0% found this document useful (0 votes)
62 views41 pages

Ode NOTES

The document appears to be a collection of mathematical equations and concepts, primarily focusing on functions and their properties. It includes references to various mathematical terms and operations, but the text is fragmented and lacks coherent structure. Overall, it seems to cover topics related to calculus and algebra without providing clear explanations or context.

Uploaded by

patilprahlad16
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
62 views41 pages

Ode NOTES

The document appears to be a collection of mathematical equations and concepts, primarily focusing on functions and their properties. It includes references to various mathematical terms and operations, but the text is fragmented and lacks coherent structure. Overall, it seems to cover topics related to calculus and algebra without providing clear explanations or context.

Uploaded by

patilprahlad16
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 41
a / “VAR AY + Lneea -clifteven Mal Equasions of — —_ifghex seaeeece Oiset 3 The gemexal \feneor —fs_ot the fermi Pmt + Pn ¥ aoe“ taneue © —toheve x,01,P2,2--1Pa one often tonsterts 0% functions of of omy ita HEE Nast oo — Ale com tavive Jl SD (use of ice stihl lx ores oto) 00 teen “be tanta nena ce =n Fis (4 Pp" ae wt Pa) Y = ‘ne __9 co-eferient (0) of Y fs called ~ the. Pusoctitany ea oe = 5 wh. cpemertcal olution of eof 09 7 Me ceser s { tphene ce = Co: comelimentany Fumerin Peaticutag TCotesret a ——s | tt ib faesia aitesexsnttol ea ote coristeest 1 Co-etetcherts i _ A _dietetenetat eof of ane fermi a AY tanrd™ YS 4+ Odd +a. 4 = RE —W —— i ax” a0 “ax ——— ____|fs__cemed a Vimeo attetetenttal ai satch cd ~ |tonstamt to eeerei ers of ondes __|— SMU ee i pe Me age ad Pema = aejeees la eis lay ok A] ~ ih ae I cose- ts tlhecn “QM the Doot-s ome Rect iS “aod alfstin ct: TE QT she OOtS Mi yM2 M1. === oe ~ pee is tf ex eects emieaeseeese ie ae te [eee ee ate att ene ja |__| onese_ 22.0 _umstantt. (Lt the 2x00ts m1 amd mw, ave ee ES © } é | i eats bof =liGsx)e +e S14 the t00ts my = ast EAB cond amt ans + Seoul amal obs tine thon j __ ae ee als 2 0 (Cjtosbx 4(astn ba) 4 (ze tt Gne On 5 Zz, [ces tax) Coan 4CCgttnx) atmex] + Ws Xt ——— i om & - —A-the a-e." fs = 4 _ pe bo 40-6 =0 4 | caw 0 Oe Got BO HO = 6 O(p- - 50 (0-10 +6 (0-17 20 (0-1) (n’- 5046) =0 +} (0-199 =37 (9-29 = Ons Ouse 2 93 34. — 2 7 CRs Ge hae Ce ~~ re a need The 9.8. Ps, Sch aet emcees ta tae aes a PH Ce steer ace ee e {— —— | 12) Soive y" tay +uy <0 Yio =) YNeo) = t. +— . (Der - 2011) —— 1 ano ty=o =. (oyatno => De -24-2 4 SEG eae yw es nig fThe $s fs3 4 2 Cay ere —O aul = Corer ca bet) ¢ oot ea) T =k 20, = =3(C4maie 4 we 5 YO)=1 = When a =o y=) =|) 1 = rojo? >for LMASey Yl =! =* Cohem x=0, yle) ° & =s9le ta { Bee ip oC Co {| Se = ano ty = ae [=a] =0 e oD a The qs 2 : yo ce + et aa ce ~% fon % Y= Cre” 4ene pC acosm +Cusin% - ~ (4) 1¢4" ~ ey psy =o. The, A-€. is 5 : Igo?- go 4+ =0 The 9s. fs , Y= ce tet Yze (40s +t ain a) a a aoe . le Per ticular Totes seth Reds (0) 4 cace-T. lithe Rixy = 27% - i yp 5 oe oy atten obo j #10) Fea) | =) oy fear 0: 5 1 u £ ta? Sax case= them Rta) = sfnax_on Cos 24s} yoginax — cae “ey |) fee) H fn ax = forax: 5 deat +0. - _ pio? Gee? : ohaax 5 Aero =O. = | ged? Mheie PtDI-= Ato*d Anodic tig case-zt When ex) = x” ee r 9 To _eveltiabe oe tence oud _tommenon __> = etOD ee been fn —O- _ foo 419), as hae teenie - EEE uy eee ee ee 1 bind tohich fa tren tote en fa_the _Munme tector oft a _mesgentive Endlex ther _ expand [rr dio) in. Peres tee ee = hehe wtetbentals the otfenn, cxrnel —pipeniake | ____upon 2i7_aafin__he__enpnasinn — nisin cea =. ldhen @u= 2" _of a ~ palymoxate) ont desnee v0 5 theco_ —escpacnsd — “cit dip” ueto | net egan cor pM _omty, because ___ He 3 pacer tals oO) O-19 i (0) 4a7) 2 et tate eat “2 @) c-x3 Leow tay saa 4 Stl 4 a= ww) cred wom pag aan? Sah meee 5) tad? = 1+ 3x 4 6x lox? =3 2 x Cg) (+0) pan +6x* —1ox + == ei : ; e-B them RO) = ety Vis a tumerion of x. Ny (yg) posit #00) - prota) “es __ Te a) wtherg _Rta-= Zea aes [7 ee eal Lbs per — —_ 4 Sin ar: _ Tanayiney past ef 2 + £07 —_— ed NY cae fee aaa —DRrap gy 2 x. - fa te | 2 1 2 Livteps diane 1 ee ret _— = 1: aye fee shin ot + 1 stax | + > L ot-ap +3 p-nors J a ant 1 _sfn 1+ 1 aint | — = ay _Pas-uoes + 2umt3 r ALI 28 ) Inox 4) on «| i fi > | ~ tartan) (g2a0) 4 JH 1 = 1 et 1D) “eticx +(2+up) sine | | cam 2 | Asy 160% A16D* iL = 2 | -(22-49) stn s1_4_(o-4n0)_sinx ‘- 2 L Aen + bpp) a +16 2 Pls =| (nN sn $x -10 (5 Sw} tt / 3: =— Ziaal sy x0 The 95 fs Ye Ce 4p. Crwsice) Crwie) aD = taf ‘wice) + 3... LCE = (C1 4,4) tos) oe +x) sin ax —+_INOUtna pi = 1. risen its #10) ; ae Los) 2) (pant so tw e Cheotce) perk, twice) fe: n= hia) > (ert) Cea ttn) € ee oe “pt0). ot 1 (co! foe e 34-6 &). oP! - frees Se —— Se ——_ F ee ot ee ae pte ie | PIs 1 post + 1 agen ———— a2 er eer ” : p= test toe 4 ——_} oe HD +—__ 1-4) 16-64) __ An eacttiee att cf 7 — oo {—1. eye rate ere snide a peas tJ ts a eo PT = oh pe py} on 6D G7 oat [OD = 1 2x0 +10) 4 (2) -0 40] 6D a G 36 a sa) f Kt vinite + te + 4 6D a 3 6/7 bets =) {og 4 gat ao eens, + The si fs 3 Y= ce tee \ ea ee, ata HB ee wots Ya = et — 63 € ea Ber ey bot 2) 5 Yds 2, Yo? =2 ig Se 0 (pec 2010) = The Ag ts. O44 ! Pe Ay A a sees t 1 OF = Cylos2e% 4 stn 2%- f Nout, pp = 1 RE) fae A fece +e1 ea , °, a A Y= Cyosex posi oy +e 4a og. 0) edo = Cpe ood reo gst 3 xe0 yee ub =20 stan $202 (os2% -26 4 fe 2 = 0 + al. -20 ap ffvom Oy tequived Sal ies Ye cwsox posinax +e* Cathe BiB . — —__—_ to + 3 ob fe 3) (as a reve a2 42 na — Diab 4a }{ Sab P46) "oe edie PEP aio! J tsx-6 ps eee: = 6h 12 46a onan + 5 2 a) 1_{-9(3))] 1 1 papa TT ~ ws. Page in Py t ri L dy Se t See se (rout = 01a) , = The Ae. es pup 42015 20 a a a D D 2 O(pi-29 (pt +S (4!) 20 — 2 (DH) (p=2045)20° —tpe0-t4 eee peed) & D-g0rs 20 sr eOsatd fay UY 4 et (Coto 2 CE +P T a 4 63sho 24) py dy —a dy toy = 2e%ens (x ae at a fa} —) The Ae. fi p’-20+2 =0 (o=2) to: 0 2 fa #2 Dep s Ghee No uo» acerca = (oe® oise12 | _+— pt =) Roy eos 2) 3) re FLOtAY rm mat > = Ge.) ws (x) 1440 Vo } -=%e% G-up) ws (2) 1-16" tt = =¢e% (-nn) co5(%) i mEESTIEG) 2) ae (os 4 =4fe stern ( I s is zt lees c ate x-+ 925% a) {} 5 2 a7) The 48. fs s fete + et 5) Ys Cee pe = 8 ef tosx trina’) sss * ag w)J (laprayy se ( meq aon) [ eoeaea 4 —) The AE fs. C-mDte 2d : f tD-29* 20 “Oro.2 x da | yu on et soily = 1 ta(itats = A ° ee f oe 2a Pe a le i el L (nan 2 al are ot fet.) __ - ee D4ooi-1ty fa ape ot | eit) x 420143 = =Rpof 7 a ail {4 oro) | + i: J =) ep ot fo Ciara y| «| x7 aie oo r ~ pe ot [ot fy (o420i)4- [a | id p> | 3 4 = Ap off e% [4-1 forai}\ r ee | =p. of [ 1 feos +fsin =2ix)| tat ume) = 1 (x tne segrmtnce | i ab 3 a) | The —4.6- 1 Ye (Ee cle d 0 Nou Siu! F109) pa RG) HCE = [Crean Jeosx + (cat xd atin ec, 2 Hof: nt. (ta = = LP oe =p. of J 1 (F* Cet ar 5 J a] = Ip cf e y ix Coie J faa 2 IP of on. Ka a (S421) 27 b J acini + py Cai? = IP of 27 aR = = eS fi +p Ve oe! ape 2 =rp off z 2 welt f= D gach. apr L ‘ bese re ot [ 7 Sorin —f] thea find Uys — (Ya Ru) gn tr fw a — dae f YAR dt ol I we + tax). ind px 5 wif, sua | put the Veoh. pt ep Ber in O. aw 7 ey 4s eo" + @ary! + sany = RO- = obtain ce > 6/41 *o¥s +043 =) ind w= |v Ya 4 yl ysl yal a Taos? i e +. 4s i it Yece+Pz Safad or = wy tu Ua 95 ET of ne CE = Clos X + (2 Sine let y= wsey Y= sin & RIX) = Coser © Now, w={ 4) 4% | = x _dinx | = 4. yl! | Jasin. SX | Uy = - (YR) de J. __= = _(sinx-tosee x ox i A L Mo = [ YR) da is L * oe ; = | tosx-tosee dx a enna rte wos) (de sho nu = On (shar) Ce ee opr = -feosx +sina Incolny) : > | » ye 4 Ve the af say sce ter ™“ | a Z SE tos x 4 ta Stn Cs sine Sonatina), + aoe { DI yNequ c coc ax (maveh-2010, peg-2009 ,OeL-2eu | a may 305) ~L n ~ —P The Ae. fs 5 D4 0 + O= 433 & | n CF = Cylos ay 4 (2 sin ax { Uys tosag , Yo aeinin & Binz = Sec ~ | 4=| 41 Yo |= |tns 3x sin an | = Yur gy) basnae scosse > - — Uy = = [Ya Rix) abe = om = - ( stnaa-see ax db I { == ( stnaxt abt [ 3) tos 3% r uy = ttm {cos 24) 2 . = tia = [| YR) de — \| a - = (ees x. Senge At as ——}— IR The qs _f 5 1 Ye CE ner A Ys ¢1tos 3x 4ashn an 41 ofa at +1 SAA Uni 7 = + a] siscsis i EE f — (3) | 89 4 dy —cosec x. (rey-20> e028) dx? dx 7 z I : =) The A. Ps; 04D =0 ao AD(IDH) =0 | oe L Lpso th TI | j l | t { HCE = Cy4Cgtosx +03 SiMe 1 \ t UpYies) Ya esx & Yyecimn Bm RU) = Cosee x | we lu vo Ys [ aa Zz, —~ L rr L 4 1 ela. cosn Fon. | bo: —shrse cosou J L O - WS sina | : my =A ( sinke +eodn) Ms 4 2 [uy = ((u293'-Ya92") Rodda w | ~\ all asf sae esta} comes ot Lal 1605 3x (La os, 4 rd femsu sda -2013) +— = cot x) + (dau — Hida!) Ru on = osee 2 pa = muy, t Mae tsi —§ . px zdm Tose x — ot x) OOS Tn (atx). sn yece sre ts Sarin btgiina ti Cosenx= tt %) — i wecosx Jn (sina) = xAin ot ht } | ao+y <34 Vaatable 24 udtons corey Oe ate. end tamte ef ElaEre TEIN sthe: ea it) = Seduted “te [imean’ chite enen tial flea” pn? romsiient 15 +he fh be Solved by Maes methods — oliscusseal _ ee tects Qarslier —_{ 1 = —> 2 Stubs titudine, oe ——__Il arn 4 pe. =) By puring 7 se” we _Xdy = Oy aK [ lt Arata) Spear eat i x2 dy = ptnadtn-2 ae a7 a7Y = otnapt-2) caonaiy ext Coetticients patthiy cependent Varfcibie , titiel com 2 va 0 -—— fe | = n(x ec ce (may-s0) Jem-2013) Pu ase) 22 ina. “the _¢ive 2” seduced +¢ XN a = 4 q (Dt0-1) 10-2) 4 2 OCD 42) y = 1 ce +e) aia pean cierto 4 4 The Ae. fs o-0+2 20 Sin’-a0-20 p2042 =0 ~ Olon)=2p (oH +214) 20 (pi (0-2 +29 20 & pionte=0 6 OQ =1th Ze (entose tcgsinz)- —__y = od swf ye any eI] : z ao : | Z = LPL =m Se +2767 ~ The 98: fes i yece rez a) ooo = ea {. YE Ce 4 o* (cgtosz + Cgsinz) +5e 422 er eerie aim 1 5 z “Ys ty) + 0 [ty i0' (4a) +(g si (4m 4) + 5x z == a2 kms. — Yoo =) ameb gly 20. a) i ar (04) -30 rH) y = 0 r 2 (B= -s0t9y = [ 2 (9 =40 +44 =e => The AF. fs 5 D=4AD th =0 4 (p=2y%= fp=2 42) 3am DB xy" 429" 20 Pr =O pip-yty => D201) 1 C04 fg bn) The gs is 5 4 =tF Pr aE 2,22 ye (CtozIe +b ut z =dnat = Gee A VASA VA AX VAY “ef nalaes inewx equation go 2 eg _ re cere suet an The ef of them!” exder fs of the Qo lars IY 4 atari gy 4. + as aa” ax m=) Cax+b) AY + any = Rix) ———) | ax a — Phere” Ao, 41 ~-7¢4y ose costae, The ef” 01) can | Ninens oltre soot" cofth » comatamt z oekeicfents | 4 i. eee CO\ich com eastlsy be Solved. = BY _purting ort =e in U) me get, Cax+pdy =aoy reg Caxtey dy = a*pto-ny i _ a7 & TT Sag 3 0x toy d°¥ = a Dto-.N-294 | ax3 > Le + ; Cate dy = a” 6 tp-19¢0-29.. ee U air iad —) Hem cbtet. eu” Com fly be. lemie the aoe | sow ~~ — = — Ek Solve the Pcllowhra olisg, on 8) cot * oly per dY +4 = A cos [ley C1429 ee dat rca 7 ma er xtize™ 9 ze dma) The given ea” seshired tos . Sotto turo gids = 4005 2 Hee aot) ie : 2 o=ti —— Teil Qa 0 7 (ontanga) #adnci si = + tas (i “silent a Ge 5 (igetxt) ee aera cer spate e-3 are) 3 2(ap—4e -ap-2)y = 3Ce%=3) 2 (ap-¢p -i2)y = ae 49 b Th @-£. fs, 4p gp -12 =O 2 WO'= 20 +4p 1220 “HD (D-3) +4 (10-39 =0 S(D=3) (AD +49 =O - 023 ,-) oz u 2 AD 8D 1 4p-8D-12 sai) #9. Ger tsd Ta) (ap. z az = YB Ore lta gh fp. é i Mati 2 ton (poeta) fh oata- ee + fo UbenGertone tit Co aa tan, 3 Data 16 a + 2 Ys taxtay+ GH ax a9 43. arse 6 y a 3 Citarts) +10, ax +3 aura Sb nn STA [> : MRO) a5 pex toe Hewoing 1) Roy 2 e9% [Spa aek® whe fesx of Yo S2 "R00 esincy og cosoxl Yee psinag apie ag 2D R4 = oT Prerta [Y= A Prax 4or40 4D RUD = ars by Yo = At ax + | SD) Rw) = axa, Mp = AX ty al t £) Rind 2c Yo = & SDR =e" simnx of |1 up = 0 (acmta au 05 b1) 08% os bor 2 a 9) lletay = ye Ye = CAanae e 8) [Ring = 29% de a Catpxtuds 10) Qiwd= x ohn ax Jp = (A+R) shox +Cc+pi) san eg Il eins = a Ye = Act* - ROIs e736 Ye = Ae Tape RAI = tos ay Moz Asin 32 + Rtas 3%. BOONE when functor) sppeamny Fey Be Ute also present Pesicwer +, ny i eo ot tena 4 Solve the toltnwiny lite. eo using the J ~ amettod ot Umdebetmineal. Coetticiem ts ——— ee 1) y" suy = sin ax The ae fs, oH ry = Ce = C,U0s aoe Cp. 8h Ba __— . Asin 8% +B cos 94 —___—_— = 20cog3x — 38 sinda —_—__— = -4A singx = 1309 3% cin gx = 98 60S 3: a + upshnax $4 cos 3b = 2 sau — _ ei) ate WASF BMAF + 43 aE =e Wc=0 = c=0 2BtID a4 <5) gyap ay ~ 3 = 1) = 10 3 = 92 10, iF @ Yy"+ay = owsax geen Ue = C) tos 3 + ta SPO 3K Up = xcasinas 40534) + C4 4P Up = Axsinax 4 xcos 32 up = Altos 34 — BAC 811 3 4 BS ri yp = —aAsinix = Asin im = IAx (os 320+ aAcos 2 + 3G (n5 3% = Ud

You might also like