0% found this document useful (0 votes)
15 views35 pages

Solutions Chapter 7

The document contains various problems and examples related to magnetic fields and their calculations, including vector representations and integration techniques. It discusses the magnetic field strength (H) in different scenarios, providing formulas and calculations for specific points in space. Additionally, it includes examples of applying the right-hand rule and calculating the magnetic field due to current-carrying conductors.

Uploaded by

Yasar Samin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
15 views35 pages

Solutions Chapter 7

The document contains various problems and examples related to magnetic fields and their calculations, including vector representations and integration techniques. It discusses the magnetic field strength (H) in different scenarios, providing formulas and calculations for specific points in space. Additionally, it includes examples of applying the right-hand rule and calculating the magnetic field due to current-carrying conductors.

Uploaded by

Yasar Samin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 35

194

CHAPTER 7

P.E. 7.1 z

1 2

2
  5, cos 1  0, cos  2 
27
 a  a y  a x  a y
a  al  a =  x   az 
 2  2

10  2   a  a y 
H3    0   x   30.63a x  30.63a y mA/m
4 (5)  27  2 

P.E. 7.2
2  3 
(a) H   1  az  0.1458az A/m
4 (2)  13 
12
  32  42  5,  2  0, cos 1   ,
(b) 13

 3a  4a z  4a x  3a z
a  a y   x 
 5  5
2  12   4a x  3az  1
H 1     4ax  3az 
4 (5)  13  5  26
= 48.97a x  36.73a z mA/m

P.E. 7.3
(a) From Example 7.3,
Ia 2
H az
2(a 2  z 2 )3/ 2
At (0,0,-1cm), z = 2cm,
50  103  25 104
H a z  400.2a z mA/m
2(52  22 )3/ 2  106

(b) At (0,0,10cm), z = 9cm,


195

50  103  25 104
H a z  57.3a z mA/m
2(52  92 )3/ 2  106

P.E. 7.4
NI 2  103  50  103 (cos  2  cos 1 )a z
H  cos   cos 1 z
a 
2  0.75
2
2L

100
1.5
cos  2  cos  1 a z
0.75
(a) At (0,0,0),   90 o , cos  2 
0.75 2  0.05 2
= 0.9978 1 2
100
H  0.9978  0  az
1.5

= 66.52 az A/m
(b) At (0,0,0.75),  2  90 o ,cos  1   0.9978 1 2
100
H  0  0.9978  a z
1.5
= 66.52az A/m
 0.5
(c) At (0,0,0.5), cos  1    0.995
0.5 2  0.05 2
0.25 1
cos  1   0.9806 2
0.25 2  0.05 2
100
H  0.9806  0.995 a z
1.5
= 131.7az A/m

P.E. 7.5
1
H K  an
2
1
(a) H (0, 0, 0)  50a z  (a y )  25a x mA/m
2
1
(b) H (1,5, 3)  50a z  a y  25a x mA/m
2

P.E. 7.6
 NI
 ,   a      a, 9<  11
H   2

 0, otherwise
196

(a) At (3,-4,0),   3 2  4 2 =5cm ‹ 9cm


H 0
(b) At (6,9,0),   6 2  9 2 = 117 ‹ 11
103  100 103
H   147.1 A/m
2 117  102

P.E. 7.7
(a) B    A  ( 4 xz  0 )a x  (0  4 yz )a y  ( y 2  x 2 )a z
B (1, 2,5)  20a x  40a y  3a z Wb/m2
4 1 4 1
(b)    B.dS    ( y 2  x 2 )dxdy   y 2 dy  5 x 2 dx
y 1 x  0 1 0

1 5
 (64  1)   20 Wb
3 3

Alternatively,
1 4 0
   A.dl   x 2 (1)dx   y 2 (1)dy   x 2 (4)dx  0
0 1 1

5 65
   20 Wb
3 3

P.E. 7.8
z

R
h

k y

dS

kdS  R
H  ,
4 R 3

dS  dxdy, k  k y a y ,
R  ( x,  y, h),
197

k  R  (ha x  xa z )k y ,
k y (ha x  xa z )dxdy
H  3
4 ( x 2  y 2  h 2 ) 2

k y ha x   dxdy k y az  
xdxdy

4   (x
 
2
 y 2  h2 )
3
2

4   (x
 
2
 y 2  h2 )
3
2

The integrand in the last term is zero because it is an odd function of x.

k y ha x 2 
 d d  k y h2 a x 
3 d ( 2 )
H     (  h )
2 2 2
4  0  0 (  2  h2 )
3
2 4 0
2

kyh  1   ky
 ax   0  ax
2  (  2  h2 ) 12  2
 
1
Similarly, for point (0,0,-h), H =  k y a x
2
Hence,
1
 k yax , z0
H 2
1
 k a , z0
2 y x

Prob. 7.1
(a) See text
(b) Let H = Hy + Hz
I
For H z  a   ( 3) 2  4 2  5
2
( 3a x  4a y ) ( 3a y  4a x )
a   a z  
5 5
20
Hz  (4a x  3a y )  0.5093a x  0.382a y
2 (25)

I
For H y  a  ,   ( 3) 2  5 2  34
2

(3a x  5a z ) 3a z  5a x
a  a y  
34 34
198

10
Hy  (5a x  3a z )  0.234a x  0.1404a z
2 (34)
H = Hy + Hz
= 0.7433ax + 0.382ay + 0.1404az A/m

Prob. 7.2

I I 2 100
H      31.83 m
2 2 H 2 (10 10 ) 
3

Prob. 7.3

Let H  H1  H 2
where H1 and H 2 are respectively due to the lines located at (0,0) and (0,5).
I
H1  a ,   5, a  a  a  a z  a x  a y
2
10 a
H1  ay  y
2 (5) 
I
H2  a ,   5 2, a  a  a  , a  a z
2
5a  5a y a x  a y
a  x 
5 2 2
 a  a y  -a x  a y
a  a z   x 
 2  2
10  -a x  a y  1
H2    ( -a x  a y )
2 5 2  2  2
ay 1
H  H1  H 2   (-a x  a y )  0.1592a x  0.1592a y
 2
199

Prob. 7.4

Idl  R
H  dH   H1  H 2
4 R 3
For H1 , R  (3,1, 2)  (0, 0, 0)  (3,1, 2), R  9  1  4  14
1 0 0
Idl  R  4 105  4 105 (0, 2,1)
3 1 2
4  105 (0, 2,1)
H1   (0, 0.01215, 0.006076)105
4 (14) 3/2

For H 2 , R  (3,1, 2)  (0, 0,1)  (3,1, 3), R  9  1  9  19


0 1 0
Idl  R  6 105  6  105 (3, 0, 3)
3 1 3
6  105 (3, 0, 3)
H1   (0.017, 0, 0.017)105
4 (19) 3/2

H  H1  H 2  (0.0173, 0.01215, 0.01122)105  (0.173a x  1.215a y  0.1122a z )  A/m

Prob. 7.5

Let H =H y  H z
I
For H z , Hz  a
2
where I = 20,  =  3a x  4a y ,  = 32  42  5
 3a x  4a y  0 0 1
a  a  a  a z     0.8a x  0.6a y
 5  0.6 0.8 0
20
Hz  (0.8a x  0.6a y )  0.5093a x  0.382a y
2 (5)
I
For H y , Hy  a
2
where I = 10,  =  3a x  5a z ,  = 32  52  34
1 0 1 0 1
a  a  a   (5a x  3a z )
34 3 0 5 34
10
Hy  (5a x  3a z )  0.234a x  0.1404a z
2 (34)
H =H y  H z  0.7432a x  0.382a y  0.1404a z A/m
200

Prob. 7.6
y
1 A
2 6A
P


B x
O 1 1

I
H   cos  2  cos 1  a
4
1 2
1  135o ,  2  45o ,   2 
2 2
 a x  a y   a x  a y  1 -1 1 0
a  al  a          az
 2   2  2 -1 -1 0
H


2
6
 cos 45o  cos135o  az  3 az 
4
2
H  0, 0, 0   0.954a z A/m

Prob. 7.7
10
(a) At (5,0,0),   5, a  a y , cos 1  0, cos  2 
125
2 10
H ( )a y  28.471a y mA/m
4 (5) 125
10
(b) At (5,5,0),   5 2, cos 1  0, cos  2 
150
 a x  a y  a x  a y
a  a z   
 2  2
2 10  a x  a y 
H ( )   13(a x  a y ) mA/m
4 (5 2) 150  2 
201

10
(c ) At (5,15,0),   250  5 10, cos 1  0, cos  2 
350
 5a x + 15a y
 5a y - 15a x
a  a z   
 5 10  5 10
2 10  15a x  5a y 
H ( )   5.1a x  1.7a y mA/m
4 (5 10) 350  5 10 
d) At (5,-15,0), by symmetry,

H  5.1a x  1.7a y mA/m

Prob. 7.8
z C (0, 0, 5)

y
1
2
x A (2, 0, 0) B (1, 1, 0)
202

(a) Consider the figure above.


AB  1, 1, 0    2, 0, 0    1, 1, 0 
AC   0, 0, 5   2, 0, 0    2, 0, 5
AB  AC  2, i.e AB and AC are not perpendicular.
AB  AC
cos 180o  1 
2 2
   cos 1  
AB AC 2 29 29
BC   0, 0, 5   1, 1, 0    1,  1, 5 
BA  1,  1, 0 
BC  BA 1  1
cos  2    0
BC BA BC BA
i.e. BC     1,  1, 5 ,   27
a  al  a 
 1, 1, 0    1,  1, 5 
 5, 5, 2 
2 27 54
10  2   5, 5, 2  5  5, 5, 2  A/m
H2   0    
4 27  29  2 27 2 29 27
 27.37 a x  27.37a y  10.95 a z mA/m

(b) H  H1  H 2  H 3   0,  59.1, 0    27.37, 27.37, 10.95 


  30.63, 30.63, 0 
  3.26 a x  1.1 a y  10.95a z mA/m

Prob. 7.9
y

(a) Let H  H x  H y  2H x
I
Hx   cos  2  cos 1  a
4 5A 1
2
x
O
203

where a   a x  a y   a z , 1  180o ,  2  45o

Hx 
5
4  2 
 cos 45 o
 cos 180o   a z   0.3397a z

H
 2 H x  0.6792 a z A/m
(b) H  Hx  H y
5
where H x  1  0  a , a   a x  a y  a z
4  2 
 198.9a z mA/m
H y  0 since 1   2  0
H  0.1989 a z A/m
(c ) H  Hx  H y
5
where H x  1  0   a x  a z   198.9 a y mA/m
4  2 

1  0   a y  a z 
5
Hy   198.9 a x mA/m
4  2 
H  0.1989 a x  0.1989 a y A/m.

Prob. 7.10
For the side of the loop along y-axis,
I
H1   cos  2  cos 1  a
4
2
where a   a x ,   2 tan 30o  ,  2  30o , 1  150o
3

H1 
5
4 2
3
 cos 30o  cos 150o   a x   
15
8
ax

H  3H1   1.79a x A/m


204

Prob. 7.11

3
Let H  H1  H 2  H 3  H 4
where H n is the contribution by side n. 4 2
(a) H  2H1  H 2  H 4 since H1  H 3
I 10  6 1  1
H1   cos  2  cos 1  a  
4 4  2   40  az
2
10  2  10  1 
H2   2  az , H 4   2  az
4  6   40  4  2   2
 5  3 1  5 5
H         a z = 1.964a z A/m
 2  10 2 6 10 2 2 
(b) At  4, 2, 0  , H  2  H1  H 4 
10 8 10 4
H1  az , H 4  az
4  2  20 4  4  20
2 5  1
 1 az 
  4 
H 1.78a z A/m

(c ) At  4, 8, 0  , H  H1  2H 2  H 3
10  4  10  8 1 
H1   2  az , H 2     az
4  8   4 5  4  4   4 5 2
10  2 
H3   a z 
4  4   2 
5  1 4 4 
H   az       0.1178a z A/m
8  5 5 2

(d ) At  0, 0, 2  ,
10  8  10
H1    0   ax  az    ay
4  2   68   68
10  4   2a  8a x  5  a x  4a z 
H2    0  ay   z  
4 68  84   68  17 84
205

10  8   2a  4a y  a y  2a z
H3    0  ax   x  
4 20  84   20   21
10  4  5a x
H4  0    a y  a z  
4 2  20   20
 5 5   1 10   20 2 
H     ax     ay     az
 34 21  20    21  68   34 21  21 
 0.3457 ax  0.3165 a y  0.1798 az A/m

Prob. 7.12

I
H  4 H1  4 (cos  2  cos 1 )a
4
  a  2cm, I  5mA,  2  45o , 1  90o  45o  135o
a  a  a   a y  (a x )  a z
I 1 1 2I 2  5  103
H (  )a z  az  a  0.1125a z
a 2 2 a   2 102 z

Prob. 7.13
206

(a ) Consider one side of the polygon as shown. The angle


subtended by the Side At the center of the circle
360o 2

n n
The field due to this side is

H1 
I
cos  2  cos 1 
4

 
where   r , cos  2  cos(90  )  sin
n n

cos 1   sin
n
I 
H1  2 sin
4 r n
nI 
H  nH1  sin
2 r n
3I 
(b) For n  3, H  sin
2 r 3
2
r cot 30o  2  r 
3
3 5 3 45
H     1.79 A/m.
2 2 2 8
3

4I  45 1
For n  4, H  sin  
2r 4 22  2
 1.128 A/m.
(c) As n  ,
nI  nI  I
H  lim sin   
n  2r n 2r n 2r
From Example 7.3, when h  0,
I
H 
2r
which agrees.
207

Prob. 7.14
4

 3
1
2

2
Let H  H1  H 2  H 3  H 4
I 10
H1  az  a z  62.5 a z
4a 4  4  102

2 
cos  2  cos 90o  a z ,  2  tan 1
I 4
H2  H4   2.29o
4  4 10 100
 19.88 a z
I 100
H3  2 cos  a z ,   tan 1  87.7 o
4 1 4
10
 2 cos 87.7o a z  0.06361 a z
4
H   62.5  2 19.88  0.06361 a z
 102.32 a z A/m.

Prob. 7.15

4 2
o
0 x
1 1 2
208

Let H  H1  H 2  H 3  H 4
which correspond with sides 1, 2, 3, and 4 as shown in the figure above.
H1 and H 3 can be found using eq. (7.12). It can be shown that
H 3   H1
Idl  R
For H 4 , dH 4  , dl  1d a , R   1a 
4 R 3
I 12 d a  (a  ) Id (a z )
dH 4  
413 41

I (a z ) o I  (a )
H4 
41 0  d  o z
41
Similarly, for H 2 ,
Io (a z )
H2 
4 2
Io  1 1 
H  H1  H 2  H 3  H 4     az
4  1  2 

Prob. 7.16
From Example 7.3,
I Ia 2
H1  az , H2  az
2a 2[a 2  d 2 ]3/2
I 1 a2  10  1 32 
H = H1  H 2    2 a  
2 3/2  z 2
 2 2  z
a
2  a [a  d ]  2  3 10 [3  4 ] (10 ) 
2 3/2

1 9 
 500   a z  202.67a z A/m
 3 125 

Prob. 7.17

2
2
209

nI
H   cos  2  cos 1 
2

cos  2  -cos 1  2

 4
1
2 2
a2  

nI  0.5  150  2 102


H    69.63 A/m
 
1
2 a  
2 2 2 2 103  42  102
4

(b)
1 2

a 4
1  90o , tan  2    0.2   2  11.31o
b 20
nI 150  0.5
H  cos  2  cos 11.31o  36.77 A/m
2 2

Prob. 7.18

y
 P (4, 3, 2)

x
210

Let H  Hl  H p
1
Hl  a
2
   4, 3, 2   (1, -2, 2)  (3, 5, 0),     34
3a x  5a y
a  , al  a z
34
 3a  5a y  3a y  5a x
a  al  a   a z   x  
 34  34
20  5a x  3a y 
Hl    x10  (  1.47a y  0.88a y ) mA/m
-3

2  34 
Hp 
1
2
K  an 
1
2
100 103  az   -a x    0.05a y A/m
H  H l  H p  1.47a x  49.12 a y mA/m
211

Prob. 7.19

(a) See text

(b)

I
a

For   a,  H  dl  Ienc  0  H  0
I   2  a2 
For a    b, H  2 
  b2  a 2 
I   2  a2 
H   
2  b2  a2 
I
For   b, H  2  I  H 
2
Thus,

 0,  a

 I   2  a2 
H    2 2 , a   b
 2  b a 
 I
 ,  b
 2
212

Prob.7.20
x

-1 1

1
H   K  an
2
1 1
 (20a x )  (a y )  (20a x )  a y
2 2
 10(a z )  10(a z )
 20a z A/m

Prob. 7.21
1 1
HP  k  an  10a x  a z  5a y
2 2

I I I
HL  a  (a x  a z )  ay
2 2 (3) 6

I
H P  H L  5a y  ay  0  I  30  94.25 A

6

Prob. 7.22
(a)
From eq. (7.29),
 I
 2 a 2 a , 0    a
H=
 I
a ,  a
 2
(b)
 I
1 d  a, a
J =  H= (  H  )a z    a 2 z
 d  0a z ,  a
213

Prob. 7.23

For 0 <  < a

 L
H dl  I enc   J dS

2 Jo
H  2     d d 
 0
0

 J o 2
H  J o

For  > a
2 a
Jo
 H dl =  J dS =  
 
=0 =0

 d d 

H  2  J o 2 a
Joa
H 

 J o , 0< <a

Hence H    J o a
  ,  >a

Prob. 7.24
  
J

(a)    H  x y z  2( x  y )a z
y2 x2 0
(b) dS  dxdya z ,
5 2 2 5
 x2 2   y2 5 
I   J dS =  (2 x  2 y )dxdy  2  dy  xdx  2  dx  ydy  2(4)    2(2)  
S 1 0 0 1  2 0  2 1
 4(4  0)  2(25  1)  16  48  32 A

Prob. 7.25

1 d 1 d 2 2k
(a) J    H  (  H  )a z  ( ko )a z  o a z
 d  d a a
(b)For >a,
214

2
a
2ko 2ko 2 a
 H  dl  I enc   J  dS   
 0  0 a
 d  d  
a
(2 )
2 0
ko a
H  2  2 ko a 
 H 

a
H  ko   a ,  a


Prob. 7.26

  
J    H  x y z  (2 x  2 y )a z
y2 x2 0
At (1,-4,7), x =1, y = -4, z=7,
J   2(1)  2(4)  a z  10a z A/m 2

Prob. 7.27
(a)
1  1 
J   H  (  H )a z  (103  3 )a z
   
 3 103 a z A/m
2

(b)
Method 1:
2 2
I   J dS   3  d d 10  3  10 3 3

2
d   d
S 0 0

 2 3
 3  103 (2 )  16  103 A  50.265 kA
3 2
Method 2:
2
I H dl 10   d  103 (8)(2 )  50.265 kA
3 2

L 0

Prob. 7.28

1 d 1 d
J   H  (  H  )a z  (4  2 )a z  8a z
 d  d
I   J  dS JS  8( a 2 )  8 104  2.513 mA
S
215

Prob. 7.29

o I
(a) B  a
2
At (-3,4,5), =5.
4  107  2
B a  80a nWb/m 2
2 (5)
o I d  dz 4  107  2 6 4
   B  dS    ln  z
(b) 2  2 2 0
 16 10 ln 3  1.756  Wb
7

Prob. 7.30
Let H  H1  H 2
where H1 and H 2 are due to the wires centered at x  0 and x  10cm respectively.
(a) For H1 ,   50 cm, a  al  a   a z  a x  a y
5 50
H1  ay  a
2  5  10 
2
 y
For H 2 ,   5 cm, a   a z  a x  a y , H 2  H1
100
H  2H1  ay

 31.83 a y A/m

 2a  a y  2a y  a x
(b) For H1 , a  a z   x  
 5  5
5  a x  2a y 
H1  2     3.183a x  6.366a y
2 5 5 10  5 
For H 2 , a    a z  a y  a x
5
H2  a x  15.915a x
2  5 
H  H1  H 2
 12.3 a x  6.366a y A/m
216

Prob. 7.31

(a) I   J dS

2 2
a
2 a
3
  
 0  0
J o (1 
a 2
)  d  d  J o  d  (  
0 0
a2
)d 

 2 4  2  2 a 2 
 2 J o   2 a
0  Jo  a  
 2 4a  2  2 
1
  a2 Jo
2

(b) H dl = I enc   J dS

For  < a,
H  2   J dS
 2 4 
= 2 J o   2
 2 4a 
2  2 
H  2  2 J o  2  
4  a2 
Jo   2 
H   2  
4  a2 

For  > a,

 H dl =  J o dS = I

1
H  2   a 2 J o
2
2
a Jo
H 
4
 Jo   2 
  2  ,   a
 4  a2 
Hence H  
 aJ o
,  >a
 4
217

Prob. 7.32
0 I
B  a
2
da b 0 I
   B  dS    d z  0 2
d dz

μ 02
I
b π

d
+ d
a
I
n

Prob.7.33
For a whole circular loop of radius a, Example 7.3 gives
Ia 2 a z
H 3/ 2
2  a 2  h 2 
Let h 
0
I
H= az
2a
For a semicircular loop, H is halfed
I
H= az
4a
o I
B  o H  az
4a

Prob. 7.34

Bx By Bz


(a)   B    0
x y z
showing that B satisfies Maxwell’s equation.

(b) dS  dydza x
4 1
y3 1 4
   B  dS    y 2 dydz  ( z )  1 Wb
z 1 y  0
3 0 1
218

B
(c )   H = J 
 J  
o
  
  B  x y z  2 za x  2 xa y  2 ya z
y 2 z 2 x2
2
J   ( za x  xa y  ya z ) A/m 2
o

(d)
Since   B =0,
 =  B  dS     Bdv  0
S v

Prob. 7.35

h
On the slant side of the ring, z     a
6
where H1 and H 2 are due to the wires centered at x  0 and x  10cm respectively.
o I
   B.dS   2 d dz

o I a b
h
(  a ) dz d o Ih a b  a

2   a
b
z 0 

2 b  a 
1   d
 
o Ih  ab
  b  a ln  as required.
2 b  a 
If a  30 cm, b  10 cm, h  5 cm, I  10 A,
4  107 10  0.05  4
   0.1  0.3 ln 
2 10  10 
2
 3
 1.37  108 Wb

Prob. 7.36

0.2 50o 106


   B dS  o  
z 0  0 
sin 2  d dz

50o
 cos 2 
  4 107 106  0.2    
 2  0

 0.04 1  cos 100o 


 0.1475 Wb
219

Prob. 7.37

 /4 2 2  /4
20
   B dS    sin   d  d  20  d 
2
 sin
2
 d
S   0 1
  1 0
 /4
1 1  /4
 20(1) 
0
2
(1  cos 2 )d  10(  sin 2 )
2 0
 1
 10(  )  2.854 Wb
4 2

Prob. 7.38
   B dS , dS  r 2sin d d ar
S
2  /3
2
   cos  r 2sin d d  2  d  cos  sin  d
r3 r 1 0 0

sin   / 3
 /3 2
 2(2 )  sin  d (sin  )  4  2 sin 2 ( / 3)
0
2 0
 4.7123 Wb

Prob. 7.39

o J  R
4 v R 3
B  o H  dv

Since current is the flow of charge, we can express this in terms of a charge moving with
velocity u. Jdv = dqu.

 o  qu  R 
B
4  R 3 
In our case, u and R are perpendicular. Hence,
o qu 4 107 1.6 1019  2.2 106 1.6 1020
B   
4 R 2 4 (5.3  1011 ) 2 (5.3) 2  1022
 12.53 Wb/m 2
220

Prob. 7.40

A
(a)    ya sin ax  0
  

A
  x y z
y cos ax 0 y  e-x
 a x  e  x a y  cos axa z  0
A is neither electrostatic nor magnetostatic field

1  1 
(b) B 
 
  B  
 
 20   0
 B  0
B can be E-field in a charge-free region.
1  2
(c )  C  (r sin ) = 0
r sin  
 1 3
C 
1
r sin  
 r 2 sin 2   ar -
r r
(r sin )a  0

C is possibly H field.
Prob. 7.41
(a) D  0
  
 D  x y z
y2z 2(x  1)yz -(x  1)z 2
 2(x  1)ya x  . . .  0
D is possibly a magnetostatic field.

1    sin  
(b) E   ( z  1) cos     0
  z   
1
 E  cos  a   . . .  0
2
E could be a magnetostatic field.
1  1   sin 
(c ) F   2cos  +    0
r r
2
rsin   r 2 
1   2 sin  
 F  
r  r
 r 1 sin   
r 2 
a  0

F can be neither electrostatic nor magnetostatic field.


221

Prob. 7.42
o Idl o ILaz
A 
4 r 4 r
This requires no integration since L << r.
1 Az A
B   A  a   z a
  
But r   2  z 2

o ILa z
A
4 (  2  z 2 )1/ 2
Az o IL   IL 1
 (  2  z 2 )1/ 2  o ( )(  2  z 2 ) 3/ 2 (2  )
 4  4 2
o IL  a  IL  a
B  o 3
4 (   z )
2 2 3/ 2
4 r

Prob. 7.43

  
B  o H    A  x y z   sin  xa y  10 cos  ya z
10sin  y 0 4  cos  x
  
H  sin  xa y  10 cos  ya z 
o  
  
   
J   H  x y z   10 sin  ya x   cos  xa z 
o o  
0 sin  x 10 cos  y
2
J 10sin  ya x  cos  xa z 
o

Prob. 7.44
(a)
1  2 1  1   2 cos   1   sin 2  
 A  (r Ar )  ( A sin  )  0  2     3 
r r
2
r sin   r r  r  r sin    r 
1 1
 2 cos   4 2sin  cos   0
r 4
r sin 
222

(b)
1   A  1  1 Ar  
B   A   ( A sin  )    ar  r  sin    r (rA )  a
r sin       
1  A 
  (rA )  r  a
r  r  
1    sin   2sin   1  2sin  2sin  
 0 ar  0a    2    a     a  0
r  r  r  3
r  r r3 r 3 

Prob. 7.45
  
(a) B   A  x y z
2x 2 y  yz xy 2  xz 3  6 xy  2z 2 y 2
B  (  6xz  4 x 2 y  3xz 2 )a x   y  6yz-4xy 2  a y   y 2  z 3  2 x 2  z  a z Wb/m 2

(b)

   6 xz  4 x y  3 xz 2  dy dz
2 2
  2
x 1
z 0 y 0

    6 xz  dy dz
0
 4  0
x 2 y dy dz  3  0
xz 2 dy dz
2 2
2 2 2 2
  6  dz  dy  4  dz  y dy  3 dy  z 2 dz
0 0 0 0
0 0

y 2 2 z  3 2
  6(2)  2   4(2)   +3(2)    -24+16+16
 2   3 
 0  0
  8 Wb
A x A y A z
(c )  A     4xy  2xy  6 xy  0
x y z
  B   6 z  8 xy  3 z 3  6 z  8 xy  1  3z 3  1  0

As a matter of mathematical necessity,


  B    (  A)  0
223

Prob. 7.46

1   A  1  1 Ar  
B   A   ( A sin  )    ar    (rA )  a
r sin      r  sin   r 
1 k  1 
 (sin 2  )ar  (kr 1 ) sin  a
r sin  r 
2
r r
k k sin  2k cos  k sin 
 3 2sin cos ar  a  ar  a
r sin  r 3
r 3
r3

Prob. 7.47
1 Az A
B   A  a   z a
  
15
 e   cos  a  15 e   sin  a

   1 1
B  3, , -10   5 e 3 a   15 e 3 a
 4  2 2
B 107 15 3  1 
H   e  a  a 
o 4 2 3 
H  14 a   42 a  104 A/m
15
   B  dS    e   cos   d dz

 15 z  sin   0 2 e5  150 e 5    1.011 Wb
10
0

Prob. 7.48

1   A  1  1 Ar  
B   A    ( A sin  )    ar  r  sin    r (rA )  a
r sin 
   
1  A 
  (rA )  r  a
r  r  
1 10 1 
 2sin  cos  ar  (10) sin  a  0a
r sin  r r r
20
B  2 cos  ar
r
At (4, 60o , 30o ), r = 4,  =60o
B 1  20 
H  7  2
cos 60o ar   4.974  105 ar A/m
o 4  10  4 
224

Prob. 7.49

Applying Ampere's law gives


H   2  J o   2
Jo
H   
2 a
Jo 
B  o H   o
2
AZ
But B   A   a  . . .

AZ 1 Jo  2
   Jo  
 AZ   o
 2 4
1
or A  - o J o  2 a z
4
Prob. 7.50

  
A A
B    A  x y z  z ax  z a y
y x
0 0 Az ( x, y )
 x y  x y
 sin sin ax  cos cos ay
2 2 2 2 2 2

Prob. 7.51

1  1 
B   A  ( A sin  )ar  (rA )a
r sin   r r
1 Ao A
 (2sin  cos  )ar  o sin  (r 2 )a
r sin  r 2
r
A
 3o (2 cos  ar  sin  a )
r
225

Prob. 7.52

  
(a) J    H  x y z  (2 yz  x 2 )a x  (2 xz  2 xy )a z
xy 2 x 2 z  y 2 z
At (2,-1,3), x=2, y=-1, z=3.
J  2a x  16a z A/m 2
 v
(b)     J  0  2x  2x  0
t

At (2,-1,3),
v
 0 C/m3s
t

Prob. 7.53

(a) B    A
 1 Az A   A A  1  A 
   a      z  a   (  A )    a z
   z   z       
A
  z a  20  a  Wb/m 2

B 20 
H  a  A/m
o o

1 
J   H  (  A )a z
 
1 40
 (40  )a z  a z  A/m 2
o  o

2
40
2
(b) I   J dS     d d  , dS =  d d  a z
o  
0 0
2
40 40  2
2
   d   d  (2 )
2

o 0 0
o 2 0

80  2  106
  400 A
4  107
226

Prob. 7.54 H   Vm  Vm    H  dl  mmf


Ia 2
From Example 7.3, H  az
2  z2  a 2 
3
2

Ia 2  Iz
 z  a2 
3
Vm   2 2
dz   c
2  z2  a 2 
1
2 2

As z  , Vm  0 , i.e.
I I
0    c  c 
2 2
Hence,
I  z 
Vm  1  
2  z2  a 2 
Prob. 7.55
I
H  a
2
But H   Vm  J  0
I 1 Vm I
a   a  Vm     C
2    2
 I 
At 10, 60o , 7  ,   60o  , Vm  0  0     C
3 2 3
I
or C 
6
I I
Vm    
2 6

At  4, 30 ,  2  ,
o
  30o 
6
,

I  I I 12
Vm      
2 6 6 12 12
Vm  1A
227

Prob. 7.56
For an infinite current sheet,
1 1
H  K  an  50ay  an  25ax
2 2
But H   Vm  J  0
Vm
25 ax  
an  Vm   25x  c
x
At the origin, x  0, Vm  0, c  0, i.e.
Vm   25 x
(a) At  2, 0, 5  , Vm  50A.

(b) At 10, 3, 1 , Vm  250A.

Prob. 7.57

 V 1 V V 
(a)   V     a  a  az 
    z 
 1  2V 1  2V    2V  2V 
    a     a
  z  dz    z z 
1   2V  2V 
    az  0
    d  
 1 Az A 
(b)      A        a
   z 
 A Az  1  A  
   
 
 a  
  
 A 
   az 
  
 z
1  2 Az 1   A  1  A 1  2 Az
2

      
     z   z  
 1     1 A 
 
z   
  A    
z    


 2 A 1 A  2 A 1 A
      0
z  z z  z
228

Prob. 7.58

1       2  2
1
'               
2 2
 a a a z  x x' y y' z z'
 x ' y ' z '   
x y
R
 1 2  2
3
     
   x 
           a y and a z terms

2 2
 2 x x' a x x' y y ' z z'
 2
R

R3
1
  x  x'    y  y '   z  z '  
2 2
R  r  r'
2 2

 
1       2  2
1
             

2 2
 a a a z  x x' y y' z z'
 x y z  
x y
R
2  2
3
1
  2  x  x'  a x  x  x'    y  y'    z  z' 
   a y and az terms
2 2

2  
  x  x' a z   y  y ' a y   z  z' a z  R
   3
R3 R

You might also like