a / “VAR AY
+ Lneea -clifteven Mal Equasions of
— —_ifghex seaeeece
Oiset 3
The gemexal \feneor
—fs_ot the fermi
Pmt + Pn ¥
aoe“ taneue ©
—toheve x,01,P2,2--1Pa one often tonsterts
0% functions of of omy
ita
HEE Nast oo
— Ale com tavive Jl SD (use of ice stihl
lx ores oto)
00 teen “be tanta nena ce
=n Fis
(4 Pp" ae wt Pa) Y =
‘ne __9 co-eferient (0) of Y fs
called ~ the. Pusoctitany ea oe
= 5
wh. cpemertcal olution of eof 09 7
Me ceser s
{ tphene ce = Co: comelimentany Fumerin
Peaticutag TCotesreta
——s
|
tt
ib faesia aitesexsnttol ea ote coristeest
1 Co-etetcherts i _
A _dietetenetat eof of ane fermi
a
AY tanrd™ YS 4+ Odd +a. 4 = RE —W ——
i ax” a0 “ax ———
____|fs__cemed a Vimeo attetetenttal ai satch cd
~ |tonstamt to eeerei ers of ondes __|—
SMU ee i pe Me age ad
Pema =
aejeees la eis lay ok A]
~ ih
ae I cose- ts tlhecn “QM the Doot-s ome Rect iS
“aod alfstin ct: TE
QT she OOtS Mi yM2 M1. === oe ~
pee is tf ex eects emieaeseeese ie
ae
te [eee ee ate att ene ja
|__| onese_ 22.0 _umstantt.
(Lt the 2x00ts m1 amd mw, ave
ee ES
©
}
é |
i eats
bof =liGsx)e +eS14 the t00ts my = ast
EAB cond amt ans +
Seoul amal obs tine thon j __
ae ee
als 2
0 (Cjtosbx 4(astn ba) 4 (ze tt Gne
On 5 Zz,
[ces tax) Coan 4CCgttnx) atmex] +
Ws Xt ——— i
om & -
—A-the a-e." fs = 4
_ pe bo 40-6 =0 4
| caw 0 Oe Got BO HO = 6
O(p- - 50 (0-10 +6 (0-17 20
(0-1) (n’- 5046) =0 +}
(0-199 =37 (9-29 = Ons
Ouse 2 93
34. —
2
7 CRs Ge hae Ce
~~ re a needThe 9.8. Ps, Sch aet
emcees
ta tae aes a
PH Ce steer ace ee
e {—
—— |
12) Soive y" tay +uy <0 Yio =) YNeo) = t. +—
. (Der - 2011) ——
1
ano ty=o =. (oyatno
=> De -24-2 4
SEG eae yw es nig
fThe $s fs3 4 2 Cay ere —O
aul = Corer ca bet) ¢ oot ea)
T =k 20,
= =3(C4maie 4 we
5
YO)=1 = When a =o y=)
=|) 1 = rojo? >for
LMASey Yl =! =* Cohem x=0, yle)
°
& =s9le ta
{ Bee ip oC Co
{| Se = ano ty =
ae [=a]=0
e oD
a The qs 2 :
yo ce + et aa
ce ~% fon %
Y= Cre” 4ene pC acosm +Cusin% - ~
(4) 1¢4" ~ ey psy =o.
The, A-€. is 5 :
Igo?- go 4+ =0
The 9s. fs , Y= ce tet
Yze (40s +t ain a) a
a aoe . lePer ticular Totes seth Reds
(0) 4
cace-T. lithe Rixy = 27% - i
yp 5 oe oy atten obo j
#10) Fea) |
=) oy fear 0: 5
1 u
£ ta? Sax
case= them Rta) = sfnax_on Cos 24s} yoginax —
cae “ey |) fee)
H fn ax = forax: 5 deat +0. -
_ pio? Gee? :
ohaax 5 Aero =O. =
| ged?
Mheie PtDI-= Ato*d Anodic tig
case-zt When ex) = x” ee r
9 To _eveltiabe oe tence oud _tommenon __>
= etODee been fn —O- _ foo 419),
as hae teenie -
EEE uy eee ee ee
1 bind tohich fa tren tote en fa_the
_Munme tector oft a _mesgentive Endlex ther _
expand [rr dio) in. Peres tee ee
= hehe wtetbentals the otfenn, cxrnel —pipeniake
| ____upon 2i7_aafin__he__enpnasinn — nisin cea
=. ldhen @u= 2" _of a ~ palymoxate) ont
desnee v0 5 theco_ —escpacnsd — “cit dip” ueto
| net egan cor pM _omty, because ___
He 3
pacer tals
oO) O-19 i
(0) 4a7) 2 et tate eat
“2
@) c-x3 Leow tay saa 4 Stl 4 a=
ww) cred wom pag aan? Sah meee
5) tad? = 1+ 3x 4 6x lox?
=3 2 x
Cg) (+0) pan +6x* —1ox + ==
ei : ;
e-B them RO) = ety Vis a tumerion of x.
Ny (yg) posit
#00) - prota)“es
__ Te
a) wtherg _Rta-= Zea aes
[7 ee
eal
Lbs per — —_
4 Sin ar: _ Tanayiney past ef 2
+ £07 —_—ed NY
cae fee aaa
—DRrap gy 2 x.
- fa te
| 2
1 2 Livteps diane
1
ee
ret
_— =1: aye fee shin ot + 1 stax | +
> L ot-ap +3 p-nors J a
ant 1 _sfn 1+ 1 aint | —
= ay _Pas-uoes + 2umt3 r
ALI 28 ) Inox 4) on «| i
fi > | ~ tartan) (g2a0) 4
JH 1 = 1 et 1D) “eticx +(2+up) sine | |
cam 2 | Asy 160% A16D*
iL = 2 | -(22-49) stn s1_4_(o-4n0)_sinx ‘- 2
L Aen + bpp) a +162 Pls =| (nN sn $x -10 (5 Sw} tt / 3:
=— Ziaal
sy x0
The 95 fs Ye Ce 4p.
Crwsice)
Crwie)
aD = taf ‘wice)
+ 3...
LCE = (C1 4,4) tos) oe +x) sin ax
—+_INOUtna pi = 1. risen its
#10) ;
ae
Los)2) (pant so
tw
e Cheotce)
perk, twice)
fe: n= hia)
> (ert) Cea ttn) €
ee oe
“pt0). ot
1 (co! foe e 34-6 &).
oP!
- freesSe ——
Se
——_ F ee
ot
ee ae pte ie |
PIs 1 post + 1 agen
———— a2
er eer
” :
p= test toe 4 ——_}
oe HD
+—__ 1-4) 16-64) __ An eacttiee
att cf 7
— oo
{—1. eye rate ere snide a peas tJts a
eo PT = oh pe py} on
6D G7
oat [OD = 1 2x0 +10) 4 (2) -0 40]
6D a G 36 a
sa) f Kt vinite + te +
4 6D a 3 6/7
bets =) {og 4 gat
ao eens,
+ The si fs 3 Y= ce tee
\ ea ee, ata HB ee wots Ya = et
— 63 €
ea Ber ey bot 2) 5 Yds 2, Yo? =2
ig Se 0 (pec 2010)
= The Ag ts. O44 !
Pe Ay A a
sees
t 1 OF = Cylos2e% 4 stn 2%-
f Nout, pp = 1 RE) faeA fece +e1
ea
, °, a
A Y= Cyosex posi oy +e 4a
og. 0) edo = Cpe ood reo
gst 3 xe0 yee
ub
=20 stan $202 (os2% -26 4
fe 2 = 0 + al. -20 ap
ffvom Oy tequived Sal ies
Ye cwsox posinax +e*Cathe BiB
. — —__—_
to + 3 ob
fe 3)
(as a reve a2 42 na
—
Diab 4a }{ Sab P46)
"oe
edie PEP aio! J tsx-6
ps
eee: = 6h 12 46a onan +
5
2
a)
1_{-9(3))]
1 1 papa TT~ ws.
Page in Py
t ri L
dy Se
t See se (rout = 01a) ,
= The Ae. es pup 42015 20
a a a D D
2 O(pi-29 (pt +S (4!) 20 —
2 (DH) (p=2045)20°
—tpe0-t4
eee peed)
& D-g0rs 20 sr
eOsatdfay UY
4 et (Coto
2 CE +P T
a 4 63sho 24)
py dy —a dy toy = 2e%ens (x ae
at a fa}
—) The Ae. fi p’-20+2 =0
(o=2) to: 0
2 fa #2
Dep s Ghee
No uo»
acerca
= (oe®
oise12 |
_+—
pt =) Roy
eos 2)
3)
re
FLOtAYrm mat
>
= Ge.) ws (x)
1440 Vo
} -=%e% G-up) ws (2)
1-16" tt
= =¢e% (-nn) co5(%)
i mEESTIEG) 2)
ae (os 4 =4fe stern (
I s is zt
lees c ate x-+ 925% a)
{} 5 2 a7)
The 48. fs s fete + et
5)
Ys Cee pe = 8 ef tosx trina’)
sss * ag
w)J (laprayy se ( meq aon)
[ eoeaea 4
—) The AE fs. C-mDte 2d
: f tD-29* 20
“Oro.2x da |
yu
on et soily = 1 ta(itats
= A
°
ee foe 2a
Pe a le i el
L (nan 2 al
are ot fet.) __ -
ee D4ooi-1ty fa
ape ot | eit) x
420143 =
=Rpof 7 a ail
{4 oro) | +
i: J
=)
ep ot fo Ciara y| «|
x7 aie oo r
~ pe ot [ot fy (o420i)4- [a | id
p> | 3 4
= Ap off e% [4-1 forai}\ r
ee |
=p. of [ 1 feos +fsin =2ix)|
tat ume)
= 1 (x tne segrmtnce | i
ab 3 a) |
The —4.6- 1 Ye (Ee cle
d 0Nou Siu!
F109)
pa
RG)
HCE = [Crean Jeosx + (cat xd atin
ec,
2
Hof:
nt.
(ta
=
= LP oe
=p. of J
1
(F*
Cet
ar
5
J
a]
= Ip cf
e
y ix
Coie J
faa 2
IP of
on.
Ka
a
(S421)
27
b
J
acini + py
Cai?
= IP of
27
aR =
= eS fi +p Ve oe!
ape 2
=rp off
z 2
welt f= D gach.
apr L ‘
bese
re ot [7
Sorin—f] thea find Uys — (Ya Ru) gn
tr fw
a — dae f YAR dt
ol I we +
tax). ind px 5 wif, sua
| put the Veoh. pt ep Ber in O.
aw 7
ey 4s eo" + @ary! + sany = RO-
= obtain ce > 6/41 *o¥s +043
=) ind w= |v Ya 4
yl ysl yal
a Taos? i
e +. 4s i
it
Yece+Pz
Safad or = wy tu Ua 95 ET of
neCE = Clos X + (2 Sine
let y= wsey Y= sin & RIX) = Coser ©
Now, w={ 4) 4% | = x _dinx | = 4.
yl! | Jasin. SX |
Uy = - (YR) de
J.
__= = _(sinx-tosee x ox
i A L
Mo = [ YR) da is L *
oe ;
= | tosx-tosee dx
a enna
rte wos) (de
sho
nu = On (shar)
Ce ee
opr = -feosx +sina Incolny): >
|
»
ye
4 Ve the af say sce ter
™“ | a Z
SE tos x 4 ta Stn Cs sine Sonatina),
+ aoe
{ DI yNequ c coc ax (maveh-2010, peg-2009 ,OeL-2eu
| a may 305)
~L n
~ —P The Ae. fs 5 D4 0 + O= 433
& | n CF = Cylos ay 4 (2 sin ax
{ Uys tosag , Yo aeinin & Binz = Sec
~
| 4=| 41 Yo |= |tns 3x sin an | =
Yur gy) basnae scosse
> -
— Uy = = [Ya Rix) abe
= om
= - ( stnaa-see ax db
I
{ == ( stnaxt abt
[ 3) tos 3%
r uy = ttm {cos 24)
2 .
= tia = [| YR) de —
\| a
- = (ees x. Senge At as
——}—IR The qs _f 5 1 Ye CE ner
A Ys ¢1tos 3x 4ashn an 41 ofa at +1 SAA Uni
7 = + a]
siscsis i EE f —
(3) | 89 4 dy —cosec x. (rey-20> e028)
dx? dx 7 z
I :
=) The A. Ps; 04D =0 ao
AD(IDH) =0
| oe
L Lpso th
TI
|
j
l
| t {
HCE = Cy4Cgtosx +03 SiMe 1
\
t
UpYies) Ya esx & Yyecimn Bm RU) = Cosee x |
we lu vo Ys [
aa Zz,
—~
L rr
L 4
1 ela. cosn Fon. |
bo: —shrse cosou J
L O - WS sina
| : my
=A ( sinke +eodn)
Ms 4 2
[uy = ((u293'-Ya92") Rodda
w
|~\ all
asf sae esta} comes ot Lal
1605 3x (La os, 4
rd femsu sda
-2013) +— = cot x)
+ (dau — Hida!) Ru on
= osee 2
pa = muy, t Mae tsi —§
. px zdm Tose x — ot x) OOS Tn (atx). sn
yece sre ts
Sarin btgiina ti Cosenx= tt %) —
i wecosx Jn (sina) = xAin ot
ht } |
ao+y <34Vaatable
24 udtons
corey
Oe ate. end tamte
ef ElaEre TEIN
sthe: ea it) =
Seduted “te [imean’ chite enen tial
flea” pn? romsiient
15 +he fh
be Solved by Maes methods — oliscusseal _
ee tects Qarslier —_{ 1
= —> 2 Stubs titudine, oe
——__Il arn 4 pe.
=) By puring 7 se” we
_Xdy = Oy
aK
[ lt Arata) Spear
eat i
x2 dy = ptnadtn-2
ae
a7 a7Y = otnapt-2) caonaiy
ext
Coetticients patthiy
cependent Varfcibie , titiel com 2va 0 -——
fe
|
= n(x ec ce
(may-s0) Jem-2013)
Pu ase) 22 ina.
“the _¢ive 2” seduced +¢
XN
a
=
4
q
(Dt0-1) 10-2) 4 2 OCD 42) y = 1 ce +e)
aia pean cierto
4
4 The Ae. fs o-0+2 20
Sin’-a0-20 p2042 =0
~ Olon)=2p (oH +214) 20
(pi (0-2 +29 20
& pionte=0
6 OQ =1th
Ze (entose tcgsinz)-—__y = od
swf ye any eI] :
z ao : |
Z =
LPL =m Se +2767 ~
The 98: fes i yece rez a)
ooo
= ea {.
YE Ce 4 o* (cgtosz + Cgsinz) +5e 422 er
eerie aim 1 5 z
“Ys ty) + 0 [ty i0' (4a) +(g si (4m 4) + 5x
z ==
a2 kms.
—
Yoo =) ameb gly 20.
a)
i ar
(04) -30 rH) y = 0 r
2 (B= -s0t9y = [
2 (9 =40 +44 =e
=> The AF. fs 5 D=4AD th =0
4 (p=2y%=
fp=2 42)3am
DB xy" 429" 20 Pr =O
pip-yty
=> D201)
1 C04 fg bn)
The gs is 5 4 =tF Pr
aE 2,22
ye (CtozIe +b
ut z =dnat
= GeeA VASA VA AX VAY
“ef nalaes inewx equation go 2
eg _ re cere suet an
The ef of them!” exder fs of the
Qo lars IY 4 atari gy 4. +
as aa” ax
m=) Cax+b) AY + any = Rix) ———)
| ax a —
Phere” Ao, 41 ~-7¢4y ose costae,
The ef” 01) can
| Ninens oltre soot" cofth » comatamt z
oekeicfents | 4 i. eee
CO\ich com eastlsy be Solved.
= BY _purting ort =e in U) me get,
Cax+pdy =aoy
reg
Caxtey dy = a*pto-ny
i _ a7 &
TT Sag 3
0x toy d°¥ = a Dto-.N-294
| ax3
> Le +
; Cate dy = a” 6 tp-19¢0-29.. ee
U air iad
—) Hem cbtet. eu” Com fly be.
lemie the aoe
| sow~~ — = —
Ek Solve the Pcllowhra olisg, on
8) cot * oly per dY +4 = A cos [ley C1429
ee dat rca 7
ma
er xtize™ 9 ze dma)
The given ea” seshired tos .
Sotto turo gids = 4005 2 Hee aot)
ie : 2 o=ti
—— Teil Qa 0 7 (ontanga) #adnci si =
+ tas (i “silent
a Ge 5 (igetxt)ee
aera cer spate e-3
are)
3
2(ap—4e -ap-2)y = 3Ce%=3)
2 (ap-¢p -i2)y = ae 49
b Th @-£. fs,
4p gp -12 =O
2 WO'= 20 +4p 1220
“HD (D-3) +4 (10-39 =0
S(D=3) (AD +49 =O
- 023 ,-)
oz
u 2
AD 8D 1 4p-8D-12
sai) #9. Ger tsd
Ta) (ap.
zaz =
YB Ore lta gh
fp. é i
Mati 2 ton (poeta) fh oata- ee
+ fo UbenGertone tit Co aa tan, 3
Data 16 a
+ 2 Ys taxtay+ GH ax a9 43.
arse 6 y
a
3
Citarts) +10, ax +3
aura Sbnn STA
[> :
MRO) a5 pex toe Hewoing
1) Roy 2 e9% [Spa aek®
whe fesx of Yo
S2 "R00 esincy og cosoxl Yee psinag apie ag
2D R4 = oT Prerta [Y= A Prax 4or40
4D RUD = ars by Yo = At ax +
| SD) Rw) = axa, Mp = AX ty al
t £) Rind 2c Yo = &
SDR =e" simnx of |1 up = 0 (acmta au 05 b1)
08% os bor 2 a
9) lletay = ye Ye = CAanae e
8) [Ring = 29%
de
a
Catpxtuds
10) Qiwd= x ohn ax
Jp = (A+R) shox +Cc+pi) san
eg Il eins = a Ye = Act* -
ROIs e736 Ye = Ae Tape
RAI = tos ay Moz Asin 32 + Rtas 3%.
BOONE
when functor)
sppeamny Fey
Be Ute also present
Pesicwer +,
ny i eo ot
tena4 Solve the toltnwiny lite. eo using the
J
~ amettod ot Umdebetmineal. Coetticiem ts
——— ee
1) y" suy = sin ax
The ae fs, oH
ry
= Ce = C,U0s aoe Cp. 8h Ba __—
. Asin 8% +B cos 94 —___—_—
= 20cog3x — 38 sinda —_—__—
= -4A singx = 1309 3%
cin gx = 98 60S 3:
a + upshnax $4 cos 3b
= 2 sau —
_ ei) ateWASF BMAF
+
43 aE
=e
Wc=0 = c=0
2BtID a4 <5) gyap ay ~
3
= 1) = 10
3
= 92 10,
iF
@ Yy"+ay = owsax geenUe = C) tos 3 + ta SPO 3K
Up = xcasinas 40534) + C4 4P
Up = Axsinax 4 xcos 32
up = Altos 34 — BAC 811 3 4 BS
ri
yp = —aAsinix = Asin im = IAx (os 320+ aAcos 2
+ 3G (n5 3% =
Ud