PL Station Design
PL Station Design
This document is intended to assist application engineers, designers, planners and users of sewage and
storm water systems incorporating Flygt axial and mixed flow pumps installed in a column.
A proper design of the pump sump is crucial in order to achieve an optimal inflow to the pumps. Important
design requirements to be met are: uniform flow approach to the pumps, preventing pre-rotation under the
pumps, preventing significant quantities of air from reaching the impeller and transport of settled and float-
ing solids. The Flygt standard pump station design can be used as is, or with appropriate variations upon
review by Flygt engineers.
Pump and sump are integral to an overall system that includes a variety of structures and other elements
such as ventilation systems and solids handling equipment. Operating costs can be reduced with the help
of effective planning and suitable operation schedules. Our personnel and publications are available to
offer guidance in these areas. Transient analysis of pump system behaviour, such as air chamber dimension-
ing, valve selection, etc., should also be considered in wastewater pump station design. These matters are
not addressed in this brochure, but we can offer guidance.
Please consult our engineers to achieve optimum pump performance, maximum pump life, and a guaran-
tee that product warranties are met. The design recommendations are only valid for Flygt equipment. We
assume no liability for non-Flygt equipment.
Systems Engineering Flygt PL and LL pump introduction
Our Systems Engineering team offers in-depth ex- Flygt submersible vertically installed axial flow
pertise in the design and execution of comprehen- pumps (PL) and mixed flow pumps (LL) have been
sive solutions for water and wastewater transport used in a wide variety of storm water stations and
and treatment. sewage treatment plants, land drainage and irriga-
tion systems, fish farms and power plants, shipyards,
Our know-how and experience are combined with a amusement parks and many other applications
broad range of suitable products for delivering cus- where large volumes of water have to be pumped.
tomized solutions that ensure trouble-free opera-
tions for customers. Our engineers utilize our own Flygt submersible PL and LL pumps
custom developed computer programs to provide offer important advantages such as:
evaluations for your specific project design. • Compact motor and pump unit
• No separate lubrication system
Flygt not only can provide assistance with the se- • No external cooling system
lection of products and accessories but can pro- • Low operating sound level
vide analysis for complex systems and/or piping • Quick connection and disconnection
networks. for installation and inspection
• Minimal station superstructure
We also provide hydraulic guidance and assistance • Simple pipe work
for flow-related or rheological issues. Assistance
can include but is not limited to hydraulic transient Flygt PL and LL pumps are usually installed in a ver-
calculations, pump starting calculations, and evalua- tical discharge tube on a support flange incorporat-
tion of flow variations. ed in the lower end of the tube. No anchoring is re-
quired because the weight of the pump is sufficient
Additional services to keep it in place. The pumps are equipped with
• Optimization of pump sump design an anti-rotation gusset. This arrangement provides
for our products and specific sites the simplest possible installation – the pump is just
• Assistance with mixing and aeration lowered into the discharge tube by hoist or crane.
specifications and design of Retrieval of the pump is equally simple.
appropriate systems
• System simulation utilizing computa-
tional fluid dynamics (CFD)
• Guidance for model testing – and
organizing it
• Guidance for achieving the lowest
costs in operations, service and
installation
• Specially developed engineering
software to facilitate designing
Flygt axial flow pumps (PL) Flygt mixed flow pumps (LL)
4
General considerations Hydraulically, three zones of the pumping station
for pumping station design are significant: inlet, forebay and pump bay.
The proper design of the pump sump is crucial in
order to achieve an optimal inflow to the pumps.
Ideally, the flow at the pump inlet should be uniform
and steady, without swirl, vortices or entrained air.
5
Front wide inlet to the station
When water approaches the station from a wide
supply source such as a culvert or canal, the pumps
should be placed symmetrically to the inlet cen-
treline without changing direction of the approach-
ing flow. If the width of the inlet is less than the total
width of the pump bays, the forebay should diverge
symmetrically. The total angle of divergence should
not exceed 20° for the Open Sump Intake Design
or 40° for the Formed Intake Design. The bottom
slope in the forebay should not be larger than 10°
(See Appendix 3). If these parameters cannot be
met, flow direction devices should be used to im-
prove the flow distribution. Such arrangements and
more complex layouts should be investigated using High level front inlet
model tests in order to arrive at suitable designs.
6
Pump bay design alternatives Open sump intake design
Enclosed intake design This intake design is the most sensitive to non-uniform ap-
Enclosed intake design are the least sensitive to dis- proaches. If used for more than three pumps, the length
turbances of the approaching flow that can result from of the dividing walls should be at least 2/3 of the total
diverging or turning flow in the forebay, or from single width of the sump. If flow contraction occurs near the
pump operation at partial load. Therefore, enclosed sump entrance because of screens or gates, the sump
intake design are nearly always the preferred choice length should be increased to 6D or more, depending on
and recommended for stations with multiple pumps the degree of contraction.
with various operating conditions.
Dividing wall
Enclosed intake design in concrete Open sump intake design for Flygt LL pumps
Dividing wall
Flow straightening vane (splitter) L-shaped flow straightening vane (splitter) with cone
Enclosed intake design in steel Open sump intake design for Flygt PL pumps
Enclosed intake design can be constructed in either Open sump intake design includes devices such as
concrete or steel. The intake reduces disturbances and flow straightening vanes (splitters) that alleviate the ef-
swirl in the approaching flow. The inclined front wall fects of minor asymmetries in the approaching flow.
prevents stagnation of the surface flow. Geometrical The minimum required submergence of the pump inlet
features of the intake provide smooth acceleration and with open sump intake design is a function of the flow
turning as the flow enters the pump. The minimum rate, the pump inlet diameter and the distribution of the
inlet submergence should not be less than nominal flow at the approach to the pump. Minimum submer-
diameter (D). gence diagrams are shown in the Appendix 2. Each
7
diagram has three curves for various conditions of the Model testing can also be employed to seek solu-
approaching flow. Because vortices develop more read- tions to problems in existing installations. If the cause
ily in a swirling flow, more submergence is required to of a problem is unknown, it can be less expensive to
avoid vortices if the inlet arrangement leads to disturbed diagnose and remedy with model studies rather than
flow in the sump. Hence, the upper curve in the sub- by trial and error at full scale. The pump manufactur-
mergence diagrams is for a perpendicular approach, er’s involvement is often required in the evaluation of
the middle one is for the symmetrical approach and the the results of model tests. Experience is required to
lowest curve for duty-limited operation time (about 500 determine whether the achieved results are satisfac-
hours/year). The curve appropriate to the inlet situation tory and will lead to proper overall operation.
should be used to determine the minimum water level in
the sump to preserve reliable operation of the pumps. We can offer guidance regarding the need for
model tests and assist in their planning, arrange-
Pump station model testing ment and evaluation.
Hydraulic models are often essential in the design of
structures that are used to convey or control the flow Computational modeling
distribution. They can provide effective solutions to Computational fluid dynamics (CFD) analysis has the
complex hydraulic problems with unmatched reliabil- potential of providing far more detailed information
ity. Their costs are often recovered through improve- of the flow field at a fraction of cost per time needed
ments in design that are technically better and yet for the model tests. It has been more and more ac-
less costly. Model testing is recommended for pump- cepted as a tool in station design in combination with
ing stations in which the geometry differs from rec- Computed Aided Design (CAD) tools. It is possible to
ommended standards, particularly if no prior experi- obtain a more efficient method for numerical simula-
ence with the application exists. Good engineering tion of station design utilizing CFD. It offers increased
practice calls for model tests for all major pumping sta- qualitative and quantitative understanding of pump-
tions if the flow rate per pump exceeds 2.5 m3/s (40 ,000 ing station hydraulics and can provide good compar-
USgpm) or if multiple pump combinations are used. isons between various design alternatives. However,
the possibilities of CFD should not be overestimated.
Tests are particularly important if: Difficult cases are encountered where free surface
• Sumps have water levels below the effects are important. Also, a phenomenon like air en-
recommended minimum submergence trainment is difficult to capture with CFD analysis.
• Sumps have obstructions close to the pumps
• Sumps are significantly smaller or larger than Both model tests and CFD have advantages and disad-
recommended (+/- 10%) vantages that need to be evaluated in each individual
• Multiple pump sumps require baffles to control case. We can advise on a good combination between
the flow distribution model tests and CFD.
• Existing sumps are to be upgraded with
significantly greater discharges.
1.5–2.0D D
9
Installation alternatives
The following examples show possible alternatives using Flygt designed installation components.
Installation type 2
Note:
Support bracket (B1) should be used if the free unsupported
length of the column pipe exceeds 5 times pipe diameter.
11
Installation components Vertical discharge column (D)
The objective in the design and development of in- in which the pump is set Depending upon the depth
stallation components is to devise simple systems, of the station, the installation may consist of one
which offer a wide variety of options to deal with most part (D1) or several parts joined together by flanges
situations. These components have been developed (D2), or it may consist of a short tube prepared for
to facilitate design work and estimation of costs. grouting in concrete (D3).
Normally, the installation components will be manu-
factured locally based on Flygt drawings. The draw-
ings can also serve as a basis for the development of
new or modified components which better match the
local requirements and/or manufacturing facilities.
Flygt FSI
E1 E2 E3
C B F
12
Cable protection and suspension Installation of pumps
for tube installed pumps Pump installation can be
For tube-installed submersible pumps, proper cable facilitated with the aid of
protection and suspension is essential for trouble the Dock-Lock™ device
free operation. Cable suspension and protection for easy and safe retriev-
requirements become more stringent with longer al of pumps in a wet well.
cable lengths and higher discharge velocities. The Dock-Lock con-
sists of a spring-loaded
hooking device, a guide
line and a tension drum.
Because the line guides
the hook, there’s no time
wasted trying to find
the pump shackle. The
device ensures that the
hook actually locks into
the shackle. Pumps are
retrieved safely, easily
and quickly, with mini-
mal maintenance costs.
13
Appendix 1: Head losses diagrams for Flygt designed discharge arrangements
Head losses are comparatively small for systems 16” Installation pipe inner diameter (D)
using propeller pumps. Even so, an accurate predic- Flygt PL7020
tion of losses, and hence the total required head,
is crucial when selecting the best pump. Propeller H (in)
E1, E5
pumps have relatively steep head and power char- E1
E1 W=16 K=0.45
acteristics, and an error in predicting the total head E5 W=24 K=0.37 HS=Static head
H=Head loss
25 E5 W=31 K=0.35
can result in a significant change in the power re- E5 W=39 K=0.34
H
HS
15
head, delivers less flow and uses more power.
Conservative assumptions should thus be made in
10 E5 Side E5 Top
determining head loss calculations. For all installa- 16 19
W
5 HS
D
30
r
K1: Sharp bend =0
25 Do
r
K2: Smooth bend > 0.1
Do
20
15
10
0
0 2000 4000 6000
Q(USgpm)
H (in)
E3, E4
E3 E4
E4 Dout=14 K3=0.60
18 E3 Dout=14 K3=0.55 Do Do
E4 Dout=16 K3=0.35
16 E3 Dout=16 K3=0.32
14 D D
12
10
0
0 2000 4000 6000
Q(USgpm)
14
Appendix 1: Head losses diagrams for Flygt designed discharge arrangements
20” Installation pipe inner diameter (D) 22” Installation pipe inner diameter (D)
Flygt PL7030 Flygt PL7035
H (in)
E1, E5 H (in)
E1, E5
E1 E1
E1 W=20 K=0.45 E1 W=22 K=0.45
E5 W=30 K=0.37 HS=Static head E5 W=32 K=0.37 HS=Static head
30 H=Head loss 30 H=Head loss
E5 W=39 K=0.35 H E5 W=43 K=0.35 H
E5 W=49 K=0.34 HS
E5 W=54 K=0.34 HS
15 15
H H
W
W
HS HS
5 5
D D
0 0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Q(USgpm) Q(USgpm)
H (in)
E2 H (in)
E2
E2 E2
E2 Dout=18 K1=1.35 E2 Dout=20 K1=1.33
40 E2 Dout=20 K1=1.13 35 E2 Dout=22 K1=1.13
E2 Dout=18 K1=0.83 Do E2 Dout=20 K2=0.82 Do
35 E2 Dout=20 K2=0.77 r
E2 Dout=22 K2=0.77 r
30
D D
30
r 25 r
K1: Sharp bend =0 K1: Sharp bend =0
Do Do
25
r r
K2: Smooth bend > 0.1 20 K2: Smooth bend > 0.1
Do Do
20
15
15
10
10
5 5
0 0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Q(USgpm) Q(USgpm)
H (in)
E3, E4 H (in)
E3, E4
E3 E4 14 E3 E4
E4 Dout=18 K3=0.53 E4 Dout=20 K3=0.51
16 E3 Dout=18 K3=0.49 E3 Dout=20 K3=0.47
Do Do Do Do
E4 Dout=20 K3=0.35 12 E4 Dout=22 K3=0.35
14 E3 Dout=20 K3=0.32 E3 Dout=22 K3=0.32
12
D D 10 D D
10 8
8
6
6
4
4
2
2
0 0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Q(USgpm) Q(USgpm)
15
Appendix 1: Head losses diagrams for Flygt designed discharge arrangements
24” Installation pipe inner diameter (D) 28” Installation pipe inner diameter (D)
Flygt PL7040 Flygt PL7045, PL7050
H (in)
E1, E5 H (in)
E1, E5
E1 E1
E1 W=28 K=0.45 E1 W=28 K=0.45
35 E5 W=35 K=0.37 HS=Static head 35 E5 W=41 K=0.37 HS=Static head
H=Head loss H=Head loss
E5 W=47 K=0.35 H E5 W=55 K=0.35 H
E5 W=59 K=0.34 HS
E5 W=69 K=0.34 HS
30 E5 W=71 K=0.33 30 E5 W=83 K=0.33
D D
2 2
25 Q 3 25 Q 3
H= H=
K W 2g K W 2g
20 20
15 15
E5 Side E5 Top E5 Side E5 Top
24 28 28 33
10 10
H H
W
W
HS HS
5 D
5 D
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Q (USgpm) Q(USgpm)
H (in)
E2 H (in)
E2
E2 E2
E2 Dout=20 K1=1.55 E2 Dout=20 K1=2.55
E2 Dout=24 K1=1.13 45 E2 Dout=20 K2=2
70
E2 Dout=20 K2=0.99 Do E2 Dout=24 K1=1.45 Do
E2 Dout=24 K2=0.77 40 E2 Dout=28 K1=1.13
r r
60 E2 Dout=24 K2=0.9
D 35 E2 Dout=28 K2=0.77 D
50 r r
K1: Sharp bend =0 30 K1: Sharp bend =0
Do Do
r r
40 K2: Smooth bend > 0.1 25 K2: Smooth bend > 0.1
Do Do
20
30
15
20
10
10
5
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Q (USgpm) Q(USgpm)
H (in)
E3, E4 H (in)
E3, E4
E3 E4 E3 E4
24 E4 Dout=20 K3=0.73 E4 Dout=20 K=1.34
E3 Dout=20 K3=0.66 Do 28 E3 Dout=20 K=1.23 Do
Do Do
E4 Dout=24 K3=0.35 E4 Dout=24 K=0.65
E3 Dout=24 K3=0.32 E3 Dout=24 K=0.60
20 24 E4 Dout=28 K=0.35
D D D D
E3 Dout=28 K=0.32
16 20
16
12
12
8
8
4
4
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000 16500 18000
Q (USgpm) Q(USgpm)
16
Appendix 1: Head losses diagrams for Flygt designed discharge arrangements
32” Installation pipe inner diameter (D) 36” Installation pipe inner diameter (D)
Flygt PL 7055, PL 7061, PL 7065, LL 3356 Flygt LL 3400
H (in)
E1, E5 H (in)
E1, E5
E1 E1
E1 W=31 K=0.45 E1 W=35 K=0.45
45 E5 W=47 K=0.37 HS=Static head E5 W=53 K=0.37 HS=Static head
H=Head loss 30 H=Head loss
E5 W=63 K=0.35 H E5 W=71 K=0.35 H
40 E5 W=79 K=0.34 HS
E5 W=89 K=0.34 HS
E5 W=94 K=0.33 25 E5 W=106 K=0.33
30 2
D
2
D
Q 3 Q 3
H= H=
25 K W 2g 20 K W 2g
20 15
10 H
W
H
W
HS HS
5
5 D D
0 0
0 5000 10000 15000 20000 25000 0 2000 4000 6000 8000 10000 12000 14000 16000
Q(USgpm) Q(USgpm)
H (in)
E2 H (in)
E2
E2 E2
55 E2 Dout=24 K1=2.15 E2 Dout=28 K1=1.9
E2 Dout=24 K2=1.62 E2 Dout=31 K1=1.38
50 E2 Dout=28 K1=1.41 Do 12.5 E2 Dout=28 K2=1.37 Do
E2 Dout=31 K1=1.13 r
E2 Dout=35 K1=1.13 r
45 E2 Dout=28 K2=0.85 E2 Dout=31 K2=0.84
40 E2 Dout=31 K2=0.77 D
10 E2 Dout=35 K2=0.77 D
r r
35 K1: Sharp bend =0 K1: Sharp bend =0
Do Do
r r
30 K2: Smooth bend > 0.1 7.5 K2: Smooth bend > 0.1
Do Do
25
20 5
15
10 2.5
5
0 0
0 5000 10000 15000 20000 25000 0 2000 4000 6000 8000 10000 12000 14000 16000
Q(USgpm) Q(USgpm)
H (in)
E3, E4 H (in)
E3, E4
E3 E4 E3 E4
E4 Dout=24 K=1.11 E4 Dout=28 K4=0.96
E3 Dout=24 K=1.01 Do 7 E3 Dout=28 K3=0.87 Do
Do Do
25 E4 Dout=28 K=0.60 E4 Dout=31 K4=0.56
E3 Dout=28 K=0.54 E3 Dout=31 K3=0.51
E4 Dout=31 K=0.35 6 E4 Dout=35 K4=0.35
D D D D
20 E3 Dout=31 K=0.32 E3 Dout=35 K3=0.32
5
15 4
3
10
2
5
1
0 0
0 5000 10000 15000 20000 25000 0 2000 4000 6000 8000 10000 12000 14000 16000
Q(USgpm) Q(USgpm)
17
Appendix 1: Head losses diagrams for Flygt designed discharge arrangements
40” Installation pipe inner diameter (D) 48” Installation pipe inner diameter (D)
Flygt PL 7076, PL 7081 Flygt PL 7101, PL7105, LL 3531, LL 3602
H (in)
E1, E5 H (in)
E1, E5
E1 E1
E1 W=39 K=0.45 55 E1 W=47 K=0.45
40 E5 W=59 K=0.37 HS=Static head E5 W=71 K=0.37 HS=Static head
H=Head loss H=Head loss
E5 W=79 K=0.35 H 50 E5 W=94 K=0.35 H
35 E5 W=98 K=0.34 HS
E5 W=118 K=0.34 HS
E5 W=118 K=0.33 45 E5 W=142 K=0.33
30 2
D 40 2
D
Q 3 Q 3
H= H=
35
25 K W 2g K W 2g
30
20
25
15 E5 Side E5 Top 20 E5 Side E5 Top
39 47 47 57
15
10 H H
W
W
HS
10 HS
5 D D
5
HS=Static head H=Head loss HS=Static head H=Head loss
0 0
0 5000 10000 15000 20000 25000 30000 35000 0 10000 20000 30000 40000 50000 60000
Q (USgpm) Q(USgpm)
H (in)
E2 H (in)
E2
E2 E2
E2 Dout=31 K1=1.75 E2 Dout=39 K1=1.51
E2 Dout=35 K1=1.35 45 E2 Dout=47 K1=1.13
30
E2 Dout=31 K2=1.2 Do E2 Dout=39 K2=0.99 Do
E2 Dout=39 K1=1.13 40 E2 Dout=47 K2=0.77
r r
25 E2 Dout=35 K2=0.83 r
E2 Dout=39 K2=0.77 D 35 K1: Sharp bend =0 D
Do
r r
K1: Sharp bend =0 30 K2: Smooth bend > 0.1
20 Do Do
r
K2: Smooth bend > 0.1 25
Do
15
20
10 15
10
5
5
0 0
0 5000 10000 15000 20000 25000 30000 35000 0 10000 20000 30000 40000 50000 60000
Q (USgpm) Q(USgpm)
H (in)
E3, E4 H (in)
E3, E4
E3 E4 E3 E4
E4 Dout=31 K=0.85 E4 Dout=39 K=0.73
E3 Dout=31 K=0.78 22.5 E3 Dout=39 K=0.66
18 Do Do Do Do
E4 Dout=35 K=0.53 E4 Dout=47 K=0.35
E3 Dout=35 K=0.49 20 E3 Dout=47 K=0.32
12 E4 Dout=39 K=0.35
E3 Dout=39 K=0.32 D D 17.5 D D
10
15
8 12.5
10
6
7.5
4
5
2
2.5
0 0
0 5000 10000 15000 20000 25000 30000 35000 0 10000 20000 30000 40000 50000 60000
Q (USgpm) Q(USgpm)
18
Appendix 1: Head losses diagrams for Flygt designed discharge arrangements
H (in)
E1, E5
E1
75 E1 W=55 K=0.45
70 E5 W=83 K=0.37 HS=Static head
H=Head loss
65 E5 W=110 K=0.35 H
E5 W=138 K=0.34 HS
60 E5 W=165 K=0.33
55 D
2
50 Q 3
H=
45 K W 2g
40
35
30
E5 Side E5 Top
25 55 67
20
H
15 HS
W
10 D
5 HS=Static head H=Head loss
0
0 20000 40000 60000 80000 100000 120000
Q(USgpm)
H (in)
E2
E2
75 E2 Dout=47 K1=1.45
70 E2 Dout=55 K1=1.13
65 E2 Dout=47 K1=0.9 Do
E2 Dout=55 K2=0.77 r
60
r
55 K1: Sharp bend =0 D
Do
50 r
K2: Smooth bend > 0.1
45 Do
40
35
30
25
20
15
10
5
0
0 20000 40000 60000 80000 100000 120000
Q(USgpm)
H (in)
E3, E4
E3 E4
E4 Dout=47 K=0.65
E3 Dout=47 K=0.59
30 Do Do
E4 Dout=55 K=0.35
E3 Dout=55 K=0.32
25 D D
20
15
10
0
0 20000 40000 60000 80000 100000 120000
Q(USgpm)
19
Appendix 2: Submergence diagram for open sump intake design
20
Lateral approach
Symmetrical approach
0
Limit of operation (500 hours/year) 0 2000 4000 6000 8000 10000
Q(USgpm)
S (in)
Flygt PL 7035
100
80
60
40
20
0
0 2000 4000 6000 8000 10000 12000
Q(USgpm)
S (in)
Flygt PL 7040
120
100
80
60
40
20
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Q(USgpm)
20
Appendix 2: Submergence diagram for open sump intake design
S (in)
Flygt LL 3356 S (in)
Flygt PL 7055, PL 7061, PL 7065
140
75 120
60 100
80
45
60
30
40
15 20
0 2000 4000 6000 8000 10000 0 5000 10000 15000 20000 25000
Q(USgpm) Q(USgpm)
S (in)
Flygt LL 3400 S (in)
Flygt PL 7076, PL 7081
80
90
60
60
40
20 30
0 4000 8000 12000 16000 20000 0 5000 10000 15000 20000 25000 30000 35000
Q(USgpm) Q(USgpm)
S (in)
Flygt LL 3602 S (in)
Flygt PL 7101, PL 7105
150
100
120
80
60 90
40 60
20 30
0 1000 2000 3000 4000 0 10000 20000 30000 40000 50000 60000
Q(USgpm) Q(USgpm)
S (in)
Flygt PL 7045, PL 7050 S (in)
Flygt PL 7121, PL 7125
210
100
180
80
150
60
120
40
90
20 60
0 30
0 5000 10000 15000 20000 0 2000 4000 6000 8000 10000 12000
Q(USgpm) Q(USgpm)
21
22
Appendix 3: Sump layout alternatives
Stations with low level front inlet Stations with high level side inlet (max 4 pumps)
A–A D A–A
D
W.L.
B D
0.75D 0.75P
0.75D
B B
max 10°
B
B–B B–B P
Vmax=0.1m/s
(2ft/s)
D
to avoid sedimentation
Vmax=1.0m/s Vmax=0.3m/s Vmax=1.7m/s
(3ft/s) (1ft/s) (5ft/s)
A A
B
B
10° (max 20°)
max D max(2/3B or L)
1.5D 3D max(2/3B or L)
Stations with low level side inlet (max 4 pumps) Stations with high level front inlet (max 4 pumps)
A–A D A–A D
W.L.
B 0.75D
B
~ 0.5P
B
0.75D
0.75P
B–B B–B
P 1.25P
P
Vmax=0.5m/s D
Vmax= (2ft/s)
1.2m/s Vmax=
(4ft/s) 1.7m/s
(5ft/s)
A A
B
23
Appendix 4: Pump bay alternatives
Enclosed intake in steel for Flygt PL pumps Enclosed intake in concrete for Flygt PL pumps
C C
A–A C–C A–A C–C
H G H H G
°
D
60
D
max W.L.
max W.L.
B B B
min W.L. B
min W.L.
˚C
N
60
S
S
C C
M
P
C
M
P
B B
J J
K B–B K
L min Splitter
A–A F
L min Splitter
F E
E
W 2
A A
W
E
W 2
W 2
A A
E
W
W 2
E
B–B
C
Recommended dimensions
Nom. dia
Pump type (in) B C D E F G H J K L M P S W
PL7020 16 8 8 16 7 13 18 8 16 24 64 13 7 16 32
PL7030 20 10 10 20 8 16 22 10 20 30 80 16 8 20 40
PL7035 22 11 11 22 9 18 25 11 22 33 88 18 9 22 44
PL7040 24 12 12 24 10 20 27 12 24 36 96 20 10 24 48
Enclosed Intake Design
PL7045
28 14 14 28 11 22 31 14 28 42 114 22 11 28 56
PL7050
PL7055
31 16 16 32 13 26 35 16 32 48 126 26 12 32 64
PL7061
PL7065 31 16 16 32 13 26 35 16 32 48 126 26 12 43 64
PL7076
39 20 20 40 16 32 44 20 40 60 162 32 15 40 80
PL7081
PL7101 47 24 24 48 19 38 53 24 48 72 192 38 18 48 96
PL7105 47 24 24 48 19 38 53 24 48 72 192 38 18 59 96
PL7121 55 28 28 56 22 45 62 28 56 84 222 45 21 56 112
PL7125 55 28 28 56 22 45 62 28 56 84 222 45 21 69 112
24
Appendix 4: Pump bay alternatives
Flygt FSI
C
A AA
–A D C–C
max W.L.
B min W.L. B
S
M
C
B–B L
W 2
A A
W
Recommended dimensions
Nom. dia
Pump type (in) B C D E F G H J K L M N P S W
PL7045
28 14 16 28 - - - - - - 58 21 - - 28 44
PL7050
PL7055
32 16 19 31 - - - - - - 69 25 - - 31 52
PL7061
PL7065 32 16 25 31 - - - - - - 69 25 - - 43 52
Flygt FSI
PL7076
40 20 25 39 - - - - - - 90 33 - - 39 68
PL7081
PL7101 48 24 30 47 - - - - - - 108 39 - - 47 82
PL7105 48 24 30 47 - - - - - - 108 39 - - 59 82
PL7121 56 28 35 55 - - - - - - 129 47 - - 55 98
PL7125 56 28 35 55 - - - - - - 129 47 - - 69 98
25
Appendix 4: Pump bay alternatives
Open sump design for Flygt PL pumps Open sump design for Flygt LL pumps
C C
A–A C–C
A AA– A D C–C D
D
min W.L. max W.L.
B B B B
S
S
C
P
C
P
N
M E
B B
J P J
K
2xD
BB– BB
L Splitter B–B E Splitter
E with cone
E
E
W 2
W 2
A A A A
W
W
W 2
W 2
E
E
C
C
Recommended dimensions
Nom. dia
Pump type (in) B C D E F G H J K L M N P S W
PL7020 16 12 8 16 8 - - - 20 28 63 8 4 6 32
PL7030 20 15 10 20 10 - - - 25 35 79 10 5 8 40
PL7035 22 17 11 22 11 - - - 28 38 87 11 6 9 44
PL7040 24 18 12 24 12 - - - 30 42 95 12 6 9 48
submergence diagram
PL7045
28 21 14 28 14 - - - 34 48 114 14 7 11 56
See minimum
intake design
Open sump
PL7050
PL7055
PL7061 32 24 16 32 16 - - - 40 56 126 16 8 12 64
PL7065
PL7076
40 30 20 40 20 - - - 50 70 162 20 10 15 80
PL7081
PL7101
48 36 24 48 24 - - - 60 84 192 24 12 18 96
PL7105
PL7121
56 42 28 56 28 - - - 70 98 222 28 14 21 112
PL7125
submergence diagram
LL3356 32 24 16 32 16 - - - 40 56 64 16 8 12 64
See minimum
intake design
Open sump
LL3400 36 28 18 36 18 - - - 46 62 72 18 9 13 72
LL 3531
48 36 24 48 24 - - - 60 84 96 24 12 18 96
LL3602
26
440 . Design recommendations . 1 . US . 2 . 20121024
1) The tissue in plants that brings water upward from the roots
2) A leading global water technology company
The name Xylem is derived from classical Greek and is the tissue that transports water
in plants, highlighting the engineering efficiency of our water-centric business by
linking it with the best water transportation of all -- that which occurs in nature. For more
information, please visit us at www.xyleminc.com.