1 Preliminaries
In this section, first we state some definitions and results, which are mainly
taken from [3,5,10,15].
Definition 2.1. Let X be a non-empty set and (L, ≤)be a lattice with
least element 0 and largest element 1, respectively. A L-fuzzy set µ of X is
a function µ : X → L.
Definition 2.2. Let (L, ≤) be a complete lattice with an evaluative
order reversing operation N : L → L. Let Xbe a non-empty set. An
intuitionistic L-fuzzy set A in X is defined as an object of the form A =
{(x, µA (x), νA (x)) : x ∈ X} where µA : X → L andνA : X → L define the
degree of membership and the degree of non-membership for every x ∈ X
satisfying µA (x) ≤ N (νA (x)). A complete order reversing involution is a map
N : L → L such that
1. N (0L ) = 1L and N (1L ) = 0L ;
2. If α ≤ β, then N (β) ≤ N (α);
3. N (N (α)) = α;
4. N ( ni=1 αi ) = ni=1 N (αi ) and N ( ni=1 αi ) = ni=1 N (αi ).
W V V W
We also denote an intuitionistic L-fuzzy set by simply ILFS and the set
of all ILFS’s on X by ILFS(X).
Remark 2.3. When µA (x) = N (νA (x)), for allx ∈ X, then A is called
an L-fuzzy set. We use the notation A = (µA , νA ) to denote the intuitionistic
L-fuzzy set A = {(x, µA (x), νA (x)) : x ∈ X}.
Proposition 2.4. If A = (µA , νA ) and B = (µB , νB ) be two intuitionistic
L-fuzzy sets of X, then
1. A ⊆ B ⇐⇒ µA (x) ≤ µB (x) and νA (x) ≥ νB (x);
2. A = B ⇐⇒ A ⊆ B and B ⊆ A.
(iii) Ac = (µcA , νAc ), where µcA (x) = νA (x) and νAc (x) = µA (x);
(iv) A ∩ B = (µA∩B , νA∩B ), where µA∩B (x) = µA (x) ∧ µB (x) and νA∩B (x) =
νA (x) ∨ νB (x);
1
(v) A ∪ B = (µA∪B , νA∪B ), where µA∪B (x) = µA (x) ∨ µB (x) and νA∪B (x) =
νA (x) ∧ νB (x);
(vi) A×B = (µA×B , νA×B ), where µA×B (x, y) = µA (x)∧µB (y) and νA×B (x) =
νA (x) ∨ νB (y).
Definition 2.5. Let A ∈ ILF S(X) and α, β ∈ L with α ≤ N (β).
Then (α, β)-cut set of A is a crisp set denoted by A(α,β) and is defined
as:A(α,β) = {x ∈ X : µA (x) ≥ α and νA (x) ≤ β} and support of A in X
is denoted by SuppX (A) or A∗ and is defined as:
A∗ = {x ∈ X : µA (x) > 0 and νA (x) < 1}.
Definition 2.6. Let M be an R-module and A = (µA , νA ) and B =
(µB , νB ) be two intuitionistic L-fuzzy submodules of M , then their sum A +
B = (µA+B , νA+B ) is defined as:
µA+B (x) = ∧x=a+b µA (a) ∨ µB (b)
and
νA+B (x) = ∨x=a+b νA (a) ∨ νB (b), ∀x ∈ M.
Definition 2.7. The lattice L is said to be regular if a ∧ b ̸= 0 for every
a ̸= 0, b ̸= 0, and a ∨ b ̸= 1 for every a ̸= 1, b ̸= 1.
Example 2.8. Every chain L is a regular lattice. In particular, I = [0, 1]
is a regular lattice.
2 Intuitionistic L-fuzzy Submodule
Throughout the paper, R is a commutative ring with unity and all modules
are unitary modules.
Definition 3.1. Let M be a module over a ring R. Then an intuitionistic
L-fuzzy submodule of R-module M is an intuitionistic L-fuzzy subset A =
(µA , νA ) of M such that the following conditions are satisfied:
(i) µA (x + y) ≥ µA (x) ∧ µA (y) and νA (x + y) ≤ νA (x) ∨ νA (y);
(ii) µA (rx) ≥ µA (x) and νA (rx) ≤ νA (x);
(iii) µA (θ) = 1 and νA (θ) = 0, whereθ is the zero element of R-module M .
2
Condition (i) and (ii) can be combined into a single condition:
µA (rx + sy) ≥ µA (x) ∧ µA (y) and νA (rx + sy) ≤ νA (x) ∨ νA (y),
∀x, y ∈ M, ∀r, s ∈ R.
The set of intuitionistic L-fuzzy submodules ofR-moduleM is denoted by
IFL (M ).
Example 3.2. Let M = R2 = {(p, q) : p, q ∈ R}. Then M is anR-
module. LetL = {0, a, b, 1} be a diamond type lattice with least element
0 and greatest element 1 such thata ∧ b = 0 and a ∨ b = 1. Define an
ILF SA = (µA , νA ) of M by:
1, if x = (0, 0),
a, if x = (p, 0), p ̸= 0,
µA (x) =
b, if x = (0, q), q ̸= 0,
0, if x = (p, q), p ̸= 0 and q ̸= 0.
0, if x = (0, 0),
b, if x = (p, 0), p ̸= 0,
νA (x) =
a, if x = (0, q), q ̸= 0,
1, if x = (p, q), p ̸= 0 and q ̸= 0.
Then it is easy to check thatA is an intuitionistic L-fuzzy submodule of
R-moduleM .
Remark 3.3. In the above example,A∗ = M − {(p, q) : p ̸= 0 and q ̸=
0} = (R, 0) ∪ (0, R), which is a submodule of M .
Note that here L is not a regular lattice. But if L is a regular, then we
have the following result:
Theorem 3.4. Let A be a non-zero element in ILF S(M ) such that
A ∈ IF LL (M ) and L is a regular lattice. Then A∗ is a submodule of M .
Proof. Clearly, A∗ ̸= ∅ for θ ∈ A∗ . Let x, y ∈ A∗ and r ∈ R, we have
µA (x), µA (y) > 0 and νA (x), νA (y) < 1 ⇒ µA (x + y) ≥ µA (x) ∧ µA (y) > 0
and νA (x + y) ≤ νA (x) ∨ νA (y) < 1. Also, µA (rx) ≥ µA (x) > 0 and νA (rx) ≤
νA (x) < 1. Thus, x + y, rx ∈ A∗ . Hence A∗ is a submodule of M .
Theorem 3.5. If A, B ∈ IFL (M ), then (A + B)∗ ⊆ A∗ + B ∗ and equality
hold when L is a regular lattice.
3
Proof. Consider X ∈ (A + B)∗ be any element. Then µA+B (x) > 0 and
νA+B (x) < 0. So, ∀{µA (y) ∧ µB (z) : y, z ∈ M such that x = y + z} > 0 and
∧{νA (y) ∨ νB (z) : y, z ∈ M such that x = y + z} < 1 ⇒ µA (y) ∧ µB (z) > 0
and νA (y) ∨ νB (z) < 1, for some y, z ∈ M with x = y + z ⇒ µA (y), µA (z) > 0
and νA (y), νA (z) < 1, i.e., y ∈ A∗ and z ∈ B ∗ , for some y, z ∈ M with
x = y + z. Thus, x ∈ A∗ + B ∗ .
Next, let L be a regular lattice and x ∈ A∗ + B ∗ . Then x = y + z for
some y ∈ A∗ and z ∈ B ∗ . Thus µA (y), µA (z) > 0 and νA (y), νA (z) < 1.
Therefore, µA (y) ∧ µA (z) > 0 and νA (y) ∨ νA (z) < 1. As L is regular, so we
have µA+B (x) > 0 and νA+B (x) < 1 [as x = y + z]. Thus x ∈ (A + B)∗ . This
completes the result.
Example 3.6. Let M = R2 = {(p, q) : p, q ∈ R}. Then M is an R-
module. Let L = {0, a, b, 1} be a diamond type lattice with least element 0
and greatest element 1 such that a ∧ b = 0 and a ∨ b = 1. Define
ILF SA = (νA , νA ) and B = (µB , νB ) of M by
1, if x = (0, 0),
µA (x) = a, if x = (p, 0), p ̸= 0,
0, otherwise,
1, if x = (0, 0),
νA (x) = a, if x = (p, 0), p ̸= 0,
0, otherwise,
1, if x = (0, 0),
µB (x) = a, if x = (0, q), q ̸= 0,
0, otherwise,
1, if x = (0, 0),
νB (x) = a, if x = (0, q), q ̸= 0,
0, otherwise,
then
1, if x = (0, 0),
a, if x = (p, 0), p ̸= 0,
µA+B (x) =
b, if x = (0, q), q ̸= 0,
0, otherwise.
4
1, if x = (0, 0),
a, if x = (p, 0), p ̸= 0,
νA+B (x) =
b,
if x = (0, q), q ̸= 0,
0, otherwise.
Then it can be easily checked that A, B ∈ IFL (M ) and A∗ + B ∗ = M ,
but (A + B)∗ ̸= M .
Lemma 3.7. Let M be an R-module and A be an intuitionistic L-fuzzy
submodule of M . Then A(α,β) is R submodule of M , where α, β ∈ L such
that α ≤ N (β).
Proof. For α, β ∈ L such that α ≤ N (β) we have µA (θ) = 1 > α and
νA (θ) = 0 < β, so θ ∈ A(α,β) . Therefore, A(α,β) ̸= ∅.
Consider x, y ∈ A(α,β) and r, s ∈ R, then we have µA (x), µA (x) ≥ α,
νA (x), νA (y) ≤ β. So, µA (rx + sy) ≥ µA ∧ µA (y) ≥ α and νA (rx + sy) ≤
νA (x) ∨ νA (y) ≥ β. Thus, rx + sy ∈ A(α,β) . Hence A(α,β) is submodule of M .
Proposition 3.8. Let M be an R-module and A be an intuitionistic L-
fuzzy set of M , then A is an intuitionistic L-fuzzy submodule of M if and
only if either A(α,β) = ∅ or A(α,β) , for all α, β ∈ L such that α ≤ N (β), is an
R-submodule of M .
Proof. Firstly, let A be an intuitionistic L-fuzzy submodule of an R-
module M . Then either A(α,β) = ∅ or A(α,β) is an R-submodule of M follows
from Lemma 3.7.
Conversely, let A(α,β) is R submodule of M , where α, β ∈ L such that
α ≤ N (β). We show that A is an intuitionistic L-fuzzy submodule of M . Let
x, y ∈ M and r, s ∈ R be any elements, suppose x ∈ A(α1 ,β1 ) and y ∈ A(α2 ,β2 )
for some αi , βi ∈ L such that αi ≤ N (βi ) for i = 1, 2.
Case (i) When α1 < α2 and β1 > β2 , then x, y ∈ A(α1 ,β1 ) and so rx+sy ∈
A(α1 ,β1 ) implies that µA (rx + sy) ≥ α1 and νA (rx + sy) ≤ β1 .
But α1 = α1 ∧ α2 = µA (x) ∧ µA (y) and β1 = β1 ∨ β2 = νA (x) ∨ νA (y).
Therefore, µA (rx + sy) ≥ µA (x) ∧ µA (y) and νA (rx + sy) ≤ νA (x) ∨ νA (y).
Case (ii) When α1 < α2 and β1 < β2 , then x, y ∈ A(α1 ,β1 ) and so
rs + sy ∈ A(α1 ,β2 ) , for α1 < α2 < N (β2 ), i.e., α1 < N (β2 ) implies that
µA (rs + sy) ≥ α1 and νA (rs + sy) ≤ β2 . But α1 = α1 ∧ α2 = µA (x) ∧ µA (y)
and β1 = β1 ∨ β2 = νA (x) ∨ νA (y).Thus µA (rs + sy) ≥ µA (x) ∧ µA (y) and
νA (rs + sy) ≤ νA (x) ∨ νA (y).
Case (iii) When α1 > α2 and β1 < β2 , then x, y ∈ A(α2 ,β2 ) and so
rs + sy ∈ A(α2 ,β2 ) .But α1 = α1 ∧ α2 = µA (x) ∧ µA (y) and β1 = β1 ∨ β2 =
5
νA (x) ∨ νA (y).Therefore, µA (rs + sy) ≥ µA (x) ∧ µA (y) and νA (rs + sy) ≤
νA (x) ∨ νA (y).
Case (iv) When α1 > α2 and β1 < β2 , then x, y ∈ A(α2 ,β2 ) and so
rs + sy ∈ A(α2 ,β2 ) ,for α2 < α1 < N (β1 ), i.e., α2 < N (β1 ) implies that
µA (rs + sy) ≥ α2 and νA (rs + sy) ≤ β1 .But α2 = α1 ∧ α2 = µA (x) ∧ µA (y)
and β1 = β1 ∨ β2 = νA (x) ∨ νA (y).Thus µA (rs + sy) ≥ µA (x) ∧ µA (y) and
νA (rs + sy) ≤ νA (x) ∨ νA (y).
Thus, in all cases, we see that µA (rx + sy) ≥ µA (x) ∧ µA (y) and νA (rx +
sy) ≤ νA (x) ∨ νA (y). Hence A is an intuitionistic L-fuzzy submodule of M .
Proposition 3.9. Let M be an R-module and A, B be two intuitionistic
L-fuzzy submodules on M . Then A ∩ B is also an intuitionistic L-fuzzy
submodule on M .
Proof. Let x, y ∈ M and r, s ∈ R. Then
µA∩B (rx + sy) = µA (rx + sy) ∧ µB (rx + sy)
≥ {µA (x) ∧ µA (y)} ∧ {µB (x) ∧ µB (y)}
= {µA (x) ∧ µB (y)} ∧ {µA (x) ∧ µB (y)}
= µA∩B (x) ∧ µA∩B (y).
Thus, µA∩B (rx + sy) ≥ µA∩B (x) ∧ µA∩B (y).
Similarly, we can show that νA∩B (rx + sy) ≤ νA∩B (x) ∨ µA∩B (y).
Also,µA∩B (θ) = µA (θ) ∧ µB (θ) = 1 ∧ 1 = 1andνA∩B (θ) = µA (θ) ∨ νB (θ) =
0 ∨ 0 = 0.
Hence, A ∩ B is an intuitionistic L-fuzzy submodule of M .
Theorem 3.10. Let M be an R-module and {Ai : i = 1, 2, .T. . , n} be
a finite family of intuitionistic L-fuzzy submodules on M . Then ni=1 Ai is
also an intuitionistic L-fuzzy submodule of M .
Proof. Straightforward.
Theorem 3.11. Let M1 , M2 be R-modules and A, B be intuitionistic
L-fuzzy submodules of M1 and M2 , respectively. Then A × B is also an
intuitionistic L-fuzzy submodule of M1 × M2 .
6
Proof. Let r, s ∈ R and x = (x1 , y1 ), y = (x2 , y2 ) ∈ M1 × M2 . Then
µA×B (rx + sy) = µA×B (r(x1 , y1 ) + s(x2 , y2 ))
= µA×B (rx1 + sx2 , ry1 + sy2 )
= µA (rx1 + sx2 ) ∧ µB (ry1 + sy2 )
≥ {µA (x1 ) ∧ µA (x2 )} ∧ {µB (y1 ) ∧ µB (y2 )}
= {µA (x1 ) ∧ µB (y1 )} ∧ {µA (x2 ) ∧ µB (y2 )}
= µA×B (x) ∧ µA×B (y).
Thus, µA×B (rx + sy) ≥ µA×B (x) ∧ µA×B (y).
Similarly, we can show that νA×B (rx + sy) ≤ νA×B (x) ∨ νA×B (y).
Also,
µA×B (θ1 , θ2 ) = µA (θ1 ) ∧ µB (θ2 ) = 1 ∧ 1 = 1,
νA×B (θ1 , θ2 ) = νA (θ1 ) ∨ νB (θ2 ) = 0 ∨ 0 = 0.
Hence, A × B is an intuitionistic L-fuzzy submodule of M1 × M2 .
Theorem 3.12. Let M be an R-module and A, B be two intuitionistic
L-fuzzy submodules of M . Then A + B is also an intuitionistic L-fuzzy
submodule of M .
Proof. For any x, y ∈ M , we have
µA+B (x + y) = ∨x+y=a+b {µA (a) ∧ µB (b)},
∀x, y, a, b ∈ M, a = a1 + a2 , b = b1 + b2
= ∨x+y=(a1 +a2 )+(b1 +b2 ) {µA (a1 + a2 ) ∧ µB (b1 + b2 )}
≥ ∨x+y=a1 +b1 +(a2 +b2 ) {µA (a1 ) ∧ µB (a2 ) ∧ µA (b1 ) ∧ µB (b2 )}.
µA+B (x + y) ≥ µA (x) ∧ µB (y).
Similarly, we can show that
νA+B (x + y) ≤ νA+B (x) ∨ νA+B (y).
Also, _
µA+B (x) = {µA (a) ∧ µB (b)}, ∀x, a, b ∈ M
x=a+b
_
≤ {µA (ra) ∧ µB (rb)}
rx=ra+rb
7
≤ µA+B (rx).
Thus, µA+B (rx) ≥ µA+B (x).
Similarly, we can show that νA+B (rx) ≤ νA+B (x).
Again, µA+B (θ) = νA+B (θ) = 0 and
νA+B (θ) = λθ ∨ (−λθ )
∨{νA (y) ∨ νB (−y) | y ∈ M } = 0.
Hence, A + B is an intuitionistic L-fuzzy submodule of M . □
Definition 3.13
Let M be an R-module and A be an intuitionistic L-fuzzy submodule of M .
Let N be an R-submodule of M . Then the restriction of A on N is denoted
by A |N and is an ILFS on N defined as:
A |N (x) = (µA|N (x), νA|N (x)),
where
µA|N (x) = µA (x) and νA|N (x) = νA (x), ∀x ∈ N.
Proposition 3.14
If A be an intuitionistic L-fuzzy submodule of an R-module M and let N be
an R-submodule of M . Then A |N is an intuitionistic L-fuzzy submodule of
N.
Proof. Let r, s ∈ R and x, y ∈ N . Then
µA|N (rx + sy) = µA (rx + sy) [as rx + sy ∈ N ].
µA+B (x + y) ≥ µA+B (x) ∧ µA+B (y).
Similarly, we can show that νA+B (x + y) ≤ νA+B (x) ∨ νA+B (y).
Also,
_
µA+B (x) = {µA (a) ∧ µB (b)}, ∀x, a, b ∈ M
x=a+b
_
≤ {µA (ra) ∧ µB (rb)}
rx=ra+rb
≤ µA+B (rx).
8
Thus, µA+B (rx) ≥ µA+B (x). Similarly, we can show that νA+B (rx) ≤
νA+B (x).
Again,
µA+B (θ) = 0 ⇒ νA+B (θ) = 1.
νA+B (θ) = λθ − yA+B (θ) ∨ yA+B (−θ) = λθ ∨ 0 = 0.
Hence, A + B is an intuitionistic L-fuzzy submodule of M .
Definition 3.13
Let M be an R-module and A be an intuitionistic L-fuzzy submodule of M .
Let N be an R-submodule of M . The restriction of A on N is denoted by
A|N and is an ILFS on N defined as:
A|N (x) = (µA|N (x), νA|N (x)),
where
µA|N (x) = µA (x), νA|N (x) = νA (x), ∀x ∈ N.
Proposition 3.14
If A be an intuitionistic L-fuzzy submodule of an R-module M and N be an
R-submodule of M , then A|N is an intuitionistic L-fuzzy submodule of N .
Proof
Let r, s ∈ R and x, y ∈ N . Then
µA|N (rx + sy) = µA (rx + sy) [as rx + sy ∈ N ]
≥ µA (x) ∧ µA (y)
= µA|N (x) ∧ µA|N (y).
Thus, µA|N (rx + sy) ≥ µA|N (x) ∧ µA|N (y).
Similarly, we can show that νA|N (rx + sy) ≤ νA|N (x) ∨ νA|N (y). Also,
µA|N (θ) = µA (θ) = 1,
νA|N (θ) = νA (θ) = 0.
Hence, A|N is an intuitionistic L-fuzzy submodule of N .