Spruj 51
Spruj 51
User's Guide
Chapter 1
Abstract
This technical user’s guide describes the hardware architecture of the AM62x-Low Power SK EVM, a low cost
starter kit built around the AM62x System-on-Chip (SoC). The AM62x processor comprises of a quad-core 64-bit
Arm®-Cortex® A53 microprocessor, single-core Arm Cortex-R5F MCU and an Arm Cortex-M4F MCU.
The SK EVM allows the user to experience a great dual display feature through HDMI (over DPI) and LVDS,
up to 2K resolution, as well as industrial communication solutions using serial, Ethernet, USB and other
interfaces. Its powerful Arm performance, up to quad-core Cortex-A53 at 1.4GHz, with rich interfaces, offers
good control and communication capabilities for a wide ranges of automotive applications such as automotive
HMI and driver monitoring system, as well as industrial applications such as PLC, automation control, monitor/
supervisor system. In addition, the SK EVM can communicate with other processors or systems, and act as
a communication gateway. In addition, the SK EVM can directly operate as a standard remote I/O system or
simple sensor connected to an industrial communication network. The embedded emulation logic allows for
emulation and debugging using standard development tools such as Code Composer Studio™ from TI.
Note
This evaluation board is a pre-production release and has several known issues that should not be
copied into a production system
Chapter 2
EVM Revisions and Assembly Variants
Note
The maximum length of the IO cables shall not exceed 3 meters.
Table of Contents
1 Abstract................................................................................................................................................................................... 3
2 EVM Revisions and Assembly Variants................................................................................................................................5
2.1 Inside the Box.................................................................................................................................................................... 5
2.2 EMC, EMI and ESD Compliance....................................................................................................................................... 5
3 System Description...............................................................................................................................................................11
3.1 Key Features....................................................................................................................................................................12
3.1.1 Processor.................................................................................................................................................................. 12
3.1.2 Power Supply............................................................................................................................................................ 12
3.1.3 Memory......................................................................................................................................................................14
3.1.4 JTAG Emulator.......................................................................................................................................................... 14
3.1.5 Supported Interfaces and Peripherals....................................................................................................................... 14
3.1.6 Expansion Connectors Headers to Support Application Specific Add On Boards.................................................... 14
3.2 Functional Block Diagram................................................................................................................................................ 14
3.3 AM62x-Low Power SK EVM Interface Mapping...............................................................................................................15
3.4 Power ON OFF Procedures............................................................................................................................................. 16
3.4.1 Power-On Procedure.................................................................................................................................................16
3.4.2 Power-Off Procedure................................................................................................................................................. 17
3.4.3 Power Test Points......................................................................................................................................................17
3.5 Peripheral and Major Component Description................................................................................................................. 17
3.5.1 Clocking.....................................................................................................................................................................17
3.5.2 Reset......................................................................................................................................................................... 19
3.5.3 OLDI Display Interface.............................................................................................................................................. 20
3.5.4 CSI Interface..............................................................................................................................................................21
3.5.5 Audio Codec Interface............................................................................................................................................... 23
3.5.6 HDMI Display Interface..............................................................................................................................................23
3.5.7 JTAG Interface...........................................................................................................................................................24
3.5.8 Test Automation Header............................................................................................................................................ 26
3.5.9 UART Interface.......................................................................................................................................................... 27
3.5.10 USB Interface.......................................................................................................................................................... 28
3.5.10.1 USB 2.0 Type A Interface................................................................................................................................. 28
3.5.10.2 USB 2.0 Type C Interface................................................................................................................................. 29
3.5.11 Memory Interfaces................................................................................................................................................... 30
3.5.11.1 LPDDR4 Interface............................................................................................................................................. 30
3.5.11.2 OSPI Interface...................................................................................................................................................31
3.5.11.3 MMC Interfaces................................................................................................................................................. 32
3.5.11.4 EEPROM...........................................................................................................................................................34
3.5.12 Ethernet Interface.................................................................................................................................................... 35
3.5.12.1 CPSW Ethernet PHY1 Default Configuration................................................................................................... 36
3.5.12.2 CPSW Ethernet PHY2 Default Configuration................................................................................................... 37
3.5.13 GPIO Port Expander................................................................................................................................................38
3.5.14 GPIO Mapping.........................................................................................................................................................39
3.5.15 Power...................................................................................................................................................................... 40
3.5.15.1 Power Requirements........................................................................................................................................ 40
3.5.15.2 Power Input.......................................................................................................................................................41
3.5.15.3 Power Supply....................................................................................................................................................42
3.5.15.4 Power Sequencing............................................................................................................................................44
3.5.15.5 AM62x 17x17 SoC Power.................................................................................................................................44
3.5.15.6 Current Monitoring............................................................................................................................................ 45
3.5.16 AM62x-Low Power SK EVM User Setup and Configuration................................................................................... 45
3.5.16.1 EVM DIP Switches............................................................................................................................................45
List of Figures
Figure 3-1. SK EVM Top............................................................................................................................................................ 11
Figure 3-2. SK EVM Bottom...................................................................................................................................................... 12
Figure 3-3. Power Architecture.................................................................................................................................................. 13
Figure 3-4. Functional Block Diagram....................................................................................................................................... 15
Figure 3-5. Example SD Boot Mode.......................................................................................................................................... 16
Figure 3-6. Clock architecture....................................................................................................................................................18
Figure 3-7. SoC Wakeup Domain Clock.................................................................................................................................... 19
Figure 3-8. Reset Block Diagarm...............................................................................................................................................20
Figure 3-9. OLDI Interface Block Diagram.................................................................................................................................20
Figure 3-10. CSI Interface Block Diagram................................................................................................................................. 22
Figure 3-11. Audio Codec Interface Block Diagram...................................................................................................................23
Figure 3-12. HDMI Interface Block Diagram..............................................................................................................................24
Figure 3-13. JTAG Interface Block Diagram.............................................................................................................................. 25
Figure 3-14. Test Automation Interface Block Diagram............................................................................................................. 26
Figure 3-15. UART Interface Block Diagram............................................................................................................................. 28
Figure 3-16. USB Type A Interface Block Diagram................................................................................................................... 29
Figure 3-17. USB2.0 Type C Interface Block Diagram.............................................................................................................. 30
Figure 3-18. LPDDR4 Interface Block Diagram.........................................................................................................................31
Figure 3-19. OSPI Interface block Diagram...............................................................................................................................32
Figure 3-20. EMMC Interface Block Diagram............................................................................................................................ 32
Figure 3-21. Micro SD Interface Block Diagram........................................................................................................................ 33
Figure 3-22. M.2 Interface Block Diagram................................................................................................................................. 34
Figure 3-23. Board ID EEPROM Interface Block Diagram........................................................................................................ 35
Figure 3-24. Ethernet Interface Block Diagram......................................................................................................................... 36
Figure 3-25. Power Input Block Diagarm...................................................................................................................................42
Figure 3-26. Power Architecture................................................................................................................................................ 43
Figure 3-27. Boot Mode Switch Example.................................................................................................................................. 46
Figure 3-28. MCU Connector Interface......................................................................................................................................51
Figure 3-29. PRU Connector Interface...................................................................................................................................... 52
Figure 3-30. I2C Interface Block Diagram................................................................................................................................. 54
List of Tables
Table 2-1. SK EVM PCB design revisions and assembly variants.............................................................................................. 5
Table 3-1. Interface Mapping..................................................................................................................................................... 15
Table 3-2. Power Test Points..................................................................................................................................................... 17
Table 3-3. Peripheral Clocking Table......................................................................................................................................... 19
Table 3-4. Display Connector Pinout......................................................................................................................................... 21
Table 3-5. CSI Camera Connector J19 Pinout...........................................................................................................................22
Table 3-6. JTAG Connector (J19) Pinout................................................................................................................................... 25
Table 3-7. Test Automation Connector (J24) Pinout.................................................................................................................. 27
Table 3-8. UART Port Interface..................................................................................................................................................28
Table 3-9. CPSW Ethernet PHY–1 Strap values....................................................................................................................... 37
Table 3-10. CPSW Ethernet PHY–2 Strap values..................................................................................................................... 38
Table 3-11. IO Expander 1 Signal Details.................................................................................................................................. 38
Table 3-12. IO Expander 2 Signal Details..................................................................................................................................39
Table 3-13. Type-C port Power roles......................................................................................................................................... 40
Table 3-14. Recommended External Power Supplies............................................................................................................... 41
Trademarks
All trademarks are the property of their respective owners.
Chapter 3
System Description
The following sections describe the power distribution network topology that supplies the SK EVM board,
supporting components and reference voltages.
The AM62x-Low Power SK EVM board includes a power solution based on a PMIC as well as discrete power
supply components. The initial stage of the power supply will be VBUS voltage from either of the two USB
Type C connectors J13 and J15. USB Type-C Dual PD controller of Mfr. Part# TPS65988DHRSHR is used for
negotiation of the required power to the system.
Buck-Boost controller TPS630702RNMR and Buck converter LM61460-Q1 are used for the generation of 5V
and 3.3V respectively and the input to the regulators is the PD output. These 3.3V and 5V are the primary
voltages for the AM62x-Low Power SK EVM Board power resources. The 3.3V supply generated from the
Buck regulator LM61460-Q1 is the input supply to the Various SOC regulators and LDOs. The 5V supply
generated from the Buck Boost regulator TPS630702RNMR is used for powering the onboard peripherals.
Discrete regulators and LDOs used on board are:
• TPS62824DMQR - To generate VDD_2V5 rail for PHY and DDR peripherals
• TLV75510PDQNR - To generate VDD_1V0 for Ethernet PHYs
• TPS65219 - To generate various SoC and peripheral supply’s
• TPS62177DQCR - Powering the always-on circuits of Test Automation Section
• TLV75518LDO - e-Fuse programming of SoC
• TPS79601LDO - XDS110 On board emulator
• TPS73533LDO - FT4232 UART to USB Bridge
• TLV705075YFPT- To generate VDD_CANUART rail
Additionally, GPIO from the test automation header is also connected to the TPS630702RNMR Enable pin
to control ON/OFF of the SKEVM via the test automation board. It only disables the VCC_5V0 output of
TPS630702RNMR from which all other power supplies are derived. SoC has different IO groups.
3.1.3 Memory
• 2GB LPDDR4 supporting data rate up to 1600MT/s.
• Micro SD Card slot with UHS-1 support
• 1Gbit Octal SPI Flash memory
• 512 Kbit Inter-Integrated Circuit (I2C) board ID EEPROM
• 16GB eMMC Flash
3.1.4 JTAG Emulator
• XDS110 On-Board Emulator
• Supports 20-pin JTAG connection from external emulator
3.1.5 Supported Interfaces and Peripherals
• 1x USB2.0 Type C Interface supporting DFP and UFP modes (Data) and DRP mode (Power)
• 1x USB2.0 Host Interface - Type A
• 1x HDMI Interface
• Audio Line in and Mic + Headphone out
• M.2 Key E interface support for both Wi-Fi and Bluetooth modules
• 2x Gigabit Ethernet ports supporting 10/100/1000 Mbps data rate on two connectors (RJ45, Un-populated
Automotive).
• Quad port UART to USB circuit over microB USB connector
• INA devices for current monitoring
• 2x Temperature Sensors near SoC and LPDDR4 for thermal monitoring
3.1.6 Expansion Connectors Headers to Support Application Specific Add On Boards
• CSI Camera Header
• 1x LVDS Display connector
• User Expansion connector
• PRU Header
• MCU Header
• Test Automation Header
3.2 Functional Block Diagram
The functional block diagram of the AM62x-Low Power SK EVM is shown below.
*1This voltage is available only when micro B to type A USB cable is connected between J18 and host PC.
*2This voltage is available only when micro B to type A USB cable is connected between J17 and host PC.
3.5 Peripheral and Major Component Description
The following sections provide an overview of the different interfaces and circuits on the AM62x Low-Power SK
EVM.
3.5.1 Clocking
The clocking architectue of the AM62x Low-Power SK EVM is shown below.
A clock generator of part number LMK1C1104PWR is used to drive the 25MHz clock to the SOC and two
Ethernet PHYs. LMK1C1104PWR is a 1:4 LVCMOS clock buffer, which takes the 25MHz crystal/LVCMOS
referenceinput and provides four 25MHz LVCMOS clock outputs. The source for the clock buffer shall be either
the CLKOUT0 pin from the SOC or a 25MHz oscillator, the selection is made using a set of resistors. By default,
an oscillator is used as input to the clock buffer on the AM62x Low Power SK EVM . Output Y2 and Y3 of the
clock buffer are used as reference clock inputs for two Gigabit Ethernet PHYs. Output Y4 of the clock buffer are
used as reference clock inputs for CSI Camera inetrace.
There is one external crystal attached to the AM62x SoC to provide clock to the WKUP domain of the SoC
(32.768 KHz).
Clock inputs required for peripherals such as XDS110, FT4232, HDMI transmitter and audio codec are
generated locally using separate crystals or oscillators. Crystals or oscillators used to provide the reference
clocks to the EVM peripherals are shown in the table below.
Table 3-3. Peripheral Clocking Table
Peripheral Mfr.Part # Description Frequency
XDS110 emulator(Y3) XRCGB16M000FXN01R0 CRY 16.000MHz 8pF SMD 16.000MHz
FT4232 Bridge(Y4) 445I23D12M00000 CRY12.000MHz 18pF SMD 12.000MHz
Audio Codec(U64) KC3225Z12.2880C1KX00 OSC12.288MHz CMOS SMD 12.288MHz
HDMITransmitter(U9) KC3225Z12.2880C1KX00 OSC12.288MHz CMOS SMD 12.288MHz
The clock required by the HDMI transmitter can be provided by either the on board oscillator or the SoC’s
AUDIO_EXT_REFCLK1, which can be selected through a resistor mux. SoC’s EXT_REFCLK1 is used to
provide clock to the User Expansion Connector on the SK EVM. The 32 KHz clock to the M.2 module is provided
by WKUP_CLKOUT0 of AM62x SoC through a voltage translational buffer.
3.5.2 Reset
The Reset Architecture of AM62x-Low Power SK EVM is shown below. The SoC has the following resets:
• RESETSTATz is the Main domain warm reset status output
• PORz_OUT is the Main domain power ON reset status output
• RESET_REQz is the Main domain warm reset input
• MCU_PORz is the MCU domain power ON/ Cold Reset input
• MCU_RESETSTATz is the MCU domain warm reset status output
Upon Power on Reset, all peripheral devices connected to the main domain get reset by RESETSTATz.
through the McASP1 instance. HDMI_I2C Bus accesses the EDID and HDCP data on an attached sink device.
TMDS Differential data pairs along with the differential clock signals from the transmitter are connected to the
HDMI connector through HDMI ESD device Mfr Part# TPD12S016PWR which also acts as a load switch to limit
current supplied to the HDMI connector from board 5V supply. The HDMI Framer is powered using 3.3V Board
IO Supply and 1.2V by a dedicated PMIC LDO.
The pin-out of the cTI 20 pin JTAG connector are given in Table 3-6. A ESD protection part number TPD4E004 is
provided on USB signals to steer ESD current pulses to VCC or GND. TPD4E004 protects against ESD pulses
up to ±15-kV Human-Body Model (HBM) as specified in IEC 61000-4-2 and provides ±8-kV contact discharge
and ±12- kV air-gap discharge.
Table 3-6. JTAG Connector (J19) Pinout
Pin No. Signal
1 JTAG_TMS
2 JTAG_TRST#
3 JTAG_TDI
4 JTAG_TDIS
5 VCC3V3_SYS
6 NC
7 JTAG_TDO
8 SEL_XDS110_INV
9 JTAG_cTI_RTCK
10 DGND
11 JTAG_cTI_TCK
12 DGND
13 JTAG_EMU0
14 JTAG_EMU1
15 JTAG_EMU_RSTn
16 DGND
17 NC
18 NC
19 NC
20 DGND
The pin-outs of the cTI 20 pin JTAG connector are given in the table above. A ESD protection part number
TPD4E004 is provided on USB signals to steer ESD current pulses to VCC or GND. TPD4E004 protects against
ESD pulses up to ±15-kV Human-Body Model (HBM) as specified in IEC 61000-4-2 and provides ±8-kV contact
discharge and ±12- kV air-gap discharge.
3.5.8 Test Automation Header
The AM62x-Low Power SK EVM has a 40 pin test automation header (FH12A-40S-0.5SH) to allow an external
controller to manipulate some basic operations like Power Down, POR, Warm Reset, Boot Mode control etc.
The Test Automation Circuit is powered by the 3.3V supply generated by a dedicated regulator Mfr.Part#
TPS62177DQCR. The SoC’s I2C1 is connected to the test automation header. Another I2C instance
(BOOTMODE_I2C) from the Test Automation Header is connected to the 24 bit I2C boot mode IO Expander
of Mfr. Part# TCA6424ARGJR to allow control of the boot modes for the AM62X SoC.
The test automation circuit has voltage translation circuits so that the controller is isolated from the IO voltages
used by the AM62x SoC. Boot mode for the AM62x SoC must be controlled by either the user using DIP
Switches or the test automation header through the I2C IO Expander. Boot Mode Buffers are used to isolate the
Boot Mode controls driven through DIP Switches or I2C IO Expander. The boot mode is controlled by the user
using two 8-bit DIP switches on the board, which will connect a pull-up resistor to the output of a buffer when the
switch is set to the ON position and to weaker pull-down resistor when set to the OFF position. The output of the
buffer is connected to the boot mode pins on the AM62x SoC and the output is enabled when the boot mode is
needed during a reset cycle.
When boot mode is set through Test Automation header, the required switch values are set at the I2C IO
expander output, which overwrites the DIP switch values to give the desired boot values to the SoC. The pins
used for boot mode also have other functions which will be isolated by disabling the boot mode buffer during
normal operation.
The power down signal from the test automation header instructs the SK EVM to power down all the rails except
for dedicated power supplies on the board. Similarly PORZn signal is also provided to give a hard reset to the
SoC and WARM_RESETn for warm reset of the SoC.
Table 3-7. Test Automation Connector (J24) Pinout
Pin no. Signal IO Direction Pin no. Signal IO Direction
1 VCC3V3_TA Power 21 NC NA
2 VCC3V3_TA Power 22 NC NA
3 VCC3V3_TA Power 23 NC NA
4 NC NA 24 NC NA
5 NC NA 25 DGND Power
6 NC NA 26 TEST_POWERDOW Input
N
7 DGND Power 27 TEST_PORZn Input
8 NC NA 28 TEST_WARMRESET Input
n
9 NC NA 29 NC NA
10 NC NA 30 TEST_GPIO1 Bidirectional
11 NC NA 31 TEST_GPIO2 Bidirectional
12 NC NA 32 TEST_GPIO3 Input
13 NC NA 33 TEST_GPIO4 Input
14 NC NA 34 DGND Power
15 NC NA 35 NC NA
16 DGND Power 36 SoC_I2C1_TA_SCL Bidirectional
17 NC NA 37 BOOTMODE_I2C_S Bidirectional
CL
18 NC NA 38 SoC_I2C1_TA_SDA Bidirectional
19 NC NA 39 BOOTMODE_I2C_S Bidirectional
DA
20 NC NA 40 DGND Power
The FT4232 chip is configured to operate in ‘Single chip USB to four channel UART’ mode and will take the
configuration file from the external SPI EEPROM connected to it. The EEPROM (93LC46B) supports 1Mbit/s
cloc krate. The EEPROM is programmable in-circuit over USB using a utility program called FT_PROG available
from FTDI's web site. The FT_PROG is also used for programming the board serial number for users to identify
the connected COM port with board serial number when one or more boards are connected to the computer.
USB Data lines from Type-A connectors are also connected to the Current Limit Load Switch and ESD
Protection IC Mfr Part# TPD3S014DBVR. This switch limits the current to 500mA and dissipates the ESD strikes
above the maximum level specified in the IEC 61000-4-2.
3.5.11.4 EEPROM
AM62x-Low Power SK EVM boards are identified by its version and serial number, which are stored on the
onboard EEPROM. The EEPROM is accessible from AM62x 17x17 SoC I2C0 port.
The Board ID EEPROM I2C address is set to 0x51. The AM62x-Low Power SK EVM includes an M24512-
DFMC6TG 512kb EEPROM. The first 259 bytes of memory are preprogrammed with identification information
for each board. The remaining 65277 bytes are available to the user for data or code storage.
Auto_neg: Disabled
ANG_sel: 10/100/1000
RGMIIClk skew Tx: 0ns
RGMIIClk skew Rx: 2ns
Table 3-9. CPSW Ethernet PHY–1 Strap values
Strap Setting Pin Name Strap Function Mode Valueof Strap Description
Function
PHY Address RX_D2 PHY_AD3 1 0 PHY Address: 0000
PHY_AD2 1 0
RX_D0 PHY_AD1 1 0
PHY_AD0 1 0
Auto Negotiation RX_DV/ RX_CTRL Auto- neg 3 0 Autoneg Disabled
Modes of Operation LED2 RGMIIClock Skew 5 0 RGMIITX Clock
TX[1] Skew is set to 0 ns
RGMIIClock Skew 5 0
TX[0]
LED_1 RGMIIClock Skew 5 1
TX[2]
ANEG_SEL 1 0 advertiseability of
10/100/1000
LED_0 Mirror Enable 1 0 Mirror Enable
Disabled
GPIO_1 RGMIIClock Skew 1 0 RGMIIRX Clock
RX[2] Skew is set to 2 ns
RGMIIClock Skew 1 0
RX[1]
GPIO_0 RGMIIClock Skew 1 0
RX[0]
The interrupts generated from two CPSW RGMII PHYs are tied together and is connected to EXTINTn pin of
AM62x SoC.
LED_0is connected to RJ45 Right LED (Green) to indicate 1000MHz link (status).
LED_1is connected to RJ45 Left LED (Green) to indicate transmit/receive activity.
3.5.13 GPIO Port Expander
The I/O Expanders are used in the AM62x-Low Power SK EVM are a 24-Bit I2C based I/O Expander which is
used for daughter card plug-in detection and for generating resets and enable signals to various peripheral
devices connected to it. The SoC_I2C1 bus of the AM62X 17x17 SoC is used to interface with the I/O
Expanders. The I2C device address of the I/O Expander is 0x21 and 0x23. See the tables below for the list
of signals being controlled by the Expanders.
Table 3-11. IO Expander 1 Signal Details
IO EXPANDER - 01
Pin no SIGNAL DIRECTION DEVICE
P11 GPIO_EMMC_RSTN OUTPUT eMMC Reset control GPIO
P01 GPIO_CPSW1_RST OUTPUT CPSW Ethernet PHY-1 Reset
Control GPIO
P00 GPIO_CPSW2_RST OUTPUT CPSW Ethernet PHY-2 Reset
Control GPIO
P03 MMC1_SD_EN OUTPUT SD Card Load Switch Enable
P04 VPP_LDO_EN OUTPUT SOC eFuse Voltage(VPP=1.8V)
Regulator Enable
P05 EXP_PS_3V3_EN OUTPUT EXP CONN 3.3V Power Switch
Enable
P06 EXP_PS_5V0_EN OUTPUT EXP CONN 5V Power Switch
Enable
P10 GPIO_AUD_RSTN OUTPUT Audio Codec Reset Control GPIO
3.5.15 Power
3.5.15.1 Power Requirements
AM62x-Low Power SK EVM can be powered through either of the two USB Type C Connectors –
• Connector 1(J13) - Power role – SINK, No Data role
• Connector 2(J15) - Power role – DRP, Data role – USB2.0 DFP or UFP
The AM62x-Low Power SK EVM supports voltage input ranges of 5V - 15V and 3A of current. A USB PD
controller Mfr. Part#TPS65988DHRSHR is used for PD negotiation upon cable detection to get necessary power
required for the board. Connector 1 is configured to be an UFP Port and has no Data role. Connector 2 is
configured as a DRP port, it can act as DFP only when the board is being powered by Connector 1. When both
the connectors are connected to external power supply, the port with highest PD power contract will be selected
to power the board.
Table 3-13. Type-C port Power roles
J13(UFP) J15(DRP) BoardPower Remarks
Plugged in NC ON - J13 J13will be UFP and will only sink
power & J15 can act as DFP if a
peripheral is connected
NC Plugged in ON - J15 J15will be UFP and can only sink
power
Plugged in Plugged in ON- J13 or J15 Boardwill be powered by the port
with highest PD power contract
The PD IC uses a SPI EEPROM to load the necessary configuration on power up so it can negotiate a power
contract with a compatible power source.
The configuration file is loaded to the EEPROM using header J23. Once the EEPROM is programmed the PD
obtainsthe configuration files via SPI communication. Upon loading the configuration files the PD negotiates with
the source to obtain the necessary power requirement.
Power indication LEDs are provided for both the Type-C connectors for the user to identify which connector is
powering the SKEVM Board. An external power supply (Type-C output) can be used to power the EVM but is not
included as part of the SKEVM kit.
Table 3-14. Recommended External Power Supplies
DigiKeyPart# Manufacturer Manufacturer Part #
1939-1794-ND GlobTek, Inc. TR9CZ3000USBCG2R6BF2(*)
Q1251-ND Qualtek QADC-65-20-08CB
Note
Minimum Voltage: 5 VDC, Recommended Minimum Current: 3000 mA, Maximum Voltage: 15VDC,
Maximum current: 5000mA. Because SK-AM62-LP implements USB PD for power, the device is able
to negotiate to the highest Voltage/Current combination supported by both the Device and Power
Adapter, as such, if the power supply exceeds the maximum voltage and current requirements listed
above is acceptable as long as the power adapter is compliant with the USB-C PD specification.
(*) This is the adapter part number used for compliance testing.
Note
TI recommends using an external power supply or power accessory which complies with applicable
regional safety standards such as (by example) UL, CSA, VDE, CCC, PSE, etc.
The following sections describe the power distribution network topology that supplies the SK EVM board,
supporting components and reference voltages.
The AM62x-Low Power SK EVM board includes a power solution based on a PMIC as well as discrete power
supply components. The initial stage of the power supply will be VBUS voltage from either of the two USB
Type C connectors J13 and J15. USB Type-C Dual PD controller of Mfr. Part# TPS65988DHRSHR is used for
negotiation of the required power to the system.
Buck-Boost controller TPS630702RNMR and Buck converter LM61460-Q1 are used for the generation of 5V
and 3.3V respectively and the input to the regulators is the PD output. These 3.3V and 5V are the primary
voltages for the AM62x-Low Power SK EVM Board power resources. The 3.3V supply generated from the
Buck regulator LM61460-Q1 is the input supply to the Various SOC regulators and LDOs. The 5V supply
generated from the Buck Boost regulator TPS630702RNMR is used for powering the onboard peripherals.
Discrete regulators and LDOs used on board are:
• TPS62824DMQR - To generate VDD_2V5 rail for PHY and DDR peripherals
• TLV75510PDQNR - To generate VDD_1V0 for Ethernet PHYs
• TPS65219 - To generate various SoC and peripheral supply’s
• TPS62177DQCR - Powering the always-on circuits of Test Automation Section
• TLV75518LDO - e-Fuse programming of SoC
• TPS79601LDO - XDS110 On board emulator
• TPS73533LDO - FT4232 UART to USB Bridge
• TLV705075YFPT- To generate VDD_CANUART rail
Additionally, GPIO from the test automation header is also connected to the TPS630702RNMR Enable pin
to control ON/OFF of the SKEVM via the test automation board. It only disables the VCC_5V0 output of
TPS630702RNMR from which all other power supplies are derived. SoC has different IO groups.
3.5.15.4 Power Sequencing
The power sequencing of AM62x-Low Power EVM is given below.
The boot mode pins of the SoC have associated alternate functions during normal operation. Hence isolation
isprovided using Buffer IC’s to cater for alternate pin functionality. The output of the buffer is connected to the
bootmode pins on the AM62x Low Power SK EVM. The output is enabled when the bootmode is needed during
a reset cycle.
The input to the buffer is connected to the DIP switch circuit and to the output of an I2C buffer set by the test
automatio ncircuit. If the test automation circuit is going to control the bootmode, all the switches will manually be
set to the OFF position. The bootmode buffer should be powered by an always ON power supply to ensure that
the bootmode remains present even if the SoC power is cycled.
Switch SW1 and SW2 bits [15:0] are used to set the SoC Boot mode.
The switch map to the boot mode functions is provided in the tables below.
Figure 3-27. Boot Mode Switch Example
BOOT-MODE[0:2] – Denote system clock frequency for PLL configuration. By default this bits are set for 25MHz.
BOOT-MODE [3:6] – This provides primary boot mode configuration to select the requested boot mode after
POR, that is, the peripheral/memory to boot from primary boot device selection details.
Table 3-19. Boot Device Selection BOOT-MODE [6:3]
SW3.7 SW3.6 SW3.5 SW3.4 Primary Boot Device
Selected
OFF OFF OFF OFF Serial NAND
OFF OFF OFF ON OSPI
OFF OFF ON OFF QSPI
OFF OFF ON ON SPI
OFF ON OFF OFF Ethernet RGMII1
OFF ON OFF ON Ethernet RMII1
OFF ON ON OFF I2C
OFF ON ON ON UART
ON OFF OFF OFF MMC/SD card
ON OFF OFF ON eMMC
ON OFF ON OFF USB0
ON OFF ON ON GPMC NAND
ON ON OFF OFF GPMC NOR
ON ON OFF ON Rsvd
ON ON ON OFF xSPI
ON ON ON ON No boot/Dev Boot
• BOOT-MODE [10:12] – Select the backup boot mode, used when the primary boot mode is not available.
Table 3-20. Backup Boot Mode Selection BOOT-MODE [12:10]
SW4.5 SW4.4 SW4.3 Backup Boot Device Selected
OFF OFF OFF None(No backup mode)
OFF OFF ON USB
OFF ON OFF Reserved
OFF ON ON UART
ON OFF OFF Ethernet
ON OFF ON MMC/SD
ON ON OFF SPI
ON ON ON I2C
BOOT-MODE [9:7] – These pins provide optional settings and are used in conjunction with the primary boot
device selected.
Table 3-21. Primary Boot Media Configuration BOOT-MODE[9:7]
SW4.2 SW4.1 SW3.8 Boot Device
Reserved Read Mode 2 Read Mode 1 Serial NAND
Reserved Iclk Csel QSPI
Speed Iclk Csel OSPI
Reserved Mode Csel SPI
Clkout 0 Link stat Ethernet RGMII
Clkout Clk src 0 Ethernet RMII
Bus Reset Reserved Addr I2C
Reserved Reserved Reserved UART
Port Reserved Fs/raw MMC/ SD card
Reserved Reserved Reserved eMMC
Core Volt Mode Lane swap USB0
Reserved Reserved Reserved GPMC NAND
Reserved Reserved Reserved GPMC NOR
Reserved Reserved Reserved Reserved
SFDP Read Cmd Mode xSPI
Reserved ARM/Thumb No/Dev No boot/Dev Boot
BOOT-MODE[13] – These pins provide optional settings and are used in conjunction with the backup boot
device devices. Switch SW2.6 when ON sets 1 and sets 0 if OFF, see the device-specific TRM.
BOOT-MODE [14:15] – Reserved. Provides backup boot media configuration options.
Table 3-22. Backup Boot Media Configuration BOOT-MODE[13]
SW4.6 Boot Device
Reserved None
Mode USB
Reserved Reserved
Reserved UART
IF Ethernet
Port MMC/SD
Reserved SPI
Reserved I2C
control), MCU_SPI0 and MCU_MCAN0 signals are connected to the MCU Header. Additional control
signals provided on the Header include CONN_MCU_RESETz, CONN_MCU_PORz, MCU_RESETSTATz,
MCU_SAFETY_ERRORn, 3.3V IO and GND. MCU_UART0 signals from AM62x SoC are connected to both
MCU Header and FT4232 Bridge through MUX Mfr Part # SN74CB3Q3257PWR. The MCU Header does not
include the Board ID memory interface. Allowed current limit is 100mA on 3.3V rail.
Chapter 4
Known Issues and Modifications
Chapter 5
Revision History
Chapter 6
IMPORTANT NOTICE AND DISCLAIMER
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated