Sequence & Series
Sequence & Series
40 55
a1 k 1 d kd
k k
k 5
n
3
an 1
2
100
3
100 k
k
a ( 1) 2
k 1 k 1
3 3
100
2 2 1
100
3
1
2
3 100
100 3 1
2
3.(a100 ) 100
Page 2
SRI CHAITANYA IIT ACADEMY, INDIA
n n
3 5
an A B
2 2
a0 A B 0
3 5
a1 A B 2
2 2
3 A 5B 4
A 2, B 2
n n
3 5
an 2 2
2 2
5 5
3 5
a5 2 2
2 2
35 55
a5
24 24
16a5 243 3125 2882
2(b) Let an be a sequence such that a1 1, a2 4 and an2 3 4an1 , n=0,1,2,3,……. Then
50
2 an 50
n 1
Page 3
SRI CHAITANYA IIT ACADEMY, INDIA
3. The roots of the quadratic equation 3x 2 px q 0 and 10th and 11th terms of an arithmetic
3
progression with common difference . If the sum of the first 11 terms of this arithmetic
2
progression is 88,then q-2p is equal to________
[23-01-25, SHIFT-02]
Key:474
Sol: S11
11
2
2a 11 1 d 88 a 5d 8
3 1
a 8 5
2 2
1 3 1 27
T10 a 9d 9. 14
2 2 2
1 3 31
T11 a 10d 10.
2 2 2
31 p
S .O.R 14
2 3
31 q
P.O.R 14.
2 3
p 59
, q 7.31.3
3 2
59.3
p q 651
2
q-2p=651-59 3=474
3(a). Roots of a quadratic equation x2 9dx 20d 2 0 (d 0) are r th ,(r 1)th terms (r>1) of an
A.P with common difference the sum of 1st (r+1) terms going A.P is ad then r
Key : 8
Sol: Givne 4d,5d ARE r th ,(r 1)th terms of an A.P with common difference d
Tr a (r 1)d 4d
Tr 1 a rd 5d
a d (5 r )
Page 4
SRI CHAITANYA IIT ACADEMY, INDIA
r 1
2a rd 9d
Sr 1
2
Given (r 1)[2d (5 r ) rd ] 18d
(10 r )(r 1) 18
r 8
4(O). Let Tr be the r th term of an A.P. If for some m, Tm = 1/25, T25 = 1/20 and
2m
Tr
25
20 Tr 13 then 5m is [28-01-25, SHIFT-02]
r 1
r m
a) 112 b) 126 c) 98 d) 142
Topic : Series & Sequences
Sub Topic : Arthematic progression
Type: 1
Key: b
25
1 1
Sol: Tm ,T25 ,20 Tr 13
25 20 r 1
1
Tm a (m 1)d ........(1)
25
1
T25 a 24d
20
25 1 1
20. a 13 a
2 20 500
25 1
also,20 S25 20. 2a 24d 13 d
2 500
1 m 1 1
from(1) m 20
500 500 25
Now,
2m 40
5m Tr 100 Tr 126
r m r 20
50
4(a).Let Tr be the r th term of an A.P. If for some m, Tm = 1/100, T50 = 1/20 and 40 Tr 51
r 1
then
a) 30 b) 31 c) 35 d) 40
Key: b
1 1
Sol.: Tm a (m 1)d , T50 a 49d
100 20
50
50 1
40 Tr 51 40. a 51
r 1 2 20
50 20a 1 51
51 1 1
20a 1 a
50 50 1000
Page 5
SRI CHAITANYA IIT ACADEMY, INDIA
1 1 1 49 1
Since a 49d 49d d
20 20 1000 1000 1000
1 1 1 1 1 1
Since a (m 1)d (m 1) 1 m 1 m 10
100 1000 1000 100 1000 100
2m
20m Tr
r m
20
= 20(10) Tr
r 10
20 2 19 10 2 9
200
2 1000 1000 2 1000 1000
10 21 11 31
200 2 = 200 5 31 .
2 1000 1000 1000
1 1 1 1
4(b). Let , , ,...., , xi 0,for i 1, 2,3,.... be an A.P., such that x1 4 and x21 20 . If n is the
x1 x2 x3 xn
least +ve integers, for which xn 50 , then n=
a) 25 b) 3 c) 23 d) 24
Key: 1
1 1 1 1 1 1 1 5 4 1
Sol.: 20d 20d 20d
x21 x1 20 4 20 4 20 20 5
1 1 1 1
Since xn 50 ( x 1)d
xn 50 x1 50
1 (n 1) 1
4 (100) 50
25 n 1 1
100 50
26 – n < 2 n > 24
The least value of n is 25.
Page 6
SRI CHAITANYA IIT ACADEMY, INDIA
a2 a4 29 a1r a1r 3 29 a1r (1 r 2 ) 29
a1r a2 28, a2 1 a1r
1
5
a6 a1r 5 28 784
28
5(A). In a G.P the ratio of the sum of the first 5 terms to the sum of their reciprocals is 49
and sum of the first and third term is 35. The fifth term of the G.P is
7 7 7
1)7 2) 3) 4)
2 4 8
Key : 3
a a 2
Sol : Let five terms in G.P be 2 , , a, ar , ar
r r
a(r 2 r 1 1 r r 2 )
Given 49
1 2 1 2
(r r 1 r r )
a
a 2 49 a 7
a
Also a 35
r2
a =-7 is not possible
a
A = 7 and 2 28
r
1
r2
4
Now ,fifth term = ar 2
7
=
4
5(B). Let a1 , a2 , a3 ... be a G.P. such that a1 0, a1 a2 4 and a3 a4 16 then a5
1) 16 2) -16 3) 64 4) -64
Key : 4
Sol: a1 a2 4
a1 a1r 4 -------------(1)
a3 a4 16
a1r 2 a1r 3 16 ------------(2)
Solving (1) & (2) r 2 4
r 2
If r = -2
(1) a1 2a1 4
a1 4
Page 7
SRI CHAITANYA IIT ACADEMY, INDIA
a1 4
a5 ar 4
4(2)4
= - 64
25
5(C) . In an increasing G.P , a1 , a2 , a3 ..... if a2 a6 and a3a5 25 then a 4 =
2
1) 2 2)3 3)4 4) 5
Key : 4
25
Sol : a2 a6
2
25
ar ar 5
2
25
ar (1 r 4 )
2
a3a5 25
ar 2 ar 4 25
ar 3 5
a4 5
n
(2n 1)(2n 1)(2n 1)(2n 5) n
1
6. If Tr , then lim is equal to
n
r 1 64 r 1 Tr
2 1
1) 2) 1 3) 4) 0
3 3
[22-01-25, shift-01]
Topic: SEQUENCE & SERIES
Sub Topic: general term
Type:1
Key : 3
(2n 1)(2n 1)(2n 3)(2n 5) (2n 3)(2n 1)(2n 1)(2n 3)
Sol: Tn Sn Sn1
64 64
8(2n 1)(2n 1)(2n 3) (2n 1)(2n 1)(2n 3)
64 8
1 8
Tr (2r 1)(2r 1)(2r 3)
n
1 n
8 2
lim n
lim 3
n
r 1 Tr r 1 (2r 1)(2r 1)(2n 3)
n
1 1 1 1 2
2lim 2lim
n
r 1 (2r 1)(2r 1) (2r 1)(2r 3)
n (1)(3) (2n 1)(2n 3) 3
Page 8
SRI CHAITANYA IIT ACADEMY, INDIA
n n 1 n 2 n
6(A). If Tr
2026
then lim =?
3 n
r 1 Tr
1) 0 2) 1013 3) 2026 4) 4052
Key: 3
Sol: tn sn sn1
n n 1
n(n 1)(n 2) (n 1)(n)(n 1)
tr tr
r 1 r 1 3 3
n(n 1) n(n 1)
n 2 (n 1) (3)
3 3
n(n 1)
1 1 1 1
tn n(n 1) n n 1
2026 n 1 1 1
2026 2026 1
Tr r 1 r r 1 n 1
n
2026
n 1
2026 n
lim lim(2026) 2026(1)
n Tr n
n 1
=2026
7. Consider an A. P. of positive integers, whose sum of the first three terms is 54 and the
sum of the first twenty terms lies between 1600 and 1800. Then its 11th term is:
1) 90 2)108 3) 84 4)122
[29-01-25-SHIFT-01]
Page 9
SRI CHAITANYA IIT ACADEMY, INDIA
7(a). Consider an A. P. of positive integers, whose sum of the first three terms is 30 and the
sum of the first 24 terms lies between 1200 and 1400. Then its 13th term is:
1) 50 2)54 3) 46 4) 58
Key: 2
Sol: a a d a 2d 30
a d 10 ……….(1)
S24 122a 23d
= 12 2 10 d 23d …….From eq (1)
S24 240 12 21d
1200 S24 1400
1200 240 12 21d 1400
960 252d 1160
3.8 d 4.6
d 4
a6
T13 a 12d
6 12 4 = 54
7(b). Consider an A. P. of positive integers, whose sum of the first 5 terms is 40 and the
sum of the first 16 terms lies between 250 and 350. Then its 9th term is:
1) 16 2)19 3) 20 4) 22
Key: 3
Sol: a a d a 2d a 3d a 4d 40
5a 10d 40
a 2d 8 ………(1)
s16 82a 15d
S16 16 8 2d 120d
S16 128 88d
250 128 88d 350
1.38 d 2.52
d 2
a4
t9 4 8 2 20
Page 10
SRI CHAITANYA IIT ACADEMY, INDIA
In an A.P. the sum of terms equidistant from ends is equal
a1 a2024 a5 a2020 a10 a2015 ....
203 pairs
203 a1 a2024 2233
Hence
2024
s2024 (a1 a2024 )
2
= 1012 × 11
= 11132.
8a) If a1 , a2 , a3 .........an is sequence of positive number which are in A.P with common difference d
16
A
and a1 a4 a7 ...... a16 147 then maximum value of a1.a2 ......a16 is then the value of
B
B
A ______
Key : 49
Sol : a1 a4 a7 ...... a16 147
3 a1 a16 147
Page 11
SRI CHAITANYA IIT ACADEMY, INDIA
Now using
a1 a2 ...... a16
a1........a16
1/16
16
8 a1 a16
a1.......a16
1/16
16
8........49
a1.......a16
1/16
16
1/16 16
A 49
a1a2 .......a16
B 2
A 49, 2
a
2 2
49 49
1 1 1 1
9. Let S n .... upto ‘n’ terms. If the sum of the first six terms of an A.P
2 6 12 20
with first term –p and common difference ‘p’ is 2026S 2025, , then the absolute
difference between 20th and 15th terms of the A.P is
Page 12
SRI CHAITANYA IIT ACADEMY, INDIA
1 1 1
9A. Let 𝑆𝑛 = + + + ⋯ . . + upto n terms (d>0) and Sm' be the sum of first
1+𝑑 1+3𝑑+2𝑑 2 1+5𝑑+6𝑑 2
𝑆2025 ′
m terms of an A.P with first term k and common difference 2k (k>0) such that −
2025
𝑆2024 ′ 𝑑
= 8𝑑, then [√ ] = ([.] denotes GIF)
2024 𝑘
1)2 2)3 3)4 4)1
Key:1
Solution:
𝑛
Telescopically adding the terms of 𝑆𝑛 𝑔𝑖𝑣𝑒𝑠𝑆𝑛 = and
1+𝑛𝑑
𝑚
𝑆𝑚 ′ = (2𝑘 + (𝑚 − 1)(2𝑘)) = 𝑘𝑚2
2
′
𝑆𝑚 𝑆𝑚+1 ′ 𝑆𝑚 ′
⟹ = 𝑘𝑚 ⟹ − = 𝑘 = 8𝑑
𝑚 𝑚+1 𝑚
10. If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of
the next four terms, then the sum of the first 20 terms is equal to
1) -1020 2) – 1080 3) – 1200 4) – 120
[23-02-25-SHIFT-01]
Page 13
SRI CHAITANYA IIT ACADEMY, INDIA
10A. If the first term of an A.P. is 4 and the sum of its first seven terms is half of the sum of the
next seven terms, then the sum of the first 28 terms is equal to
1) 490 2) 480 3) 390 4) 590
Key : (1)
1
Sol : Let a 4 , Given 28 21d 28 70 d d 1
2
S28 2 4 28 11 14 35 490
28
2
10B. If the first term of an A.P. is 2, the common difference is 1 and the sum of the cubes of the
first n terms is equal to 11 times the sum of the first n terms, then ‘n’ is equal to
1) 2 2) 5 3) 4 4) 3
Key : (4)
Sol : tn 2 n 11 n 1
tn n 1
3 3
Sn
n
2
2 2 n 11 n 3
n
2
n
n 1 11. n 3
3
2
n3
10C. The sum of the first 10 terms of an A.P. is 300, while the sum of the next 10 term is 600,
then the 50th term in equal to
1) 163.5 2) 153.5 3) 169.5 4) 163.25
Key : (1)
10
Sol : S10 2a 9d 300 10a 45d 2a 9d 60...1
2
S20 S10 600
Page 14
SRI CHAITANYA IIT ACADEMY, INDIA
20 10
2a 19d 2a 9d 600
2 2
10 2a 19d 5 2a 9d 600
33
(1) 2a 9 3 60 2a 33 a
2
33 33
t50 a n 1 d 50 1 3 147 163.5
2 2
10D. If the common difference of A.P. is 4 and the sum of its first six terms is equal to one-third
of the sum of the next six terms, then the sum of first 30 terms is equal to
1) 1600 2) 1700 3) 1900 4) 1800
Key : (4)
1
Sol : Given S6 S12 S6
3
1
3 2a 20 6 2a 44 3 2a 20 a 2
3
S30
30
2
2 2 30 1 4 15 4 116 15 120 1800
10E. Let S n denotes the sum of the first n terms of an A.P. If S 2 n 3S n , then the value of
S3n
Sn
1) 3 2) 9 3) 6 4) 4
Key : (3)
Solution : S2 n 3.Sn
2n n
2a 2n 1 d 3. 2a n 1 d
2 2
2a n 1 d
Page 15
SRI CHAITANYA IIT ACADEMY, INDIA
3n
2a 3n 1 d 3 n 1 d 3n 1 d
3.4 n d 6
S3 n 2
Sn n
2a n 1 d n 1 d n 1 d 2nd
2
1
For positive integers n, if 4an n2 5n 6 and, Sn
n
11. then the value of 507 S2025 is:
k 1 ak
ANS: 2
SOL: 4an n 2 5n 6
n
1
Sn
k 1 ak
n2 5n 6 n 2 n 3
an
4 4
1 4
an n 2 n 3
2025
1 1 1 1
S2025 4 , S2025 4
n 1 n 2 n 3 3 2028
675 675
4 , ,507 S2025675
2028 507
11(i) For every positive integer n 2, t1 t2 tn 2n 2 9n 13 . If tk 103, then what is the value of
k?
1) 20 2) 21 3) 22 4) 24
ANS: 4
Sol: tn Sn Sn1
, 4
P
2
x, y
B
1
is
Y 40
B ,4
equal to
A 1
2
ANS: 3
Page 16
SRI CHAITANYA IIT ACADEMY, INDIA
1 1
Sol: A ,B a
1 r a
1 r 2b
12. In an arithmetic progression, if S 40 1030 and S12 57 , then S30 S10 is equal to
1) 515 2) 505 3) 510 4) 525
[24-01-25-SHIFT-02]
Key: 1
Sol: S40 1030 20[2a 39d ]
0,2
A , 2
2,0
P
1
y 2 B , 2
12(a). If S n denotes the sum of n terms of AP and S n 16 and S6 48 then S10 =
Page 17
SRI CHAITANYA IIT ACADEMY, INDIA
1) -320 2) -260 3) -380 4) -410
Key: 1
4
Sol: S4 16 2a 3d 16 ----------(1)
2
6
S6 48 2a 5d 48 ___________(2)
2
By using a = 22, b = -12
S10 320
Key : 1
Sol: ( Sn3 Sn 2 ) 2( Sn 2 Sn1 ) ( Sn1 Sn )
Tn3 2Tn2 Tn1 (Tn3 Tn 2 )(Tn 2 Tn1 ) 0
1 1 1
13. If 7 5 5 2 5 2 3 5 3 ....... , then the value of is
7 7 7
6 1
1) 1 2) 6 3) 4)
7 7
[24-01-25-SHIFT-02]
Key: 2
1 1 1
Sol: 7 5 5 2 5 2 3 5 3 .......
7 7 7
Page 18
SRI CHAITANYA IIT ACADEMY, INDIA
5 5 5 3
75 2 3 2 ......
7 7 7 7 7
1 1 1 1 2 3
7 5 1 2 3 ........ 2 3 .......
7 7 7 7 7 7
2
1 1 1
7 5 5 1
1
1 7 7
7
7 1 49
7 5 .
6 7 36
35 7 7 7
7
6 36 6 36
6
1 1 1
13(a). 9 7 7 2 7 2 3 (7 3 ) .................. , then the values of is
9 9 9
1) 8 2) 9 3) 10 4) 11
Key: 1
7 7 7 1 2 3
Sol: 9 7 2 3 ......... 2 3 ......
9 9 9 9 9 9
1 1 1 1 2 3
7 1 2 3 . 1 2
9 9 9 9 9 9
2
1 1
=7 1
1 9 9
1
9
9 9
2
= 7
8 9 8
63 81
9
8 9 64
9 9
8 64
8
1 1
13(b). 11 9 9 2 9 2 ........ , then the values of is
11 11
1) 10 2) 11 3)8 4) 9
Page 19
SRI CHAITANYA IIT ACADEMY, INDIA
Key : 1
9 9 2
Sol: 11 9 2 2 ........
11 11 11 11
1 1 1 1 2 3
11 9 1 2 3 ..... 2 3 ....
11 11 11 11 11 11
1 1 2 3
11 9 1 2 .....
1
1 11 11 11
11
2
11 1
11 9 1
10 11 11
2
99 10
11
10 11 11
11 11
2
10 11 10
11 11
10 100
10
14. The interior angles of a polygon with n sides, are in an A.P with common difference 60. If
the largest interior angle of the polygon is 2190, then n is equal to ______.
[28-01-25, shift-02]
Topic: SEQUENCES & SERIES OR PROGRESSIONS
Sub Topic: SUM OF N TERMS
Type:1
ANS: 20
SOL:
n
2
2a n 1 6 = n 2 .1800
a n 3n2 3n n 2 .1800 ---------------------(1)
From given a n 1 60 2190
a 225 6n --------------------(2)
1 and 2
n2 14n 120 0
n 20, 6 Re jected
n = 20
Page 20
SRI CHAITANYA IIT ACADEMY, INDIA
14(i). If each interior angle is equal to 144̊, then how many sides does a regular polygon have?
1) 6 2) 9 3) 8 4) 10
ANS: 4
n2
SOL: 180
0
n
n
n
14(iv) . The interior angle of a convex polygon are in A.P. The smallest angle is 120̊ and the
common difference is 5̊. The number of sides is
1) 16 2) 9
3) 9 or 16, both values being permissible 4) 7
ANS: 3
n2
Sol: 180
0
n
ANS: 1
n2
Sol:
180
0
n
n
k 3 6k 2 11k 5
15 . The value of lim is
n
k 1 (k 3)!
1) 4 2) 2 3) 7 4) 5
3 3 3
Key : 4
Sol:
Page 21
SRI CHAITANYA IIT ACADEMY, INDIA
n
K 3 6 K 2 11K 6 1
lim
n
1 K 3 !
lim
K 1 K 2 ( K 3) 1
n
n
1 K 3 !
n
lim
K 1 K 2 ( K 3) 1
1 K 3 K 2 K 1 K ! K 3!
n
n
1 1
lim
n
1 K ! K 3 !
1 1 1 1 1 1 1
lim ......... .....
n 1!
2! n ! 4! 5! 6! n 3 !
1 1 1 5
1 2 6 3
k 3 9k 2 26 K 23 m
n
15A. The value of lim is where gcd of m, n is1.Then m n
n
k 1 k 4 ! n
1) 41 2) 31 3) 51 4) 21
Key: 1
Sol:
lim
k 4 k 3 k 2 1
n
n
k 1 k 4 !
n
1 1
lim
k 1 k 1 k 4 !
n
1 1 1 1 1 1 1
lim
n 2! 3! 4!
n 1! 5! 6! n 4 !
1 1 1 17
2 6 24 24
Page 22