef] [PubMed]
96. Aguilar-Navarro, A.G.; Meza-León, B.; Gratzinger, D.; Juárez-Aguilar, F.G.; Chang, Q.; Ornatsky, O.; Tsui, H.; Esquivel-Gómez, R.;
Hernández-Ramírez, A.; Xie, S.Z.; et al. Human Aging Alters the Spatial Organization between CD34+ Hematopoietic Cells and
Adipocytes in Bone Marrow. Stem Cell Rep. 2020, 15, 317–325. [CrossRef] [PubMed]
97. Ambrosi, T.H.; Scialdone, A.; Graja, A.; Gohlke, S.; Jank, A.M.; Bocian, C.; Woelk, L.; Fan, H.; Logan, D.W.; Schürmann, A.; et al.
Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone
Regeneration. Cell Stem Cell 2017, 20, 771–784.e776. [CrossRef] [PubMed]
98. Mau, T.; Yung, R. Adipose tissue inflammation in aging. Exp. Gerontol. 2018, 105, 27–31. [CrossRef]
99. Tormin, A.; Brune, J.C.; Olsson, E.; Valcich, J.; Neuman, U.; Olofsson, T.; Jacobsen, S.E.; Scheding, S. Characterization of bone
marrow-derived mesenchymal stromal cells (MSC) based on gene expression profiling of functionally defined MSC subsets.
Cytotherapy 2009, 11, 114–128. [CrossRef]
100. Kuçi, S.; Kuçi, Z.; Kreyenberg, H.; Deak, E.; Pütsch, K.; Huenecke, S.; Amara, C.; Koller, S.; Rettinger, E.; Grez, M.; et al. CD271
antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting
properties. Haematologica 2010, 95, 651–659. [CrossRef]
101. Flores-Figueroa, E.; Varma, S.; Montgomery, K.; Greenberg, P.L.; Gratzinger, D. Distinctive contact between CD34+ hematopoietic
progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab. Investig. 2012,
92, 1330–1341. [CrossRef] [PubMed]
102. Li, H.; Ghazanfari, R.; Zacharaki, D.; Ditzel, N.; Isern, J.; Ekblom, M.; Méndez-Ferrer, S.; Kassem, M.; Scheding, S. Low/negative
expression of PDGFR-α identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell Rep.
2014, 3, 965–974. [CrossRef] [PubMed]
103. Tormin, A.; Li, O.; Brune, J.C.; Walsh, S.; Schütz, B.; Ehinger, M.; Ditzel, N.; Kassem, M.; Scheding, S. CD146 expression on
primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 2011, 117, 5067–5077. [CrossRef]
[PubMed]
104. Maijenburg, M.W.; Kleijer, M.; Vermeul, K.; Mul, E.P.; van Alphen, F.P.; van der Schoot, C.E.; Voermans, C. The composition of the
mesenchymal stromal cell compartment in human bone marrow changes during development and aging. Haematologica 2012, 97,
179–183. [CrossRef] [PubMed]
Cancers 2021, 13, 68 19 of 22
105. Duscher, D.; Rennert, R.C.; Januszyk, M.; Anghel, E.; Maan, Z.N.; Whittam, A.J.; Perez, M.G.; Kosaraju, R.; Hu, M.S.; Walmsley,
G.G.; et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci. Rep. 2014, 4,
7144. [CrossRef] [PubMed]
106. Khong, S.M.L.; Lee, M.; Kosaric, N.; Khong, D.M.; Dong, Y.; Hopfner, U.; Aitzetmüller, M.M.; Duscher, D.; Schäfer, R.; Gurtner,
G.C. Single-Cell Transcriptomics of Human Mesenchymal Stem Cells Reveal Age-Related Cellular Subpopulation Depletion and
Impaired Regenerative Function. Stem Cells (Dayt. Ohio) 2019, 37, 240–246. [CrossRef] [PubMed]
107. Isern, J.; García-García, A.; Martín, A.M.; Arranz, L.; Martín-Pérez, D.; Torroja, C.; Sánchez-Cabo, F.; Méndez-Ferrer, S. The
neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife 2014, 3, e03696.
[CrossRef]
108. Wang, X.; Zou, X.; Zhao, J.; Wu, X.; Lingling, E.; Feng, L.; Wang, D.; Zhang, G.; Xing, H.; Liu, H. Site-Specific Characteristics
of Bone Marrow Mesenchymal Stromal Cells Modify the Effect of Aging on the Skeleton. Rejuvenation Res. 2016, 19, 351–361.
[CrossRef]
109. Lee, M.W.; Ryu, S.; Kim, D.S.; Lee, J.W.; Sung, K.W.; Koo, H.H.; Yoo, K.H. Mesenchymal stem cells in suppression or progression
of hematologic malignancy: Current status and challenges. Leukemia 2019, 33, 597–611. [CrossRef]
110. Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A.
Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 449, 557–563. [CrossRef]
111. Corcoran, K.E.; Trzaska, K.A.; Fernandes, H.; Bryan, M.; Taborga, M.; Srinivas, V.; Packman, K.; Patel, P.S.; Rameshwar, P.
Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS ONE 2008, 3, e2563. [CrossRef] [PubMed]
112. Hochheuser, C.; van Zogchel, L.M.J.; Kleijer, M.; Kuijk, C.; Tol, S.; van der Schoot, C.E.; Voermans, C.; Tytgat, G.A.M.; Timmerman,
I. The Metastatic Bone Marrow Niche in Neuroblastoma: Altered Phenotype and Function of Mesenchymal Stromal Cells. Cancers
2020, 12, 3231. [CrossRef] [PubMed]
113. Rossnagl, S.; Ghura, H.; Groth, C.; Altrock, E.; Jakob, F.; Schott, S.; Wimberger, P.; Link, T.; Kuhlmann, J.D.; Stenzl, A.; et al. A
Subpopulation of Stromal Cells Controls Cancer Cell Homing to the Bone Marrow. Cancer Res. 2018, 78, 129–142. [CrossRef]
[PubMed]
114. Yao, J.C.; Link, D.C. Concise Review: The Malignant Hematopoietic Stem Cell Niche. Stem Cells (Dayt. Ohio) 2017, 35, 3–8.
[CrossRef]
115. Song, N.; Gao, L.; Qiu, H.; Huang, C.; Cheng, H.; Zhou, H.; Lv, S.; Chen, L.; Wang, J. Mouse bone marrow-derived mesenchymal
stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant. Int.
J. Mol. Med. 2015, 36, 139–149. [CrossRef]
116. Ramasamy, R.; Lam, E.W.; Soeiro, I.; Tisato, V.; Bonnet, D.; Dazzi, F. Mesenchymal stem cells inhibit proliferation and apoptosis of
tumor cells: Impact on in vivo tumor growth. Leukemia 2007, 21, 304–310. [CrossRef]
117. Tian, K.; Yang, S.; Ren, Q.; Han, Z.; Lu, S.; Ma, F.; Zhang, L.; Han, Z. p38 MAPK contributes to the growth inhibition of leukemic
tumor cells mediated by human umbilical cord mesenchymal stem cells. Cell. Physiol. Biochem. 2010, 26, 799–808. [CrossRef]
118. Sarmadi, V.H.; Tong, C.K.; Vidyadaran, S.; Abdullah, M.; Seow, H.F.; Ramasamy, R. Mesenchymal stem cells inhibit proliferation
of lymphoid origin haematopoietic tumour cells by inducing cell cycle arrest. Med J. Malays. 2010, 65, 209–214.
119. Wei, Z.; Chen, N.; Guo, H.; Wang, X.; Xu, F.; Ren, Q.; Lu, S.; Liu, B.; Zhang, L.; Zhao, H. Bone marrow mesenchymal stem
cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells. J. Exp. Clin. Cancer Res. 2009, 28, 141.
[CrossRef]
120. Hendijani, F.; Javanmard, S.H.; Sadeghi-aliabadi, H. Human Wharton’s jelly mesenchymal stem cell secretome display antiprolif-
erative effect on leukemia cell line and produce additive cytotoxic effect in combination with doxorubicin. Tissue Cell 2015, 47,
229–234. [CrossRef]
121. Zhu, Y.; Sun, Z.; Han, Q.; Liao, L.; Wang, J.; Bian, C.; Li, J.; Yan, X.; Liu, Y.; Shao, C.; et al. Human mesenchymal stem cells inhibit
cancer cell proliferation by secreting DKK-1. Leukemia 2009, 23, 925–933. [CrossRef] [PubMed]
122. Secchiero, P.; Zorzet, S.; Tripodo, C.; Corallini, F.; Melloni, E.; Caruso, L.; Bosco, R.; Ingrao, S.; Zavan, B.; Zauli, G. Human bone
marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma
xenografts. PLoS ONE 2010, 5, e11140. [CrossRef] [PubMed]
123. Pellegrini, A.; Passaggio, A.M.; Pagano, P.G. The antivirogenic activity of normal and neoplastic human cells and cell fractions
cultured in vitro studied with radioactive phosphorus. Panminerva Med. 1961, 3, 64–66. [PubMed]
124. Panayiotidis, P.; Jones, D.; Ganeshaguru, K.; Foroni, L.; Hoffbrand, A.V. Human bone marrow stromal cells prevent apoptosis and
support the survival of chronic lymphocytic leukaemia cells in vitro. Br. J. Haematol. 1996, 92, 97–103. [CrossRef]
125. Lagneaux, L.; Delforge, A.; Bron, D.; De Bruyn, C.; Stryckmans, P. Chronic lymphocytic leukemic B cells but not normal B cells
are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998, 91, 2387–2396. [CrossRef]
126. Nwabo Kamdje, A.H.; Krampera, M. Notch signaling in acute lymphoblastic leukemia: Any role for stromal microenvironment?
Blood 2011, 118, 6506–6514. [CrossRef]
127. Naderi, E.H.; Skah, S.; Ugland, H.; Myklebost, O.; Sandnes, D.L.; Torgersen, M.L.; Josefsen, D.; Ruud, E.; Naderi, S.; Blomhoff,
H.K. Bone marrow stroma-derived PGE2 protects BCP-ALL cells from DNA damage-induced p53 accumulation and cell death.
Mol. Cancer 2015, 14, 14. [CrossRef]
128. Zhao, P.; Chen, Y.; Yue, Z.; Yuan, Y.; Wang, X. Bone marrow mesenchymal stem cells regulate stemness of multiple myeloma cell
lines via BTK signaling pathway. Leuk. Res. 2017, 57, 20–26. [CrossRef]
Cancers 2021, 13, 68 20 of 22
129. Xia, B.; Tian, C.; Guo, S.; Zhang, L.; Zhao, D.; Qu, F.; Zhao, W.; Wang, Y.; Wu, X.; Da, W.; et al. c-Myc plays part in drug resistance
mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk. Res. 2015, 39, 92–99. [CrossRef]
130. Takam Kamga, P.; Bassi, G.; Cassaro, A.; Midolo, M.; Di Trapani, M.; Gatti, A.; Carusone, R.; Resci, F.; Perbellini, O.; Gottardi,
M.; et al. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget
2016, 7, 21713–21727. [CrossRef]
131. Jacamo, R.; Chen, Y.; Wang, Z.; Ma, W.; Zhang, M.; Spaeth, E.L.; Wang, Y.; Battula, V.L.; Mak, P.Y.; Schallmoser, K.; et al.
Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood 2014, 123, 2691–
2702. [CrossRef] [PubMed]
132. Schelker, R.C.; Iberl, S.; Müller, G.; Hart, C.; Herr, W.; Grassinger, J. TGF-β1 and CXCL12 modulate proliferation and chemotherapy
sensitivity of acute myeloid leukemia cells co-cultured with multipotent mesenchymal stromal cells. Hematology 2018, 23, 337–345.
[CrossRef] [PubMed]
133. Jin, L.; Tabe, Y.; Konoplev, S.; Xu, Y.; Leysath, C.E.; Lu, H.; Kimura, S.; Ohsaka, A.; Rios, M.B.; Calvert, L.; et al. CXCR4
up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes
survival of quiescent CML cells. Mol. Cancer Ther. 2008, 7, 48–58. [CrossRef] [PubMed]
134. Vianello, F.; Villanova, F.; Tisato, V.; Lymperi, S.; Ho, K.K.; Gomes, A.R.; Marin, D.; Bonnet, D.; Apperley, J.; Lam, E.W.; et al. Bone
marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via
the CXCR4/CXCL12 axis. Haematologica 2010, 95, 1081–1089. [CrossRef] [PubMed]
135. Zhang, X.; Tu, H.; Yang, Y.; Wan, Q.; Fang, L.; Wu, Q.; Li, J. High IL-7 levels in the bone marrow microenvironment mediate
imatinib resistance and predict disease progression in chronic myeloid leukemia. Int. J. Hematol. 2016, 104, 358–367. [CrossRef]
[PubMed]
136. Agarwal, P.; Isringhausen, S.; Li, H.; Paterson, A.J.; He, J.; Gomariz, Á.; Nagasawa, T.; Nombela-Arrieta, C.; Bhatia, R. Mesenchy-
mal Niche-Specific Expression of Cxcl12 Controls Quiescence of Treatment-Resistant Leukemia Stem Cells. Cell Stem Cell 2019, 24,
769–784.e766. [CrossRef]
137. Purroy, N.; Abrisqueta, P.; Carabia, J.; Carpio, C.; Palacio, C.; Bosch, F.; Crespo, M. Co-culture of primary CLL cells with bone
marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically
comparable to those proliferating in vivo. Oncotarget 2015, 6, 7632–7643. [CrossRef]
138. Kurtova, A.V.; Balakrishnan, K.; Chen, R.; Ding, W.; Schnabl, S.; Quiroga, M.P.; Sivina, M.; Wierda, W.G.; Estrov, Z.; Keating,
M.J.; et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: Development of a
reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 2009, 114, 4441–4450. [CrossRef]
139. Stamatopoulos, B.; Meuleman, N.; De Bruyn, C.; Pieters, K.; Mineur, P.; Le Roy, C.; Saint-Georges, S.; Varin-Blank, N.; Cymbalista,
F.; Bron, D.; et al. AMD3100 disrupts the cross-talk between chronic lymphocytic leukemia cells and a mesenchymal stromal or
nurse-like cell-based microenvironment: Pre-clinical evidence for its association with chronic lymphocytic leukemia treatments.
Haematologica 2012, 97, 608–615. [CrossRef]
140. Crompot, E.; Van Damme, M.; Pieters, K.; Vermeersch, M.; Perez-Morga, D.; Mineur, P.; Maerevoet, M.; Meuleman, N.; Bron,
D.; Lagneaux, L.; et al. Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from
apoptosis, enhance their migration and induce gene expression modifications. Haematologica 2017, 102, 1594–1604. [CrossRef]
141. Ria, R.; Vacca, A. Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma. Int. J. Mol. Sci. 2020, 21, 613.
[CrossRef] [PubMed]
142. Markovina, S.; Callander, N.S.; O’Connor, S.L.; Xu, G.; Shi, Y.; Leith, C.P.; Kim, K.; Trivedi, P.; Kim, J.; Hematti, P.; et al. Bone
marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-kappaB activity in myeloma
cells. Mol. Cancer 2010, 9, 176. [CrossRef] [PubMed]
143. Frassanito, M.A.; Desantis, V.; Di Marzo, L.; Craparotta, I.; Beltrame, L.; Marchini, S.; Annese, T.; Visino, F.; Arciuli, M.; Saltarella,
I.; et al. Bone marrow fibroblasts overexpress miR-27b and miR-214 in step with multiple myeloma progression, dependent on
tumour cell-derived exosomes. J. Pathol. 2019, 247, 241–253. [CrossRef] [PubMed]
144. Wang, J.; Hendrix, A.; Hernot, S.; Lemaire, M.; De Bruyne, E.; Van Valckenborgh, E.; Lahoutte, T.; De Wever, O.; Vanderkerken, K.;
Menu, E. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood
2014, 124, 555–566. [CrossRef]
145. Zi, F.M.; He, J.S.; Li, Y.; Wu, C.; Wu, W.J.; Yang, Y.; Wang, L.J.; He, D.H.; Yang, L.; Zhao, Y.; et al. Fibroblast activation protein
protects bortezomib-induced apoptosis in multiple myeloma cells through β-catenin signaling pathway. Cancer Biol. Ther. 2014,
15, 1413–1422. [CrossRef] [PubMed]
146. Reagan, M.R.; Ghobrial, I.M. Multiple myeloma mesenchymal stem cells: Characterization, origin, and tumor-promoting effects.
Clin. Cancer Res. 2012, 18, 342–349. [CrossRef] [PubMed]
147. Özcan, S.; Alessio, N.; Acar, M.B.; Toprak, G.; Gönen, Z.B.; Peluso, G.; Galderisi, U. Myeloma cells can corrupt senescent
mesenchymal stromal cells and impair their anti-tumor activity. Oncotarget 2015, 6, 39482–39492. [CrossRef] [PubMed]
148. André, T.; Meuleman, N.; Stamatopoulos, B.; De Bruyn, C.; Pieters, K.; Bron, D.; Lagneaux, L. Evidences of early senescence in
multiple myeloma bone marrow mesenchymal stromal cells. PLoS ONE 2013, 8, e59756. [CrossRef]
149. Berenstein, R.; Blau, O.; Nogai, A.; Waechter, M.; Slonova, E.; Schmidt-Hieber, M.; Kunitz, A.; Pezzutto, A.; Doerken, B.; Blau, I.W.
Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the
DLK1-DIO3 genomic region. BMC Cancer 2015, 15, 68. [CrossRef]
Cancers 2021, 13, 68 21 of 22
150. Wallace, S.R.; Oken, M.M.; Lunetta, K.L.; Panoskaltsis-Mortari, A.; Masellis, A.M. Abnormalities of bone marrow mesenchymal
cells in multiple myeloma patients. Cancer 2001, 91, 1219–1230. [CrossRef]
151. Zdzisińska, B.; Bojarska-Junak, A.; Dmoszyńska, A.; Kandefer-Szerszeń, M. Abnormal cytokine production by bone marrow
stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch. Immunol. Ther. Exp. 2008, 56, 207–221.
[CrossRef] [PubMed]
152. Arnulf, B.; Lecourt, S.; Soulier, J.; Ternaux, B.; Lacassagne, M.N.; Crinquette, A.; Dessoly, J.; Sciaini, A.K.; Benbunan, M.;
Chomienne, C.; et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients
with multiple myeloma. Leukemia 2007, 21, 158–163. [CrossRef] [PubMed]
153. Guo, J.; Zhao, Y.; Fei, C.; Zhao, S.; Zheng, Q.; Su, J.; Wu, D.; Li, X.; Chang, C. Dicer1 downregulation by multiple myeloma cells
promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells.
Cell Death Dis. 2018, 9, 512. [CrossRef] [PubMed]
154. Li, S.; Jiang, Y.; Li, A.; Liu, X.; Xing, X.; Guo, Y.; Xu, Y.; Hao, Y.; Zheng, C. Telomere length is positively associated with the
expression of IL-6 and MIP-1α in bone marrow mesenchymal stem cells of multiple myeloma. Mol. Med. Rep. 2017, 16, 2497–2504.
[CrossRef] [PubMed]
155. Garderet, L.; Mazurier, C.; Chapel, A.; Ernou, I.; Boutin, L.; Holy, X.; Gorin, N.C.; Lopez, M.; Doucet, C.; Lataillade, J.J.
Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk. Lymphoma 2007, 48, 2032–2041. [CrossRef]
156. Li, B.; Shi, M.; Li, J.; Zhang, H.; Chen, B.; Chen, L.; Gao, W.; Giuliani, N.; Zhao, R.C. Elevated tumor necrosis factor-alpha
suppresses TAZ expression and impairs osteogenic potential of Flk-1+ mesenchymal stem cells in patients with multiple myeloma.
Stem Cells Dev. 2007, 16, 921–930. [CrossRef]
157. Pennisi, A.; Ling, W.; Li, X.; Khan, S.; Shaughnessy, J.D., Jr.; Barlogie, B.; Yaccoby, S. The ephrinB2/EphB4 axis is dysregulated in
osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood 2009, 114,
1803–1812. [CrossRef]
158. Corre, J.; Mahtouk, K.; Attal, M.; Gadelorge, M.; Huynh, A.; Fleury-Cappellesso, S.; Danho, C.; Laharrague, P.; Klein, B.; Rème,
T.; et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007, 21, 1079–1088. [CrossRef]
159. Fernando, R.C.; Mazzotti, D.R.; Azevedo, H.; Sandes, A.F.; Rizzatti, E.G.; de Oliveira, M.B.; Alves, V.L.F.; Eugênio, A.I.P.; de
Carvalho, F.; Dalboni, M.A.; et al. Transcriptome Analysis of Mesenchymal Stem Cells from Multiple Myeloma Patients Reveals
Downregulation of Genes Involved in Cell Cycle Progression, Immune Response, and Bone Metabolism. Sci. Rep. 2019, 9, 1056.
[CrossRef]
160. Janel, A.; Dubois-Galopin, F.; Bourgne, C.; Berger, J.; Tarte, K.; Boiret-Dupré, N.; Boisgard, S.; Verrelle, P.; Déchelotte, P.; Tournilhac,
O.; et al. The chronic lymphocytic leukemia clone disrupts the bone marrow microenvironment. Stem Cells Dev. 2014, 23,
2972–2982. [CrossRef]
161. Pontikoglou, C.; Kastrinaki, M.C.; Klaus, M.; Kalpadakis, C.; Katonis, P.; Alpantaki, K.; Pangalis, G.A.; Papadaki, H.A. Study of
the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients
with B-cell chronic lymphocytic leukemia. Stem Cells Dev. 2013, 22, 1329–1341. [CrossRef] [PubMed]
162. Ding, W.; Secreto, C.; Wu, X.; Braggio, E.; Zhang, Y.; Smoley, S.A.; Shanafelt, T.D.; Davila, J.; Call, T.G.; Van Dyke, D.L.; et al. CLL
Mesenchymal Stromal Cells Have Decreased Replicative Potential and Senescent Phenotype: Clinical and Biologic Implications.
Blood 2014, 124, 3282. [CrossRef]
163. Dubois, N.; Crompot, E.; Meuleman, N.; Bron, D.; Lagneaux, L.; Stamatopoulos, B. Importance of Crosstalk Between Chronic
Lymphocytic Leukemia Cells and the Stromal Microenvironment: Direct Contact, Soluble Factors, and Extracellular Vesicles.
Front. Oncol. 2020, 10, 1422. [CrossRef] [PubMed]
164. Paggetti, J.; Haderk, F.; Seiffert, M.; Janji, B.; Distler, U.; Ammerlaan, W.; Kim, Y.J.; Adam, J.; Lichter, P.; Solary, E.; et al. Exosomes
released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 2015,
126, 1106–1117. [CrossRef] [PubMed]
165. Fei, C.; Zhao, Y.; Guo, J.; Gu, S.; Li, X.; Chang, C. Senescence of bone marrow mesenchymal stromal cells is accompanied by
activation of p53/p21 pathway in myelodysplastic syndromes. Eur. J. Haematol. 2014, 93, 476–486. [CrossRef] [PubMed]
166. Poloni, A.; Maurizi, G.; Mattiucci, D.; Amatori, S.; Fogliardi, B.; Costantini, B.; Mariani, M.; Mancini, S.; Olivieri, A.; Fanelli,
M.; et al. Overexpression of CDKN2B (p15INK4B) and altered global DNA methylation status in mesenchymal stem cells of
high-risk myelodysplastic syndromes. Leukemia 2014, 28, 2241–2244. [CrossRef]
167. Abbas, S.; Kumar, S.; Srivastava, V.M.; Therese, M.M.; Nair, S.C.; Abraham, A.; Mathews, V.; George, B.; Srivastava, A.
Heterogeneity of Mesenchymal Stromal Cells in Myelodysplastic Syndrome-with Multilineage Dysplasia (MDS-MLD). Indian J.
Hematol. Blood Transfus. 2019, 35, 223–232. [CrossRef]
168. Terradas-Terradas, M.; Robertson, N.A.; Chandra, T.; Kirschner, K. Clonality in haematopoietic stem cell ageing. Mech. Ageing
Dev. 2020, 189, 111279. [CrossRef]
169. Zhao, Z.G.; Xu, W.; Yu, H.P.; Fang, B.L.; Wu, S.H.; Li, F.; Li, W.M.; Li, Q.B.; Chen, Z.C.; Zou, P. Functional characteristics of
mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes. Cancer Lett. 2012, 317, 136–143.
[CrossRef]
170. Ping, Z.; Chen, S.; Hermans, S.J.F.; Kenswil, K.J.G.; Feyen, J.; van Dijk, C.; Bindels, E.M.J.; Mylona, A.M.; Adisty, N.M.; Hoogen-
boezem, R.M.; et al. Activation of NF-κB driven inflammatory programs in mesenchymal elements attenuates hematopoiesis in
low-risk myelodysplastic syndromes. Leukemia 2019, 33, 536–541. [CrossRef]
Cancers 2021, 13, 68 22 of 22
171. Chen, S.; Zambetti, N.A.; Bindels, E.M.; Kenswill, K.; Mylona, A.M.; Adisty, N.M.; Hoogenboezem, R.M.; Sanders, M.A.; Cremers,
E.M.; Westers, T.M.; et al. Massive parallel RNA sequencing of highly purified mesenchymal elements in low-risk MDS reveals
tissue-context-dependent activation of inflammatory programs. Leukemia 2016, 30, 1938–1942. [CrossRef] [PubMed]
172. Geyh, S.; Oz, S.; Cadeddu, R.P.; Fröbel, J.; Brückner, B.; Kündgen, A.; Fenk, R.; Bruns, I.; Zilkens, C.; Hermsen, D.; et al. Insufficient
stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 2013, 27, 1841–1851.
[CrossRef] [PubMed]
173. Maurizi, G.; Mattiucci, D.; Mariani, M.; Ciarlantini, M.; Traini, S.; Mancini, S.; Olivieri, A.; Leoni, P.; Poloni, A. DNA demethylating
therapy reverts mesenchymal stromal cells derived from high risk myelodysplastic patients to a normal phenotype. Br. J. Haematol.
2017, 177, 818–822. [CrossRef] [PubMed]
174. Santamaría, C.; Muntión, S.; Rosón, B.; Blanco, B.; López-Villar, O.; Carrancio, S.; Sánchez-Guijo, F.M.; Díez-Campelo, M.; Alvarez-
Fernández, S.; Sarasquete, M.E.; et al. Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal
stromal cells from myelodysplastic syndrome patients. Haematologica 2012, 97, 1218–1224. [CrossRef] [PubMed]
175. Muntión, S.; Ramos, T.L.; Diez-Campelo, M.; Rosón, B.; Sánchez-Abarca, L.I.; Misiewicz-Krzeminska, I.; Preciado, S.; Sarasquete,
M.E.; de Las Rivas, J.; González, M.; et al. Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment
Crosstalk in Myelodysplastic Patients. PLoS ONE 2016, 11, e0146722. [CrossRef]
176. Medyouf, H.; Mossner, M.; Jann, J.C.; Nolte, F.; Raffel, S.; Herrmann, C.; Lier, A.; Eisen, C.; Nowak, V.; Zens, B.; et al.
Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit.
Cell Stem Cell 2014, 14, 824–837. [CrossRef]
177. Ganguly, P.; El-Jawhari, J.J.; Giannoudis, P.V.; Burska, A.N.; Ponchel, F.; Jones, E.A. Age-related Changes in Bone Marrow
Mesenchymal Stromal Cells: A Potential Impact on Osteoporosis and Osteoarthritis Development. Cell Transplant. 2017, 26,
1520–1529. [CrossRef]
178. Ganguly, P.; El-Jawhari, J.J.; Burska, A.N.; Ponchel, F.; Giannoudis, P.V.; Jones, E.A. The Analysis of In Vivo Aging in Human Bone
Marrow Mesenchymal Stromal Cells Using Colony-Forming Unit-Fibroblast Assay and the CD45(low)CD271(+) Phenotype. Stem
Cells Int. 2019, 2019, 5197983. [CrossRef]