HVAC Revised
HVAC Revised
This table shows a list of the popular unit conversions applicable for HVAC & Refrigeration
1 lb = 0.4536 kg 1 kg = 2.205 lb
1 HP = 0.7457 kW 1 kW = 1.34 HP
1http://www.engproguides.com
lbm kg kg lbm
1 3
=16.02 3 1 3
=0.0624 3
ft m m ft
kg lbm g lbm
Density (ρ) 1 3
=0.0624 3 1 3
=62.4 3
m ft cm ft
lbm g g lbm
1 3
=27.7 3 1 3
=0.0361 3
¿ cm cm ¿
1∈¿ 25.4 mm 1 mm=0.0394∈¿
1 ft =0.3048 m 1 m=3.28 ft
2 2 2 2
1 f t =0.093 m 1 m =10.76 f t
Area ( A)
2 2 2 2
1 in =6.452 c m 1 c m =0.1550i n
3 3 3 3
1 f t =0.0283 m 1 m =35.32 f t
Volume (V )
3 3 3 3
1 in =16.39 c m 1 c m =0.0610i n
−4
1 BTU =1054 J 1 J =9.48 x 10 BTU
1 lbf −ft=1.356 J 1 J =0.738 lbf −ft
Energy (Q)
2
kg−m
1 BTU =778 lbf −ft 1 J =1 2
=1 N−m
s
BTU J
Power (P , q) 1 BTUH =1 1 W =1
HR S
9 5
T ( ℉ ) = ( T ( ° K )−273 ) +32 T ( ° C )= ( T (° F )−32 )
5 9
Temperature (T )
9
T ( ℉ ) = ( T ( ° C )) + 32 T ( ° K )=T ( ° C ) +273
5
2http://www.engproguides.com
3http://www.engproguides.com
Section 2.0 – Basic Engineering Practice
FV
Future Value to PV =
¿¿ Multiply FV by (P/F, i, n)
Present Value
I =current [amps]
Ohm’s Law V
I= V =voltage [volts ]
R
R=resistantce[amps]
Resistors in series
Req ,series =R 1+ R 2+ R 3+ R n
Resistors in parallel 1 1 1 1 1
= + + +
R eq R1 R2 R3 R n
P=I ∗V
2
Power Equations V
P=
R
2
P=I ∗R
4http://www.engproguides.com
h ft∗Q gpm∗( SG )
Pmech work , pump[ HP]= ;
3956
Q=volumetric flow rate [ gpm ]
p ∗Q ∗( SG )
Pmech work , pump,[ HP ]= psi gpm ; h=pressure [feet of head ]
Pump Water 1,714
Horsepower
P= power [horesepower ]
Equations
SG=1.0 for water at 39 F
SG=specific gravity
kg lbm
pwater =1,000 3
; 62.4 3 p= pressure [ psi]
m ft
Motor Horsepower
Equation Pmotor =Pmech work[ HP] ¿ ¿ ;
ε motor
5http://www.engproguides.com
Section 3.0 – Thermodynamics
Absolute
Temperature ° R=℉ + 460 temperature
BTU
0.18505
Enthalpy lbm
h=u+ pv∗( 3
)
1 psi∗f t
( )
Isentropic transition υ1
k K = 1.4 for air
from Pressure State p2= p1∗
υ2
1 to Pressure State 2 Q= ṁ∗(h2−h1 )
( )
k
T2 k−1 Q= ṁ∗c p∗( T 2−T 1 )
❑
p2= p1∗
T1
( )
k−1
υ1
T 2=T 1∗
υ2
6http://www.engproguides.com
( )
k−1
P2 k
T 2=T 1∗
P1
( )
❑
υ2
T 2=T 1∗
Isobaric transition υ1 Q= ṁ∗(h2−h1 )
with heat gain or
❑
( )
❑
heat rejection T2 Q= ṁ∗c p∗( T 2−T 1 )
v 2=v 1∗
T1
Transition Description
s g=sf +s fg
Relationship of
Entropy of s g=entropy of saturated vapor
Vaporization,
Entropy of s f =entropy of saturated liquid
Saturated Vapor
and Liquid Water s fg=entropy of vaporization
smix =s f + x∗sfg
Entropy of Wet Steam
(Mixed Region) as a smix =entropy of wet steam(mix of liquid ∧vapor )
Function of Steam Quality
x=steam quality , drnyess fraction, % vapor
7http://www.engproguides.com
lbm
ṁ=mass flow rate [ ]
hr
Btu
Q=energy [ ]
hr
v initial=v final
Tank Heating/Cooling: Isometric [Constant 3
Volume] ft
v=specific volume [ ]
lb
Pinitial =P final
Boiler Heating: Isobaric [Constant Pressure]
P= pressure [ psia]
8http://www.engproguides.com
Wor k pump ,compressor =ṁ fluid∗( h leaving−hentering )
Turbines, Pumps and
Compressors Energy Balances
ṁfluid∗( hleaving −h entering )=Wor k turbine
Combustion
Air=(O2 +3.76 N 2)
Actual Air
% Excess Air= −100 %
Theoretical Air
9http://www.engproguides.com
10http://www.engproguides.com
Evaporator Net Refrigeration Effect
Compressor Work
Refrigeration Cycle
H 2=leaving compressor enthalpy
[ ]
Btu
lb
; H 1 =entering condneser enthalpy [
Btu
lb
]
ṁ∗P 2−P1
Pump → Wor k pump =
ρ
11http://www.engproguides.com
Wor k turbine −Wor k pump
Efficiency=
Q¿
12http://www.engproguides.com
Section 4.0 – Psychrometrics
Dry bulb temperature indicates the amount of energy independent of the amount of water
Dry Bulb
in the air. Measured with a thermometer.
Temperature
Units=[℉ ]
Wet bulb temperature indicates the amount of water in the air. Measured with a sling
Wet Bulb
psychrometer or hygrometer.
Temperature
Units=[℉ ]
The temperature at which moist air must be cooled to, in order for water to condense out of
Dew Point the air.
Units=[℉ ]
Humidity ratio or specific humidity is the measure of the amount of water in air.
Humidity Ratio lb of Water Varpor
Units=[ ]
lb of Dry Air
Relative Humidity indicates the amount of water in the air relative to the total amount of
Relative Humidity water the air can hold.
Units = [%]
Sensible heat indicates the amount of dry heat. It indicates the amount of energy either
absorbed or released to change the dry bulb temperature of the air.
Sensible Heat Btu
Units=[ ]
lb of air
Latent heat indicates the amount of energy in the air due to moisture. It is the amount of
heat released when water in the air condenses out or the amount of heat absorbed by water
Latent Heat in order to vaporize the water.
Btu
Units=[ ]
lb of air
Enthalpy is an indication of the total amount of energy in the air, both sensible and latent.
Enthalpy Btu
Units=[ ]
lb of air
Mixing of Air T mix , DB=T 1 , DB∗%1 +T 2 ,DB∗% 2
Streams
T 1 ,DB∗CFM 1 +T 2 , DB∗CFM 2
T mix , DB=
CFM 1 +CFM 2
13http://www.engproguides.com
h mix , DB=h 1, DB∗% 1+ h2 , DB∗% 2
h1 , DB∗CFM 1+ h2 , DB∗CFM 2
h mix , DB=
CFM 1+CFM 2
Qlatent =ṁ∗HV
HV =heat of vaporization
Btu
HV =1,060 at ideal conditions
hr
Latent Heat (Air at
Sea Level and Ideal
[ ]
Conditions) grain of H 20
∆ W GR =change∈ specific humidity
lb of dry air
∆ W LB
[ lb of H 20
lb of dry air ]
=change∈ specific humidity
lbm
3
∗W grains ,h 20
ft
∗lbm H 20
min lbm dry air
ṁ=CFM∗60 ∗0.075
hr 7000 grains H 20
Latent Heat
or
lbm
3
∗W lbs, h 20
min ft
ṁ=CFM∗60 ∗0.075
hr lbm dry air
14http://www.engproguides.com
Btu
Q sensible [ ]=1.08∗∆ T∗CFM
h
[ ]
Sensible Heat
Btu 5.2559
Adjusted for Qsensible =1.08∗∆ T∗CFM∗[ 1−elev∗6.8754 x 10−6 ] ; elev ∈feet
Different Elevations h
Qtotal=4.5∗( ∆ h )∗CFM
Btu
Qtotal=total heat [ ]
Total Heat hr
Equation
∆ h=change ∈enthalpy between entering∧leaving
CFM =volumetric flow rate ,cubic feet per minute
Total Heat
Equation
Qtotal
[ ]
Btu
h
=4.5∗CFM∗( ∆ h )∗[ 1−elev∗6.8754 x 10−6 ]
5.2559
; elev∈ feet
pw Ww
RH = x 100 % ≈ x 100 %
p SAT W SAT
RH =relative humidity
Relative Humidity
as a Function of pw =∂ pressure of water vapor ∈the air stream
Humidity Ratio and
Partial Pressures pSAT =saturated vapor pressure of water at the temperature∈question
Btu Btu
sensible heat ( ) sensible heat ( )
h h
SHR SHR= =
Btu Btu
total heat ( ) sensibleheat +latent heat ( )
h h
15http://www.engproguides.com
16http://www.engproguides.com
Section 5.0 – Heat Transfer
Btu
U =heat transfer coefficient [ 2
]
1 hr∗f t ∗℉
Convert U-Factor U=
to R-Value R 2
hr∗f t ∗℉
R=thermal resistance [ ]
Btu
Addition of R- Rtotal=R 1+ R 2+ …+ Rn
Values Layers∈series
1 1 1 1
Addition of U- = + +…+
Factors U total U 1 U 2 Un Layers∈series
Btu
Thermal k=
Conductivity Units hr∗ft∗℉
[ ]
Convert Thermal t Btu
Conductivity to R- R= k =thermal conductivity
k hr∗ft∗℉
Value and U-Factor
k
U=
t
Btu
U =overall heat transfer coefficient [ 2
]
Heat Transfer Q=U∗A∗∆ T hr∗f t ∗℉
Equation 2
A=area of heat transfer [f t ]
∆ T =temp .difference between hot∧cold areas [℉ ]
∆T a −∆ T b
Log Mean LMTD=
∆Ta ∆ T a=temperature difference at entrance
Temperature ln ( )
Difference (LMTD) ∆Tb
∆ T b=temperature difference at exit
17http://www.engproguides.com
Counter-flow Heat
Exchanger
Parallel-flow Heat
Exchanger
Conduction Heat
Transfer Equation, Q=
k∗A∗( T hot −T cold )
t
k =thermal conductivity of material
[ Btu
hr∗ft∗℉ ]
Through Wall
T hot −T cold =temp . diff . between indoors/ outdoors[℉ ]
t=thickness of material [ ft ]
18http://www.engproguides.com
Btu
h=convective heat transfer coefficient [ 2
]
hr∗f t ∗℉
2
Convection Heat Q=h∗A∗∆T A=area of heat transfer [f t ]
Transfer Equation
∆ T =temp .diff . between hot∧cold areas of heat transfer [℉ ]
19http://www.engproguides.com
Btu
hrad =radiationheat transfer coefficient [ 2
]
hr∗f t ∗℉
Radiative Heat Q=hrad∗A∗∆ T 2
Transfer Equation A=area of heat transfer [f t ]
∆ T =temp .diff . between hot∧cold areas of heat transfer [℉ ]
Radiative Heat
Transfer Between
Two Objects
Q=ε∗σ∗A∗(T obj1−T obj 2)
4 4
σ =0.1713 x 10
−8
( h∗fBtut ∗R );
2 4
Heat Transfer
Equation, Through
Pipe
k =thermal conductivity of material
[ Btu
hr∗ft∗℉ ]
T inner =Temperature at the inner pipe wall[℉ ]
L= pipe length [ ft ]
μ∗c p
( lbm∗℉ );
Prandtl Number Btu
Pr= c p=specific heat
k
20http://www.engproguides.com
( )
Btu
k =thermal conductivity ;
t 2∗℉
h∗f
ft
lbm
μ=dynamic viscosity ( )
hr−ft
D∗hconv
Nusselt Number Nu= =C D=diameter of pipe ( ft ) ,
k
k =thermal conductivity of the fluid
D∗hconv .8 .4
Turbulent flow inside circular pipe Nu= =.023∗R e ∗Pr
(heating) Nusselt Number k
D∗hconv .8 .3
Turbulent flow inside circular pipe Nu= =.023∗R e ∗Pr
(cooling) Nusselt Number k
D∗hconv
Laminar flow inside circular pipe Nu= =4.36
(heating) Nusselt Number k
D∗hconv
Laminar flow inside circular pipe Nu= =3.66
(cooling) Nusselt Number k
21http://www.engproguides.com
Section 6.0 – Fluid Mechanics
lb
μ[ ] 2 where ρ=density , μ=dynamic viscosity ;
Kinematic and ft∗s ft
v= =[ ]
Dynamic Viscosity lb s v=kinematic viscosity
ρ[ 3 ]
ft
ρfluid
Specific Gravity SG= lb
ρwater ρwater =62.4 @ 60℉
3
ft
u
M=
Mach Number c M =Mach number [unitless]; u=velocity
[ ]
ft
sec
; c=speed of sound
T =temperature∈ Rankine
cp
k =ratio of specific heats= ,
cv
Rs
[ ]
1,716 ft−lb
slug−° R
k 1.4 N/A
22http://www.engproguides.com
∆ m=0 A¿/ out =area at the entrance/exit of the nozzle
Conservation of
mass ∆ ṁ=0 ρ¿/ out =velocity at the entrance/exit of the nozzle
ρ¿∗A¿∗v ¿= ρout∗A out∗v out
p= pressure
[ ]
lbf
ft
2
;
Darcy Weisbach
Equation
2
fL v
where h=ft of head ; f =Darcy friction factor ; v=velocity
[ ]
ft
sec
,
h=
2 Dg ft
D=inner diameter [ ft ] , g=gravity [32.2 2
]
sec
23http://www.engproguides.com
3
Convert GPM to 1 ft
Multiply GPM by ¿ get .
Cubic Feet 448.83 sec
( )
2
ft
ν=kinematic viscosity ;
sec
V ∗D
Reynolds number=
Reynolds Number ν
V =velocity of fluid ( secft );
D=diameter of pipeor hydraulic diameter [ft ]
C L∗ρ∗A∗v
2 where C L =coefficient of lift ; ρ fluid=fluid density ;
Lift F L=
2 A=area of object ; v =velocity of fluid
C D∗ρ∗A∗v
2 where C D =coefficient of drag ; ρ fluid=fluid density ;
Drag FD=
2 A=area of object ; v =velocity of fluid
[ g=9.81
m
s
2
for SI
]
Fluid Power
p=
F
A
p= pressure
( )
lbs
in
2
; F=force ( lbs ) ;
2 2
A=π r =area(i n )
24http://www.engproguides.com
2
−5 ft
Viscosity Centistokes=1.0764 x 10
s
lb
Poise=0.067197
ft−s
2 2
p v 1 pg z 1 p v 2 pg z 2
P1 + + + hmech =P 2+ +
2 gc gc 2 gc gc
Bernouli’s ft−lbm ft
gc =32.2 2;
g=32.2 2
lbf −s s
ft 2 2
v= ; z=ft ; P=lb/f t ; h mech=lbm /f t
s
25http://www.engproguides.com
Section 7.0 – Energy/Mass Balance
Dehumidification/
W 1∨2
[ lb of H 20
lb of dry air ]
=specific humidity
Mixing General
Ṁ gas− A , enter + Ṁ liquid−B , enter= Ṁ gas−mix ,leaving + Ṁ liquid−mix , leaving
Equations
Ṁ gas− A , enter + Ṁ gas−B , enter= Ṁ gas−mix ,leaving
Latent Heat of
970 Btu/lbm
Vaporization
26http://www.engproguides.com
Section 8.0 – Heating/Cooling Loads
Btu
1 U =heat transfer coefficient [ 2
]
Convert U-Factor to
U= hr∗f t ∗℉
R
R-Value 2
hr∗f t ∗℉
R=thermal resistance [ ]
Btu
Addition of R-Values
Rtotal=R 1+ R 2+ R 3 …+ R n
1 1 1 1 1
= + + …+
Addition of U-Factors U total U 1 U 2 U 3 Un
Btu
Thermal Conductivity
k=
hr∗ft∗℉
Units
t
R=
Convert Thermal k t=thickness of material [ft ]
Conductivity to R-
k k =thermal conductivity ¿
Value and U-Factor U=
t
Btu
U =overall heat transfer coefficient [ 2
]
hr∗f t ∗℉
2
Q=U∗A∗∆ T A=area of heat transfer [f t ]
Heat Transfer
Equation ∆ T =temperature difference between
hot∧cold areas of heat transfer [℉ ]
27http://www.engproguides.com
Conductive Loads → Q=U∗A∗∆ T
Radiative Loads → Q= A∗SC∗SCL
SC=shading coefficient
SCL=solar cooling load factor
Q=N∗SHG∗CLF
N=number of people
People
Sensible loads SHG=sensible heat gain, activity dependent
[ ]
Btu
hr
Q=N∗LHG∗CLF
N=number of people
[ ]
People Latent loads Btu
Latent=latent heat gain , activity dependent
hr
Miscellaneous Btuh
Equipment ∗P ( HP)
HP
Total Heat =¿ Q=2545
Efficiency
28http://www.engproguides.com
Qmotor heat loss=Total Heat∗(1−ε motor )∗F U∗F L
P=horespower of motor
ε motor=efficiency of motor
Q=qinput∗F U∗F R
Btu
q input=input ¿ the equipment
h
F R =fraction of thetotal heat that is radiated ¿ the space
F U =usage factor
Btu
Q total =4.5∗CFM∗∆ h[ ]
lb
Infiltration
Qsensible =1.08∗CFM∗(T outdoor −T indoor)
W =humidity ratio ¿]
29http://www.engproguides.com
Section 9.0 – Equipment & Components
Simplified Sensible
Heat Equation
Q
[ ]
Btu
h
=1.08∗CFM∗∆ T [℉ ]
¿ air conditions at 70 ℉∧1 atm .
Q1 D1
= ; if speed is held constant ,
Q2 D2
where Q=flow∧D=diameter
Q1 N1
= ; if diameter is held constant
Q2 N2
2
H 1 D1
Affinity laws = ; if speed is held constant ,
H 2 D22
(For when given a
system curve and
diameter change is where H= pressure , D=diameter
less than 5%) 2
H1 N1
= ; if diameter is held constant
H 2 N 22
3
P 1 D1
= ; if speed is held constant
P 2 D32
where P= power∧D=diameter
3
P1 N1
= ; if diameter is held constant
P 2 N 32
30http://www.engproguides.com
W entering coil−W leavingcoil
Contact Factor Contact Factor=
Equation for Coils W entering coil −W apparatus dew point
[ lb of water ]
W =the humidity ratio entering∨leaving the system
[ lbof dry air ]
lb
ρ=density of air [ ]
Moisture Transfer ft
3
Equation
3
ft
Q=air flow rate[ ]
min
lb
H=moisture transferred [ ]
hr
Cooling Tower
Evaporation Rate
.000943∗cooling tower flow rate
[ ]
gal
min
∗¿
31http://www.engproguides.com
Motor HP=BHP∗ ( motor efficiency
1
)
( )
2
p∗v lbm
VP= = 2
2∗gc ft
ft−lbm
gc =32.2 2
lbf −s
ft 2
v= ; z=ft ; VP=lb /f t
Fans s
Shortcut Equation
FPM
Fan velocity pressure= [ ¿ . wg ]
4005
where FPM =velocity feet per minute
( )
other cases (fans Q1 D1 3 N 1
and pumps) = ( )
Q2 D2 N 2
N = speed, Q = flow
( )( )
2 2
rate, H = head or H1 D1 N 1 p1
= ( )
pressure, H2 D2 N 2 p2
p = density,
( )( )
5
P1 D1 N 1 3 p1
= ( )
D = diameter, P2 D2 N 2 p2
( )( ) ( )
P = power Q1 D1
2
H1
.5
p2
.5
=
Q2 D2 H2 p1
( )( )
.5 .5
N1 D2 H 1 p2
= ( )
N2 D1 H 2 p1
( )( ) ( )
2 1.5 .5
P1 D1 H1 p2
=
P2 D2 H2 p1
32http://www.engproguides.com
( )
3
N1 D2 Q1
= ( )
N2 D1 Q2
( )( )
4
H1 D2 Q1 2 p1
= ( )
H2 D1 Q2 p2
( )( )
4 3
P1 D2 Q 1 p1
= ( )
P2 D1 Q 2 p2
actual
T actual=actual temperature∈Rankine (° R)
R
>10 → thin walled pressure vessel assumption
t
PR
for cylindrical thin walled pressure vessels → σ =
t
PR
for spherical thin walled pressure vessels → σ=
Pressure vessel 2T
σ =stress ( psi ) ; P= pressure ( psi ) ;
R=radius ( ¿ )
t=thickness(¿)
W ∗√ ❑
Gas pressure relief valve sizing → A= A=valve effective orifice area ( in ) ;
Pressure relief 2
❑
C=coefficient of gas ( 315 for air ) ;
K=coefficient of discharge
( typically 0.975 ) ;
K b =correction factor for back pressure
33http://www.engproguides.com
( see periodic table ) ;
T =absolute temperature ( ° R ) ;
T =absolute temperature(° R)
Btu
HHV =higher heating value of fuel [ ]
lb
Boiler fuel energy Qfuel = ṁ∗HHV
ṁ=mass flow rate of fuel
[ ]
lb
hr
34http://www.engproguides.com
ṁwater =lbs/hr
∆ T =change∈temperature of air [℉ ]
Q= ṁwater∗hfg
[ ]
Boiler energy for
3
vaporization of 1f t
water
∗62.4 lb
7.48 gallon
3
∗60 minute
gallon of water ft
1 ∗
minute hour
Desuperheating Region
1 st Step :Q=ṁsteam∗c p ,steam∗( T initial−T sat )
Condensing Region
Feedwater heater 2 nd Step: Q=ṁsteam∗h fg
Subcooling Region
3 rd Step:Q=ṁsteam∗c p , steam∗( T sat −T final )
35http://www.engproguides.com
36http://www.engproguides.com
Section 10.0 – Systems & Components
0.625
1.30∗( a∗b )
De = 0.250 where a∧b are the width[ft ]∧height [ft ]of the duct
Rectangular Duct ( a+ b )
¿ . wg
Friction loss due to F duct [¿ . wg]=L [ft ]∗f [ ]
length of duct 100 ft
2
0.1025 Lq
f= 5.31
rd
Where, f = pressure drop ( psi )
L= pipe length ( ft )
Compressed air
piping loss q=airflow ( cfm )
37http://www.engproguides.com
h=ft of head ;
f =Darcy friction factor ;
Darcy Weisbach
h=
fL v
2 Dg
2 v=velocity
[ ]
ft
sec
,
D=inner diameter [ ft ] ,
ft
g=gravity [32.2 2
]
sec
Pressure
1 psi is equal to 2.31 feet of head (water)
Net positive
suction head
NPSHA=P¿ −Pfric −P vapor ¿
or
NPSHA=Pgauge + Pvelocity −Pvapor
Velocity pressure 2 ft ft
V velocity∈ ; gravity=32.2
(Pumps) [ ft of head ] ; sec sec
2
2g
38http://www.engproguides.com
q sensible , actual
ε sensible=
q sensible , max
q latent , actual
ε latent=
q latent , max
qtotal , actual
ε total=
qtotal ,max
39http://www.engproguides.com
Section 11.0 – Supportive Knowledge
Refrigeration Room
Q [ CFM ] =100 X G , where G = lbs of refrigerant.
0.5
Ventilation Rate
Vibration Control:
Natural Frequency f natural (Hz)=3.13∗√ ❑
of Spring
( )
2
Transmissibility f forcing frequency
and Vibration −1 100 %−Vibration Isolation Efficiency %
f naturalfrequency
Isolation Efficiency
Ldb=Lequip −20∗x−1
40http://www.engproguides.com
Sound Level at a Distance from a Point Source Ldb=Lequip −20∗x+ 8
(Eighth-Spherical Propagation)
41http://www.engproguides.com