CO AC H NC E AD EM Y: Matrices & Determinant
CO AC H NC E AD EM Y: Matrices & Determinant
9773774546
Mukherjee Nagar, Batra Complex
x 1 x 2 x a –10 11
H
the value of x 2 x 3 x b is–
x3 x4 xc
C
(c)
10 1
5 8 6
(d) N.O.T
;fn
O A E
x 1 x 2 x a
a, b, c lekUrj Js.kh esa gSa]
x rks
2 x3 xb
x3 x4 xc
dk
8. If a matrix 3 2 4 is expressed as A + B,
1 7 9
C NC
symmetric, then B is equal to–
eku gS&
(a) 0 (b) 1 (c) 2 (d) abc 5 8 6
E E Y
cos x sin x 0
H
;fn vkO;wg
3 2 4
1 7 9
dksA + B ds :i esa O;Dr fd;k tk;s]
T E F EM
3. If A = f(x) = – sin x cos x 0 then A–1 is–
tgk¡A lefer vkSj B fo"ke lefer gS] rks
B dk eku gS&
0 0 1
5 11/2 7 /2 0 5/2 5/2
D AD
(a) 11/2 2
11/2 (b) –5 /2 0 –3 /2
cos x sin x 0
;fn A = f(x) = – sin x cos x 0
rksA–1 gS& 7 /2 11/2 9 –5 /2 3 /2 0
0 0 1
C
0 –5 / 2 –5 / 2 5 11/ 2 7 /2
(a) f(x) (b) –f(x) (c) f(–x) (d) –f(–x) (c) 5 /2 0 3 /2 (d) 11/2 2 11
A
4. If each element of a 3×3 matrix A is mutliplied 5 /2 –3 /2 0 7 /2 11 9
by 3 then the determinant of the newly formed
matrix is– 9. If A and B are two matrices such that AB = B
and BA = A, then A2 + B2 is equal to
;fn ,d 3×3 vkO;wgA ds çR;sd vo;o dks3 ls xq.kk fd;k
;fn A rFkkB nks vkO;wg bl çdkj gSa
ABfd
= B rFkkBA = A,
x;k gS] rks ubZ cuh vkO;wg dh lkjf.kd gS& rksA + B cjkcj gS
2 2
(a) 3|A| (b) 9|A| (c) (|A|)3 (d) 27|A| (a) 2AB (b) 2BA (c) A + B (d) AB
2
5. If B is a matrix such that B = B and A = I – B, 10. If x 1 and x 2 are the roots of the equation
then which of the following is not correct?
1 4 20
;fn B ,d vkO;wg bl çdkj gS fdB2 = B vkSjA = I – B, 1 –2 5 = 0, then the value of x12 x 22 is
rks fuEufyf[kr esa ls dkSu lgh ugha gS\ 1 2x 5x 2
(a) A2 = A (b) A2 = I (c) AB = 0 (d) BA = 0
6. If A is a square matrix of order n, then value of 1 4 20
adj(adj A) is– ;fn x1 rFkkx2 lehdj.k 1 –2 5 =0 ds ewy gksa] rks
2
;fn A dksbZ oxZ vkO;wg gS ftldh
n gS]
dksfV
rks
adj(adj A) 1 2x 5x
1 na
(a)
1 an2
(b)
H
0 1 , rksA (tgk¡ nN) cjkcj gS%
n
C 1 an
(c)
n na
(d) 0 n
;fn A = 0 3 0 , rksA5 =
(a) 243A
0 0 3
A
0 1 0 0
0 1 19. Let P be a 4 × 4 matrix whose determinant is
13. If A be a matrix of order 3 such that |A| = 4 and 10. The determinant of the matrix –3P is:
;fn A, dksfV
O
C NC
B = adj(A), C = 2A, then
E adj B
C
3 dk ,d vkO;wg bl çdkj gS fd
is equal to
|A| = 4 rFkk
eku yhft, P, 4 × 4 vkO;wg gS ftldh lkjf.kd dk eku
rks vkO;wg
(a) 810
–3P dh lkjf.kd dk eku gS%
(b) 30 (c) –810
10 gS]
(d) –108
HE
B = adj(A), C = 2A, rks
E Y
adj B
C
dk eku gS
20. A pair of values of and for which the matrix
1 2
T E F EM
A = 0 2 is invertible, is
(a) 8 (b) 6 (c) 4 (d) 1
1 3 6
1 1 1
vkSj ds ekuksa dk ,d ;qXe ftlds fy, vkO;wg
D AD
14. If A = 1 2 –3 and A3 – 6A2 + 5A + 11I = 0,
2 –1 3
1 2
where I is a 3 × 3 identity matrix, then A–1 is A = 0 2 O;qRØe.kh; gS] gS%
equal to
C
1 3 6
1 1 1
;fn
A
A = 1 2 –3
2 –1 3
rFkkA3 – 6A2 + 5A + 11I = 0 gS]
(c) = 1, = 5
(b) = 1, = 4
(d) =
1
3
,=4
1 x x2 1 –3 2
28. If A = and A – 4A + 10I = A, then K is
23. If f(x) = x x2 1 , then the value of f 33
is 2 K
x2 1 x equal to–
1 –3
1 x x2 ;fn A = 2 K vkSjA2 – 4A + 10I = A, rksK cjkcj gS
;fn f(x) = x x2 1 , rksf 3 dk eku gS
3
CH (c)
1
6
25. If is the unit cube root then what will be the
(d) 1 (c) Skew symmetric/fo"ke
(d) Symmetric/lefer
lefer
A
30. If A and B are square matrices of the same
x 1 2 order, then (A + B)(A – B) is–
1 2
O
roots of the equation 1 = 0
2
C NC
1
E
obtained from the following determinant?
;fn bdkbZ ?kuewy gks rc fuEu lkjf.kd ls çkIr lehdj.k
x
;fn A vkSjB leku Øe ds oxZ vkO;wg gSa]
blds cjkcj gS
(a) A2 – B2
(A + rks
B)(A – B)
(b) A2 – BA – AB – B2
E Y
(c) A2 – B2 + BA – AB (d) A2 – BA + B2 + AB
2
x 1
E
31. If A and B are invertible matrices, then which
1 2
2 1
(a) x = 1
H
1 = 0 ds ewy D;k gksaaxs\
T E F EM
x
D AD
26. Consider the following statements: (a) adj A = |A|A–1 (b) det(A)–1 = [det(A)]–1
fuEufyf[kr dFkuksa ij fopkj dhft,% (c) (AB)–1 = B–1A–1 (d) (A + B)–1 = B–1 + A–1
I. If A is skew-symmetric matrix, then A 2 is
4 – 3i i
32. For a given matrix where i = –1 .
C
symmetric.
–i 4 3i
;fn ,d fo"ke&lefer vkO;wg
A gS] rks
A lefer gksxkA 2
The inverse of the matrix is–
II.
A
Trace of a skew-symmetric matrix of an odd
order is always zero.
fn, x, vkO;wg esa
,d fo"ke dksfV okys fo"ke&lefer vkO;wg dk vuqjs[k lnSo 'kwU;
gksrk gSA
–i
4 3i
43 44 45 3 2 4
1
34. The value of the determinant 44 45 46 is 40. If A = 1 2 –1 and A–1 = adj(A), then the
k
45 46 46 0 1 1
3 2 4
43 44 45 1
lkjf.kd 44 45 46 dk eku cjkcj gksxk& ;fn A = 1 2 –1 vkSjA–1 = adj(A), rksk dk eku gksxk
k
0 1 1
45 46 46
CH
x 1
(c) ±2
x2
(d) N.O.T
x4
then the value of the determinants 0 is
O A
36. The value of determinant x 3
E
x 5
x 7 x 10 x 14
x 8 is:
lkjf.kd
0
0 dk eku gksxk
C NC
x 1 x2 x4 0
lkjf.kd x3 x 5 x 8 dk eku gS%
3 15 3 14
E Y
x 7 x 10 x 14 (a) – (b) – (c) (d)
5 4 5 5
(a) –2 (b) x2 + 2
H E
T E F EM
(c) 2
x 2 x 3 x 5
(d) N.O.T
;fn A =
0 1
100
, then A is equal to
1 0
D AD
x 8 x 11 x 15 100
x 2 x3 x 5 1 0 0 1 1 1 0 0
(a) (b) (d) (d)
lkjf.kd x4 x6 x9 dk eku gS%
C
0 1 1 0 0 0 1 0
x 8 x 11 x 15
A
2 3 1
(a) 2 (b) –2 (c) 3 (d) x – 1
43. If A = 7 1 5 is equal to B + C, where B is
38. The value of and µ for which the system of 1 9 8
equations x + y + z = 6, x + 2y + 3z = 10 and
symmetric and C is skew symmetric, then B is
x + 2y + z = µ have no solution are equal to
vkSjµ dk eku Kkr dfj;s tcfd fuEufyf[kr lehdj.kksa
x + y + z = 6, x + 2y + 3z = 10 and x + 2y + z = µ 2 3 1
;fn A = 7 1 5 cjkcj gksB + C ds tgk¡B ,d lefer
dk dksbZ gy u gksa
1 9 8
(a) = 3, µ = 10 (b) = 3, µ 10
rFkkC ,d fo"ke lefer vkO;wg gS] B
rkscjkcj gksxk
(c) 3, µ = 10 (d) 3, µ 10
39. For what value of k the equations 2x – 3y + 2z = a, 2 5 1 2 3 1
5x + 4y – 2z = –3 and x – 13y + ky = 9 will not (a) 5 1 7 (b) 3 1 5
have a unique solution?
1 7 8 1 5 8
k ds fdl eku ds fy, lehdj.kksa2x – 3y + 2z = a,
5x + 4y – 2z = –3 vkSjx – 13y + ky = 9 dk ,dkadh eku 0 –2 0 0 5 1
ugha gksxk (c) 2 0 –2 (d) 5 7 1
0 2 0 1 1 8
(a) 8 (b) 3 (c) 2 (d) 6
–a 2 ab ac 1 –1 3
49. If A = , then A is equal to:
44. The value of the determinant ab –b2 bc is: –1 1
ac bc –c 2
1 –1
;fn A = –1 1 , rksA cjkcj gS%
3
–a 2 ab ac
(a) A (b) 4A (c) 3A (d) 2A
lkjf.kd ab –b2 bc dk eku gS%
50. Let A and B have 4 and 8 elments respectively.
ac bc –c 2 Then what can be maximum and minimum
number of elements in A × B?
(a) 0 (b) –(a2 + b2 + c2)
ekukA vkSjB esa Øe'k%
4 vkSj8 vo;o gSaA rks fiQj
A×B
(c) 4a2b2c2 (d) 2(ab + bc + ca)
esa rRoksa dh vf/dre vkSj U;wure la[;k D;k gks ldrh gS\
1 –1 1 4 2 2 (a) 16 and 64 (b) 32 and 32
1
45. Let A = 2 1 –3 and B = –5 0 . If B is (c) 32 and 64 (d) 64 and 64
H
10
1 1 1 1 –2 3
1 a 1 1
1 –1 1
ekukA = 2 1 –3
AC
the inverse of A, then is:
rFkkB = 1
4 2 2
–5 0 ;fn
51. If 1
1
ab
1
equal to
1
1 c
= 0, then a–1 + b–1 + c–1 is
O
10
vkO;wg
1
B, vkO;wg
(a) –2
1
C NC
1
E
A dk O;qRØe gS] rks
(b) –1
gS%
(c) 2
1 –2 3
(d) 5
;fn
1 a
1
1
1
ab
1
1
1
1 c
= 0, rksa–1 + b–1 + c–1 cjkcj gksxk
E Y
46. If a, b, c are positive and unequal, then the value
a b c
H E
(a) 1 (b) –1 (c) abc
52. If all the elements of a 3 × 3 matrix P are 1,
(d) N.O.T
T E F EM
then P2 – 3P is
of = b c a is:
c a b
;fn 3 × 3 vkO;wg
P ds lHkh vo;o 1 gSa] rks
P2 – 3P gS
(a) a null matrix/'kwU; vkO;wg
D AD
a b c (b) an unit matrix/bdkbZ vkO;wg
;fn a, b, c /ukRed o vleku gSa] rks
= b c a dk (c) a column matrix/LrEHk vkO;wg
c a b
(d) a diagonal matrix/fod.kZ vkO;wg
eku gksxk%
(a) 0
A C
(b) < 0
sin cos
47. The matrix A = is
(c) 1 (d) >1
0 1
53. If A = , then the matrix A is
1 0
;fn A =
0 1
– cos sin 1 0 , rks vkO;wg
A gS
;fn Q ,d O;qRØe.kh; vkO;wgPrFkk,d oxZ vkO;wg bl çdkj ;fn f(x) = 0 0 1 , rc f(x)f(y) cjkcj gS
cos x – sin x 0
gS fddet(Q–1P2Q) = 4, rksdet P cjkcj gS
(a) 0 (b) 1 (c) 2 (d) 4 (a) f(x + y) (b) f(x – y) (c) f(x) + f(y) (d) f(x) – f(y)
1 a
57. If A = n
, then A equals:
CH
n–12
(c) |A|(n + 1) (d) A
n12
(a) –4
6 8 5
(b) 4 (c) –2 (d) 2
A
0 1 63. If A = 4 2 3 is the sum of a symmetric
9 7 1
O E
1 a
;fn A = 0 1 , rksA cjkcj gS%
n
matrix B and a skew-symmetric matrix C, then
C NC
B is–
1 na 1 a n 1 na 1 a n
(a) (b) (c) (d) 6 8 5
E Y
0 n 0 1 0 1 0 n ;fn A = 4 2 3
,d lefer vkO;wg B vkSj ,d
E
58. If A and B are square matrices of same order,
9 7 1
lgh gS\ H
T E F EM
then which one of the following is true–
;fn A vkSjB ,d Øe ds oxZ vkO;wg gSa] rks fuEu esa ls dkSufo"ke&lefer
lk
6 6 7 0 2 –2
D AD
(a) (AB)' = A'B' (a) 4 2 3 (b) –2 0 –2
(c) (A–1)' = (A')–1 (d) B'AB = BA'B 9 7 1 2 2 0
0 0 0
59. The matrix 1 0 0 is:
C
6 –6 7 0 2 –2
–2 0 0 (c) –6 2 –5 (d) 2 0 –2
A
7 –5 1 –2 –2 0
0 0 0
vkO;wg
1
0 0 gS% 1 3 1 0
64. If a matrix X satisfies X= then X
–2 0 0 0 1 0 1
1 1 1 1 3 1 0 1 –3 1 0
(a) (b) (c) (d) –3 1
60. The value of the determinant a b c is: 0 1 3 1 0 1
a2 b2 c 2 65. If A and B are square matrices of order 3 such
1 1 1 that det A = –1 and det B = 3 then det(3AB) is
lkjf.kd a b c dk eku gS% equal to
a 2 2
b c 2
;fn A vkSjB dksfV3 ds oxZ vkO;wg ,sls gS
detfdA = –1
,d oxZ vkO;wg
CH
68. A square matrix A is idempotent if:
A fuf"Ø; gksxk ;fn%
;fn lkjf.kd a
(a) a + b + c
a
xb
b xc
c = 0, gks rcx cjkcj gksxk
(b) –(a + b + c)
A
(a) A2 = 0 (b) A2 = 1 (c) A = AT (d) A2 = A
(c) 0, a + b + c (d) 0, –(a + b + c)
1 a a2
O E
72. If A and B are two matrices such that A + B and
69. The ratio of the determinants 1 b b2 and AB are both defined, then
ab a b 1 C NC 1 c c2
;fn vkO;wg
gks] rc
A vkSjB bl çdkj gSa fdA + B vkSjAB ifjHkkf"kr
bc b c 1 :
ca ca 1
T E F EM
,d gh Øe ds gks
2
1 a a ab a b 1 (b) A and B are two matrices of same order/A
lkjf.kd 1 b b2 rFkkbc b c 1 dk vuqikr gS% vkSjB oxZ vkO;wg vkSj ,d leku Øe ds gS
D AD
1 c c2 ca ca 1
(c) Number of columns of A = number of rows of B/
(a) 2:1 (b) 1:2 A ds LrEHk dh la[;k
= B ds dkye (iafÙkQ) dh la[;k
(c) 1:1 (d) abc : (a + b + c) (d) N.O.T
A C
Answer Key
1. (b) 9. (c) 17. (c) 25. (d) 33. (c) 41. (b) 48. (c) 55. (d) 62. (b) 69. (c)
2. (a) 10. (c) 18. (b) 26. (c) 34. (c) 42. (a) 49. (b) 56. (b) 63. (a) 70. (c)
3. (c) 11. (a) 19. (a) 27. (a) 35. (a) 43. (a) 50. (b) 57. (c) 64. (c) 71. (d)
4. (d) 12. (a) 20. (c) 28. (b) 36. (a) 44. (c) 51. (b) 58. (c) 65. (c) 72. (b)
5. (b) 13. (a) 21. (c) 29. (d) 37. (b) 45. (d) 52. (a) 59. (a) 66. (b)
6. (c) 14. (a) 22. (c) 30. (c) 38. (c) 46. (b) 53. (c) 60. (b) 67. (b)
7. (b) 15. (b) 23. (d) 31. (d) 39. (a) 47. (c) 54. (a) 61. (c) 68. (d)
8. (b) 16. (d) 24. (a) 32. (c) 40. (d)