🔹 1.
Limits & Continuity
  ● A limit tells you what value a function approaches as the input gets close to something.
  ● Notation:
      limx→af(x)=L\lim_{x \to a} f(x) = L
  ● If a function has a hole, jump, or asymptote, it may not be continuous at that point.
  ● Continuity Rule:
     A function is continuous at x=ax = a if:
          1. f(a)f(a) is defined
          2. limx→af(x)\lim_{x \to a} f(x) exists
          3. limx→af(x)=f(a)\lim_{x \to a} f(x) = f(a)
🔹 2. Derivative Rules
  ● Power Rule:
     ddx[xn]=nxn−1\frac{d}{dx} [x^n] = nx^{n-1}
  ● Product Rule:
     (fg)′=f′g+fg′(fg)' = f'g + fg'
  ● Quotient Rule:
     (fg)′=f′g−fg′g2\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}
  ● Chain Rule:
     ddxf(g(x))=f′(g(x))⋅g′(x)\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)
🔹 3. Common Derivatives
  ● ddx[sinx]=cosx\frac{d}{dx}[\sin x] = \cos x
  ● ddx[cosx]=−sinx\frac{d}{dx}[\cos x] = -\sin x
  ● ddx[tanx]=sec2x\frac{d}{dx}[\tan x] = \sec^2 x
  ● ddx[ex]=ex\frac{d}{dx}[e^x] = e^x
  ● ddx[lnx]=1x\frac{d}{dx}[\ln x] = \frac{1}{x}
🔹 4. Integration Basics
  ● Reverse of derivative.
  ● Power Rule for Integrals:
     ∫xndx=xn+1n+1+C(n≠−1)\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)
  ● Definite Integrals give area under the curve from aa to bb:
     ∫abf(x)dx\int_a^b f(x) dx
  ● Fundamental Theorem of Calculus:
     ddx∫axf(t)dt=f(x)\frac{d}{dx} \int_a^x f(t) dt = f(x)