Solutions Chapter 7
Solutions Chapter 7
CHAPTER 7
P.E. 7.1 z
1 2
2
5, cos 1 0, cos 2
27
a a y a x a y
a al a = x az
2 2
10 2 a a y
H3 0 x 30.63a x 30.63a y mA/m
4 (5) 27 2
P.E. 7.2
2 3
(a) H 1 az 0.1458az A/m
4 (2) 13
12
32 42 5, 2 0, cos 1 ,
(b) 13
3a 4a z 4a x 3a z
a a y x
5 5
2 12 4a x 3az 1
H 1 4ax 3az
4 (5) 13 5 26
= 48.97a x 36.73a z mA/m
P.E. 7.3
(a) From Example 7.3,
Ia 2
H az
2(a 2 z 2 )3/ 2
At (0,0,-1cm), z = 2cm,
50 103 25 104
H a z 400.2a z mA/m
2(52 22 )3/ 2 106
50 103 25 104
H a z 57.3a z mA/m
2(52 92 )3/ 2 106
P.E. 7.4
NI 2 103 50 103 (cos 2 cos 1 )a z
H cos cos 1 z
a
2 0.75
2
2L
100
1.5
cos 2 cos 1 a z
0.75
(a) At (0,0,0), 90 o , cos 2
0.75 2 0.05 2
= 0.9978 1 2
100
H 0.9978 0 az
1.5
= 66.52 az A/m
(b) At (0,0,0.75), 2 90 o ,cos 1 0.9978 1 2
100
H 0 0.9978 a z
1.5
= 66.52az A/m
0.5
(c) At (0,0,0.5), cos 1 0.995
0.5 2 0.05 2
0.25 1
cos 1 0.9806 2
0.25 2 0.05 2
100
H 0.9806 0.995 a z
1.5
= 131.7az A/m
P.E. 7.5
1
H K an
2
1
(a) H (0, 0, 0) 50a z (a y ) 25a x mA/m
2
1
(b) H (1,5, 3) 50a z a y 25a x mA/m
2
P.E. 7.6
NI
, a a, 9< 11
H 2
0, otherwise
196
P.E. 7.7
(a) B A ( 4 xz 0 )a x (0 4 yz )a y ( y 2 x 2 )a z
B (1, 2,5) 20a x 40a y 3a z Wb/m2
4 1 4 1
(b) B.dS ( y 2 x 2 )dxdy y 2 dy 5 x 2 dx
y 1 x 0 1 0
1 5
(64 1) 20 Wb
3 3
Alternatively,
1 4 0
A.dl x 2 (1)dx y 2 (1)dy x 2 (4)dx 0
0 1 1
5 65
20 Wb
3 3
P.E. 7.8
z
R
h
k y
dS
kdS R
H ,
4 R 3
dS dxdy, k k y a y ,
R ( x, y, h),
197
k R (ha x xa z )k y ,
k y (ha x xa z )dxdy
H 3
4 ( x 2 y 2 h 2 ) 2
k y ha x dxdy k y az
xdxdy
4 (x
2
y 2 h2 )
3
2
4 (x
2
y 2 h2 )
3
2
k y ha x 2
d d k y h2 a x
3 d ( 2 )
H ( h )
2 2 2
4 0 0 ( 2 h2 )
3
2 4 0
2
kyh 1 ky
ax 0 ax
2 ( 2 h2 ) 12 2
1
Similarly, for point (0,0,-h), H = k y a x
2
Hence,
1
k yax , z0
H 2
1
k a , z0
2 y x
Prob. 7.1
(a) See text
(b) Let H = Hy + Hz
I
For H z a ( 3) 2 4 2 5
2
( 3a x 4a y ) ( 3a y 4a x )
a a z
5 5
20
Hz (4a x 3a y ) 0.5093a x 0.382a y
2 (25)
I
For H y a , ( 3) 2 5 2 34
2
(3a x 5a z ) 3a z 5a x
a a y
34 34
198
10
Hy (5a x 3a z ) 0.234a x 0.1404a z
2 (34)
H = Hy + Hz
= 0.7433ax + 0.382ay + 0.1404az A/m
Prob. 7.2
I I 2 100
H 31.83 m
2 2 H 2 (10 10 )
3
Prob. 7.3
Let H H1 H 2
where H1 and H 2 are respectively due to the lines located at (0,0) and (0,5).
I
H1 a , 5, a a a a z a x a y
2
10 a
H1 ay y
2 (5)
I
H2 a , 5 2, a a a , a a z
2
5a 5a y a x a y
a x
5 2 2
a a y -a x a y
a a z x
2 2
10 -a x a y 1
H2 ( -a x a y )
2 5 2 2 2
ay 1
H H1 H 2 (-a x a y ) 0.1592a x 0.1592a y
2
199
Prob. 7.4
Idl R
H dH H1 H 2
4 R 3
For H1 , R (3,1, 2) (0, 0, 0) (3,1, 2), R 9 1 4 14
1 0 0
Idl R 4 105 4 105 (0, 2,1)
3 1 2
4 105 (0, 2,1)
H1 (0, 0.01215, 0.006076)105
4 (14) 3/2
Prob. 7.5
Let H =H y H z
I
For H z , Hz a
2
where I = 20, = 3a x 4a y , = 32 42 5
3a x 4a y 0 0 1
a a a a z 0.8a x 0.6a y
5 0.6 0.8 0
20
Hz (0.8a x 0.6a y ) 0.5093a x 0.382a y
2 (5)
I
For H y , Hy a
2
where I = 10, = 3a x 5a z , = 32 52 34
1 0 1 0 1
a a a (5a x 3a z )
34 3 0 5 34
10
Hy (5a x 3a z ) 0.234a x 0.1404a z
2 (34)
H =H y H z 0.7432a x 0.382a y 0.1404a z A/m
200
Prob. 7.6
y
1 A
2 6A
P
B x
O 1 1
I
H cos 2 cos 1 a
4
1 2
1 135o , 2 45o , 2
2 2
a x a y a x a y 1 -1 1 0
a al a az
2 2 2 -1 -1 0
H
2
6
cos 45o cos135o az 3 az
4
2
H 0, 0, 0 0.954a z A/m
Prob. 7.7
10
(a) At (5,0,0), 5, a a y , cos 1 0, cos 2
125
2 10
H ( )a y 28.471a y mA/m
4 (5) 125
10
(b) At (5,5,0), 5 2, cos 1 0, cos 2
150
a x a y a x a y
a a z
2 2
2 10 a x a y
H ( ) 13(a x a y ) mA/m
4 (5 2) 150 2
201
10
(c ) At (5,15,0), 250 5 10, cos 1 0, cos 2
350
5a x + 15a y
5a y - 15a x
a a z
5 10 5 10
2 10 15a x 5a y
H ( ) 5.1a x 1.7a y mA/m
4 (5 10) 350 5 10
d) At (5,-15,0), by symmetry,
Prob. 7.8
z C (0, 0, 5)
y
1
2
x A (2, 0, 0) B (1, 1, 0)
202
Prob. 7.9
y
(a) Let H H x H y 2H x
I
Hx cos 2 cos 1 a
4 5A 1
2
x
O
203
Hx
5
4 2
cos 45 o
cos 180o a z 0.3397a z
H
2 H x 0.6792 a z A/m
(b) H Hx H y
5
where H x 1 0 a , a a x a y a z
4 2
198.9a z mA/m
H y 0 since 1 2 0
H 0.1989 a z A/m
(c ) H Hx H y
5
where H x 1 0 a x a z 198.9 a y mA/m
4 2
1 0 a y a z
5
Hy 198.9 a x mA/m
4 2
H 0.1989 a x 0.1989 a y A/m.
Prob. 7.10
For the side of the loop along y-axis,
I
H1 cos 2 cos 1 a
4
2
where a a x , 2 tan 30o , 2 30o , 1 150o
3
H1
5
4 2
3
cos 30o cos 150o a x
15
8
ax
Prob. 7.11
3
Let H H1 H 2 H 3 H 4
where H n is the contribution by side n. 4 2
(a) H 2H1 H 2 H 4 since H1 H 3
I 10 6 1 1
H1 cos 2 cos 1 a
4 4 2 40 az
2
10 2 10 1
H2 2 az , H 4 2 az
4 6 40 4 2 2
5 3 1 5 5
H a z = 1.964a z A/m
2 10 2 6 10 2 2
(b) At 4, 2, 0 , H 2 H1 H 4
10 8 10 4
H1 az , H 4 az
4 2 20 4 4 20
2 5 1
1 az
4
H 1.78a z A/m
(c ) At 4, 8, 0 , H H1 2H 2 H 3
10 4 10 8 1
H1 2 az , H 2 az
4 8 4 5 4 4 4 5 2
10 2
H3 a z
4 4 2
5 1 4 4
H az 0.1178a z A/m
8 5 5 2
(d ) At 0, 0, 2 ,
10 8 10
H1 0 ax az ay
4 2 68 68
10 4 2a 8a x 5 a x 4a z
H2 0 ay z
4 68 84 68 17 84
205
10 8 2a 4a y a y 2a z
H3 0 ax x
4 20 84 20 21
10 4 5a x
H4 0 a y a z
4 2 20 20
5 5 1 10 20 2
H ax ay az
34 21 20 21 68 34 21 21
0.3457 ax 0.3165 a y 0.1798 az A/m
Prob. 7.12
I
H 4 H1 4 (cos 2 cos 1 )a
4
a 2cm, I 5mA, 2 45o , 1 90o 45o 135o
a a a a y (a x ) a z
I 1 1 2I 2 5 103
H ( )a z az a 0.1125a z
a 2 2 a 2 102 z
Prob. 7.13
206
H1
I
cos 2 cos 1
4
where r , cos 2 cos(90 ) sin
n n
cos 1 sin
n
I
H1 2 sin
4 r n
nI
H nH1 sin
2 r n
3I
(b) For n 3, H sin
2 r 3
2
r cot 30o 2 r
3
3 5 3 45
H 1.79 A/m.
2 2 2 8
3
4I 45 1
For n 4, H sin
2r 4 22 2
1.128 A/m.
(c) As n ,
nI nI I
H lim sin
n 2r n 2r n 2r
From Example 7.3, when h 0,
I
H
2r
which agrees.
207
Prob. 7.14
4
3
1
2
2
Let H H1 H 2 H 3 H 4
I 10
H1 az a z 62.5 a z
4a 4 4 102
2
cos 2 cos 90o a z , 2 tan 1
I 4
H2 H4 2.29o
4 4 10 100
19.88 a z
I 100
H3 2 cos a z , tan 1 87.7 o
4 1 4
10
2 cos 87.7o a z 0.06361 a z
4
H 62.5 2 19.88 0.06361 a z
102.32 a z A/m.
Prob. 7.15
4 2
o
0 x
1 1 2
208
Let H H1 H 2 H 3 H 4
which correspond with sides 1, 2, 3, and 4 as shown in the figure above.
H1 and H 3 can be found using eq. (7.12). It can be shown that
H 3 H1
Idl R
For H 4 , dH 4 , dl 1d a , R 1a
4 R 3
I 12 d a (a ) Id (a z )
dH 4
413 41
I (a z ) o I (a )
H4
41 0 d o z
41
Similarly, for H 2 ,
Io (a z )
H2
4 2
Io 1 1
H H1 H 2 H 3 H 4 az
4 1 2
Prob. 7.16
From Example 7.3,
I Ia 2
H1 az , H2 az
2a 2[a 2 d 2 ]3/2
I 1 a2 10 1 32
H = H1 H 2 2 a
2 3/2 z 2
2 2 z
a
2 a [a d ] 2 3 10 [3 4 ] (10 )
2 3/2
1 9
500 a z 202.67a z A/m
3 125
Prob. 7.17
2
2
209
nI
H cos 2 cos 1
2
cos 2 -cos 1 2
4
1
2 2
a2
(b)
1 2
a 4
1 90o , tan 2 0.2 2 11.31o
b 20
nI 150 0.5
H cos 2 cos 11.31o 36.77 A/m
2 2
Prob. 7.18
y
P (4, 3, 2)
x
210
Let H Hl H p
1
Hl a
2
4, 3, 2 (1, -2, 2) (3, 5, 0), 34
3a x 5a y
a , al a z
34
3a 5a y 3a y 5a x
a al a a z x
34 34
20 5a x 3a y
Hl x10 ( 1.47a y 0.88a y ) mA/m
-3
2 34
Hp
1
2
K an
1
2
100 103 az -a x 0.05a y A/m
H H l H p 1.47a x 49.12 a y mA/m
211
Prob. 7.19
(b)
I
a
For a, H dl Ienc 0 H 0
I 2 a2
For a b, H 2
b2 a 2
I 2 a2
H
2 b2 a2
I
For b, H 2 I H
2
Thus,
0, a
I 2 a2
H 2 2 , a b
2 b a
I
, b
2
212
Prob.7.20
x
-1 1
1
H K an
2
1 1
(20a x ) (a y ) (20a x ) a y
2 2
10(a z ) 10(a z )
20a z A/m
Prob. 7.21
1 1
HP k an 10a x a z 5a y
2 2
I I I
HL a (a x a z ) ay
2 2 (3) 6
I
H P H L 5a y ay 0 I 30 94.25 A
6
Prob. 7.22
(a)
From eq. (7.29),
I
2 a 2 a , 0 a
H=
I
a , a
2
(b)
I
1 d a, a
J = H= ( H )a z a 2 z
d 0a z , a
213
Prob. 7.23
L
H dl I enc J dS
2 Jo
H 2 d d
0
0
J o 2
H J o
For > a
2 a
Jo
H dl = J dS =
=0 =0
d d
H 2 J o 2 a
Joa
H
J o , 0< <a
Hence H J o a
, >a
Prob. 7.24
J
(a) H x y z 2( x y )a z
y2 x2 0
(b) dS dxdya z ,
5 2 2 5
x2 2 y2 5
I J dS = (2 x 2 y )dxdy 2 dy xdx 2 dx ydy 2(4) 2(2)
S 1 0 0 1 2 0 2 1
4(4 0) 2(25 1) 16 48 32 A
Prob. 7.25
1 d 1 d 2 2k
(a) J H ( H )a z ( ko )a z o a z
d d a a
(b)For >a,
214
2
a
2ko 2ko 2 a
H dl I enc J dS
0 0 a
d d
a
(2 )
2 0
ko a
H 2 2 ko a
H
a
H ko a , a
Prob. 7.26
J H x y z (2 x 2 y )a z
y2 x2 0
At (1,-4,7), x =1, y = -4, z=7,
J 2(1) 2(4) a z 10a z A/m 2
Prob. 7.27
(a)
1 1
J H ( H )a z (103 3 )a z
3 103 a z A/m
2
(b)
Method 1:
2 2
I J dS 3 d d 10 3 10 3 3
2
d d
S 0 0
2 3
3 103 (2 ) 16 103 A 50.265 kA
3 2
Method 2:
2
I H dl 10 d 103 (8)(2 ) 50.265 kA
3 2
L 0
Prob. 7.28
1 d 1 d
J H ( H )a z (4 2 )a z 8a z
d d
I J dS JS 8( a 2 ) 8 104 2.513 mA
S
215
Prob. 7.29
o I
(a) B a
2
At (-3,4,5), =5.
4 107 2
B a 80a nWb/m 2
2 (5)
o I d dz 4 107 2 6 4
B dS ln z
(b) 2 2 2 0
16 10 ln 3 1.756 Wb
7
Prob. 7.30
Let H H1 H 2
where H1 and H 2 are due to the wires centered at x 0 and x 10cm respectively.
(a) For H1 , 50 cm, a al a a z a x a y
5 50
H1 ay a
2 5 10
2
y
For H 2 , 5 cm, a a z a x a y , H 2 H1
100
H 2H1 ay
31.83 a y A/m
2a a y 2a y a x
(b) For H1 , a a z x
5 5
5 a x 2a y
H1 2 3.183a x 6.366a y
2 5 5 10 5
For H 2 , a a z a y a x
5
H2 a x 15.915a x
2 5
H H1 H 2
12.3 a x 6.366a y A/m
216
Prob. 7.31
(a) I J dS
2 2
a
2 a
3
0 0
J o (1
a 2
) d d J o d (
0 0
a2
)d
2 4 2 2 a 2
2 J o 2 a
0 Jo a
2 4a 2 2
1
a2 Jo
2
(b) H dl = I enc J dS
For < a,
H 2 J dS
2 4
= 2 J o 2
2 4a
2 2
H 2 2 J o 2
4 a2
Jo 2
H 2
4 a2
For > a,
H dl = J o dS = I
1
H 2 a 2 J o
2
2
a Jo
H
4
Jo 2
2 , a
4 a2
Hence H
aJ o
, >a
4
217
Prob. 7.32
0 I
B a
2
da b 0 I
B dS d z 0 2
d dz
μ 02
I
b π
d
+ d
a
I
n
Prob.7.33
For a whole circular loop of radius a, Example 7.3 gives
Ia 2 a z
H 3/ 2
2 a 2 h 2
Let h
0
I
H= az
2a
For a semicircular loop, H is halfed
I
H= az
4a
o I
B o H az
4a
Prob. 7.34
(b) dS dydza x
4 1
y3 1 4
B dS y 2 dydz ( z ) 1 Wb
z 1 y 0
3 0 1
218
B
(c ) H = J
J
o
B x y z 2 za x 2 xa y 2 ya z
y 2 z 2 x2
2
J ( za x xa y ya z ) A/m 2
o
(d)
Since B =0,
= B dS Bdv 0
S v
Prob. 7.35
h
On the slant side of the ring, z a
6
where H1 and H 2 are due to the wires centered at x 0 and x 10cm respectively.
o I
B.dS 2 d dz
o I a b
h
( a ) dz d o Ih a b a
2 a
b
z 0
2 b a
1 d
o Ih ab
b a ln as required.
2 b a
If a 30 cm, b 10 cm, h 5 cm, I 10 A,
4 107 10 0.05 4
0.1 0.3 ln
2 10 10
2
3
1.37 108 Wb
Prob. 7.36
50o
cos 2
4 107 106 0.2
2 0
Prob. 7.37
/4 2 2 /4
20
B dS sin d d 20 d
2
sin
2
d
S 0 1
1 0
/4
1 1 /4
20(1)
0
2
(1 cos 2 )d 10( sin 2 )
2 0
1
10( ) 2.854 Wb
4 2
Prob. 7.38
B dS , dS r 2sin d d ar
S
2 /3
2
cos r 2sin d d 2 d cos sin d
r3 r 1 0 0
sin / 3
/3 2
2(2 ) sin d (sin ) 4 2 sin 2 ( / 3)
0
2 0
4.7123 Wb
Prob. 7.39
o J R
4 v R 3
B o H dv
Since current is the flow of charge, we can express this in terms of a charge moving with
velocity u. Jdv = dqu.
o qu R
B
4 R 3
In our case, u and R are perpendicular. Hence,
o qu 4 107 1.6 1019 2.2 106 1.6 1020
B
4 R 2 4 (5.3 1011 ) 2 (5.3) 2 1022
12.53 Wb/m 2
220
Prob. 7.40
A
(a) ya sin ax 0
A
x y z
y cos ax 0 y e-x
a x e x a y cos axa z 0
A is neither electrostatic nor magnetostatic field
1 1
(b) B
B
20 0
B 0
B can be E-field in a charge-free region.
1 2
(c ) C (r sin ) = 0
r sin
1 3
C
1
r sin
r 2 sin 2 ar -
r r
(r sin )a 0
C is possibly H field.
Prob. 7.41
(a) D 0
D x y z
y2z 2(x 1)yz -(x 1)z 2
2(x 1)ya x . . . 0
D is possibly a magnetostatic field.
1 sin
(b) E ( z 1) cos 0
z
1
E cos a . . . 0
2
E could be a magnetostatic field.
1 1 sin
(c ) F 2cos + 0
r r
2
rsin r 2
1 2 sin
F
r r
r 1 sin
r 2
a 0
Prob. 7.42
o Idl o ILaz
A
4 r 4 r
This requires no integration since L << r.
1 Az A
B A a z a
But r 2 z 2
o ILa z
A
4 ( 2 z 2 )1/ 2
Az o IL IL 1
( 2 z 2 )1/ 2 o ( )( 2 z 2 ) 3/ 2 (2 )
4 4 2
o IL a IL a
B o 3
4 ( z )
2 2 3/ 2
4 r
Prob. 7.43
B o H A x y z sin xa y 10 cos ya z
10sin y 0 4 cos x
H sin xa y 10 cos ya z
o
J H x y z 10 sin ya x cos xa z
o o
0 sin x 10 cos y
2
J 10sin ya x cos xa z
o
Prob. 7.44
(a)
1 2 1 1 2 cos 1 sin 2
A (r Ar ) ( A sin ) 0 2 3
r r
2
r sin r r r r sin r
1 1
2 cos 4 2sin cos 0
r 4
r sin
222
(b)
1 A 1 1 Ar
B A ( A sin ) ar r sin r (rA ) a
r sin
1 A
(rA ) r a
r r
1 sin 2sin 1 2sin 2sin
0 ar 0a 2 a a 0
r r r 3
r r r3 r 3
Prob. 7.45
(a) B A x y z
2x 2 y yz xy 2 xz 3 6 xy 2z 2 y 2
B ( 6xz 4 x 2 y 3xz 2 )a x y 6yz-4xy 2 a y y 2 z 3 2 x 2 z a z Wb/m 2
(b)
6 xz 4 x y 3 xz 2 dy dz
2 2
2
x 1
z 0 y 0
6 xz dy dz
0
4 0
x 2 y dy dz 3 0
xz 2 dy dz
2 2
2 2 2 2
6 dz dy 4 dz y dy 3 dy z 2 dz
0 0 0 0
0 0
y 2 2 z 3 2
6(2) 2 4(2) +3(2) -24+16+16
2 3
0 0
8 Wb
A x A y A z
(c ) A 4xy 2xy 6 xy 0
x y z
B 6 z 8 xy 3 z 3 6 z 8 xy 1 3z 3 1 0
Prob. 7.46
1 A 1 1 Ar
B A ( A sin ) ar (rA ) a
r sin r sin r
1 k 1
(sin 2 )ar (kr 1 ) sin a
r sin r
2
r r
k k sin 2k cos k sin
3 2sin cos ar a ar a
r sin r 3
r 3
r3
Prob. 7.47
1 Az A
B A a z a
15
e cos a 15 e sin a
1 1
B 3, , -10 5 e 3 a 15 e 3 a
4 2 2
B 107 15 3 1
H e a a
o 4 2 3
H 14 a 42 a 104 A/m
15
B dS e cos d dz
15 z sin 0 2 e5 150 e 5 1.011 Wb
10
0
Prob. 7.48
1 A 1 1 Ar
B A ( A sin ) ar r sin r (rA ) a
r sin
1 A
(rA ) r a
r r
1 10 1
2sin cos ar (10) sin a 0a
r sin r r r
20
B 2 cos ar
r
At (4, 60o , 30o ), r = 4, =60o
B 1 20
H 7 2
cos 60o ar 4.974 105 ar A/m
o 4 10 4
224
Prob. 7.49
A A
B A x y z z ax z a y
y x
0 0 Az ( x, y )
x y x y
sin sin ax cos cos ay
2 2 2 2 2 2
Prob. 7.51
1 1
B A ( A sin )ar (rA )a
r sin r r
1 Ao A
(2sin cos )ar o sin (r 2 )a
r sin r 2
r
A
3o (2 cos ar sin a )
r
225
Prob. 7.52
(a) J H x y z (2 yz x 2 )a x (2 xz 2 xy )a z
xy 2 x 2 z y 2 z
At (2,-1,3), x=2, y=-1, z=3.
J 2a x 16a z A/m 2
v
(b) J 0 2x 2x 0
t
At (2,-1,3),
v
0 C/m3s
t
Prob. 7.53
(a) B A
1 Az A A A 1 A
a z a ( A ) a z
z z
A
z a 20 a Wb/m 2
B 20
H a A/m
o o
1
J H ( A )a z
1 40
(40 )a z a z A/m 2
o o
2
40
2
(b) I J dS d d , dS = d d a z
o
0 0
2
40 40 2
2
d d (2 )
2
o 0 0
o 2 0
80 2 106
400 A
4 107
226
Ia 2 Iz
z a2
3
Vm 2 2
dz c
2 z2 a 2
1
2 2
As z , Vm 0 , i.e.
I I
0 c c
2 2
Hence,
I z
Vm 1
2 z2 a 2
Prob. 7.55
I
H a
2
But H Vm J 0
I 1 Vm I
a a Vm C
2 2
I
At 10, 60o , 7 , 60o , Vm 0 0 C
3 2 3
I
or C
6
I I
Vm
2 6
At 4, 30 , 2 ,
o
30o
6
,
I I I 12
Vm
2 6 6 12 12
Vm 1A
227
Prob. 7.56
For an infinite current sheet,
1 1
H K an 50ay an 25ax
2 2
But H Vm J 0
Vm
25 ax
an Vm 25x c
x
At the origin, x 0, Vm 0, c 0, i.e.
Vm 25 x
(a) At 2, 0, 5 , Vm 50A.
Prob. 7.57
V 1 V V
(a) V a a az
z
1 2V 1 2V 2V 2V
a a
z dz z z
1 2V 2V
az 0
d
1 Az A
(b) A a
z
A Az 1 A
a
A
az
z
1 2 Az 1 A 1 A 1 2 Az
2
z z
1 1 A
z
A
z
2 A 1 A 2 A 1 A
0
z z z z
228
Prob. 7.58
1 2 2
1
'
2 2
a a a z x x' y y' z z'
x ' y ' z '
x y
R
1 2 2
3
x
a y and a z terms
2 2
2 x x' a x x' y y ' z z'
2
R
R3
1
x x' y y ' z z '
2 2
R r r'
2 2
1 2 2
1
2 2
a a a z x x' y y' z z'
x y z
x y
R
2 2
3
1
2 x x' a x x x' y y' z z'
a y and az terms
2 2
2
x x' a z y y ' a y z z' a z R
3
R3 R