Propargyl
Propargyl
HO
Letter refers to cyclopentane structure
CO2H
Me
O O O
HO OH
Rα Rα Rα e.g. PGF2α
Rω Rω Rω
A B C
OH O OH PGF: Four contiguous stereocenters
Rα Rα Rα
PGE: Labile β-hydroxyketone
O Rω HO Rω HO Rω
D E Fα
OH
Rα Rα
HO Rω O Rω
Fβ J
Prostaglandin Nomenclature
HO
Letter refers to cyclopentane structure
CO2H
Me
O O O
HO OH
Rα Rα Rα e.g. PGF2α
Rω Rω Rω
A B C
OH O OH G, H, I?
Rα Rα Rα
O Rω HO Rω HO Rω
CO2H
D E Fα
O
OH
Rα Rα
HO
HO Rω O Rω OH
Fβ J PGI2: Prostacyclin
Prostaglandin Nomenclature
HO
HO OH
e.g. PGF2α
CO2H
Rα = CO2H
1: Me
Me
Rω =
dihomo-γ-linolenic acid
OH
Rα = CO2H
CO2H
2: Me Me
Rω =
arachidonic acid
OH
Rα = CO2H CO2H
3:
Rω = Me Me
eicosapentaenoic acid
OH
Prostaglandin Biosynthesis
Tyr
O
H H H
O O
Cyclooxygenase O O
O O
O O O
O O O
O O O HO
O Tyr-OH Peroxidase
O HO
PGG2
CO2H CO2H
CO2H CO2H
PGH2
HO HO
Rα Rα Rα
O 5 > pH > 8
Rω Rω Rω
Rω HO O O
HO PGF2α PGD2 PGJ2
PGI2
O
O CO2H Rα
Rα
O
O
Rω
O Rω OH
HO
TxA2
PGH2 PGE2
5 > pH > 8
OH
O O O
Rα Rα Rα Rα
HO O Rω Rω Rω Rω
TxB2
PGB2 PGC2 PGA2
More generally:
Prostaglandin research embodies the intertwined nature
of target oriented synthesis & methodology development
HO OH O OMe OMe
HWE reaction
PGF2α
AcO AcO HO
Corey Lactone
Diels-Alder
O
O
O
MeO O O
HO
O O O
NaOH KI3 1. Ac2O, pyr
I
O H2O, 0 °C NaHCO3 2. Bu3SnH
OMe H2O, 0 °C AIBN, PhH OMe
HO OMe AcO
O (90% yield) HO
(80% yield) (99% yield)
Corey Lactone
O O O
C5H12
1. BBr3, CH2Cl2 O (MeO)2OP
O O
0 °C (> 90%) O Zn(BH4)2
O O CO2-
O Ph3P
1. K2CO3, MeOH DIBAL-H 3
HO
HO OH
PGE2
O
• Limitations:
Diels-Alder gives racemic product, non selective enone reduction OMe
BnO
1. LAH (95% yield) • Menthol derivative could be recycled after LAH reduction
2. NaIO4, t-BuOH
O • Phenyl substitution gives remarkably higher e.e. than ordinary
(97% yield) menthol
Me O
"The first highly enantioselective version of the
π lewis acid/base Diels–Alder reaction"
O interaction
AlCl3
Oh, and a novel enolate oxidation method as well.
O O
R* achiral catalyst * R*
O O
O Cl2Al
O
(12 mol%) CHO
H
PhMe/Hexane
-78 °C
57% ee
(56% yield)
O O
OTMS
Lewis Acid (1 equiv) NH
N O OTMS
S
CH2Cl2, -78 °C TiCl4 O2 EtAlCl2
O N
Ph
O 99% yield 75% yield
O
98% ee 98% ee
Reviews: (a) Oppolzer, W. Angew. Chem. Int. Ed. Engl. 1984, 23, 876–889. (b) Kagan, H.B.; Riant, O. Chem. Rev. 1992, 92, 1007–1019.
Hashimodo, S.; Komeshima, N.; Koga, K. J. Chem. Soc., Chem. Commun. 1979, 437.
Chapuis, C.; Jurczak, J. Helv. Chim. Acta. 1987, 70, 436–440.
Catalytic Enantioselective Diels–Alder - 1989–1991
Ph Ph
OBn
F3CO2SN NSO2CF3
NR2 BnO
O O
Al BnO
(10 mol%) O
N
O
Me
Ph H O
CH2Cl2, -78 °C O N
Al O
(93% yield, > 95% ee)
Ph Me
HN O H
Br N
OBn
O TsN O H
Br B BnO
H (5 mol%)
H BnO O
O O CHO
CH2Cl2, -78 °C H B
H N Br
(83% yield, 92% ee) Ts
For a review on Enantioselective D-A developed by Corey, see: Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650-1667.
Corey, E. J. et al. J. Am. Chem. Soc. 1989, 111, 5493–5495.
Corey, E. J.; Imai, N.; Pikul, S. Tetrahedron Lett. 1991, 32, 7517–7520.
Corey, E. J.; Loh, T. P. J. Am. Chem. Soc. 1991, 113, 8966-8967
Catalytic Enantioselective Diels–Alder: Extensions
OMe
O Me Yamamoto, 1988
Me O
Catalyst (10 mol%) SIPh3
H
PhMe, -20 °C O Ph
TMSO O
then TFA, CH2Cl2 Me Al-Me
O
Me
(84% yield) 95% ee
10:1 cis:trans SiPh3
O O Evans, 1993
Catalyst (10 mol%)
O N O
O O
CH2Cl2, -78 °C, 18 h
O N
O N
(86% yield) N
Cu
98% ee t-Bu t-Bu
TfO OTf
98:2 endo:exo
O MacMillan, 2000
Catalyst (20 mol%)
H O
MeOH/H2O, 23 °C CHO NMe
O
O Corey, 2002–2003
Catalyst (20 mol%) H
H Ph
Et Ph
Et neat, -20 °C, 88 h
N O
O O O B Tf2N
H H
H o-tol
ent-Catalyst
toluene O Catalyst
MeO -78 °C, 2.5 h OMe
Me H
O O H
(95% yield) N
(–)-dendrobine
(Kende/Bentley, 1974)
H HO H OMe
H O
H
O
OH
H
H O H H Me
H O OH Me
O O H
O
(+)-hirsutene (–)-coriolin silphinene nicandrenone core
(+)-myrocin C (Mehta, 1986) (Stoltz/Corey, 2000)
(Mehta, 1986)
(Chu-Moyer / Danishefsky,
1992)
Review on cationic oxazaborolidines: Corey, E. J. Angew. Chem. int. Ed. 2009, 48, 2100–2117.
Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650–1667.
Corey, E. J.; Shibata, T.; Lee, T. W. J. Am. Chem. Soc. 2002, 124, 3808–3809.
Hu, Q. Y.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 13708–13713.
Strategies toward C(15) stereoselectivity - 1971–1987
O O
O O H O
Borohydride Me
B
HMPA Li PB =
C5H11 THF/Et2O/pentane C5H12
-120 °C Me Ph
PBO O PBO OH
82:18 α : β Borohydride
92:8 with carbamate analogue • Derived from (±)-limonene
O O
O O
DIBAL•BHT (10 equiv)
OH O OH OH
O O
O O
3 equiv BINAL-H
Match/Mismatch
O H Effect Observed w/
THF, -100 → -78 °C Li Al
C5H11 C5H12 O (R) enantiomer
OEt
OR O OR OH
O O Ph
BH3•THF (0.6 equiv) H Ph
OH
O OH RN
(S)-H-CBS H
OH
O
catecholborane
PhMe
MeO I MeN
(93% yield, 96% ee)
OBn (–)-morphine
Review: Corey, E. J.; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1987–2012.
Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551–5553.
Corey E. J. et al. J. Am. Chem. Soc. 1987, 109, 7925–7926
Hong, C. Y.; Kado, N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028–11029
Stoltz, B. M.; Kano, T.; Corey, E. J. J. Am. Chem. Soc. 2002, 122, 9044–9045
Alternative Routes to Prostaglandins
Corey Route:
O
Wittig reaction 6
HO O
7
8
6 5 CO2H 8
14 12
Me 12
8 steps OMe 8 steps OMe
13 13
HO OH (Original Route) HO (Original Route) 13
HWE reaction
Conjugate Addition:
Conjugate Addition [M] CO2H
O HO HO
7
8
CO2H CO2H
12
Me Me
13
HO [M] Me HO OH O OH
Conjugate Addition
OH
(100% yield) HO O
1:4 mixture
recycled by oxidation/reduction (1:2)
O O Li C5H11 O O
O
C5H11 O resolution with C5H11 O
C5H11 (S)-α-phenylethylamine 10% NaOH
O O O
60 °C
OH (±) then 1% NaOH, 25 °C
HO2C HO2C
2. I2 H+
OH OH OEE OEE
Candida antarctica
C5H11 lipase B C5H11 NaCN, MeOH C5H11
Johnson, 1993
OH , 25 ° C OAc (83% yield OH
OAc after conv. to
> 98% ee TBS ether)
(40% yield)
O O
BBN-(CH2)6CO2Me
CO2Me
6 CO2Me
PdCl2(dppf)
Ph3As, Cs2CO3
DMF/THF/H2O, 25 °C
TBSO HO OH PGE1
(70–80% yield)
HO
CH3CO3H AcOH (1 equiv) Ac2O (1.1 equiv)
AcO Electric HO
Eel Acetyl
cholinesterase
(86–87% yield) H
OHC H
AcO AcO H
O
96% ee
O Li C5H11 O [M]
OR X
no reaction
Cu C5H11 X = Br or I
RO
R = –OC(CH3)2OMe
TMSO O
C5H11 C5H11
Br 3 CO2Me
RO RO
O [Cu] C5H11 O O
OR
then C5H11 C5H11
TBSO TBSO
I , HMPA RO RO
AcO O I C5H11
OH
Ph O 1) KOH, MeOH OBOM
O O
OH
1) MsCl, pyr 1. I 4 OEE
C5H11 C5H11
2) Hunig's Base t-BuLi, then
O OBOM O CuI•PBu3
OBOM
(80% yield) 2. AcOH, H2O
Ph Ph 3. Jones Oxidation
1.3:1 d.r. at C(11) (78% yield)
O HO H
CO2H 1) Li(s-Bu)3BH CO2H
C5H11 2) Na, NH3(l) Me
H
O HO OH
OBOM
Ph PGF2α
O I C5H11 O O OH
OHC CO2Me
OTBS [M] (1 equiv) 7 CO2Me
S
O O
1. Ph Cl , DMAP 1. H2, 5% Pd/BaSO4
(71% yield) CO2Me quinoline CO2Me
2. Bu3SnH, t-BuO–Ot-Bu C5H11 PhH / cyclohexane, 87% yield C5H11
Δ
(98% yield) TBSO OTBS HO OH
2. HF/pyr, 98% yield
Review: Noyori, R.; Suzuki, M. Angew. Chem. Int. Ed. Engl. 1984, 23, 847–876.
Suzuki, M.; Noyori, R. et al. Tetrahedron Lett. 1982, 23, 4057–4060.
Suzuki, M.; Kawagishi, T.; Noyori, R. Tetrahedron Lett. 1982, 23, 5563–5566.
Noyori 3-Component Synthesis: 1982–1989
O I C5H11 O O
HMPA (11 equiv, 30 min)
[M]
OTBS Ph3SnCl (1 equiv, 10 min) CO2Me
O I C5H11 O O
I CO2Me
[M] (5 equiv)
OTBS CO2Me
(+)-incarvillateine C
O O OH O O
H O O
CH3MgBr NaOAc
O
O
O 200 °C
CuI (22 mol%) O
then OHC Me O
(96% yield) O
Me MOMO
MOMO
(61% yield)
O O O O
Hoveyda-Grubbs II (20 mol%) HO O O
O
O
(92% yield) O
MOMO
(±)-Garsubellin A
Review on Multicomponent Reactions in Synthesis: Touré, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439–4486.
Kibayashi, C. et al. J. Am. Chem. Soc. 2004, 126, 16553–16558.
Shibasaki, M. et al. J. Am. Chem. Soc. 2005, 127, 14200–14201.
Feringa Catalytic Enantioselective 3 Component Coupling - 2001
Ph
Ph Ph
Ph O
Me Ph
P N
Zn O
Me
CO2Me
O 2 Ph
(6 mol%) OH
O O CO2Me Zn(BH4)2
Cu(OTf)2 (3 mol%)
H PhMe, -40 °C, 18h Et2O, -30 °C, 3h
Ph Ph
Ph Ph
OH OH O H
O CO2Me K2CO3 O CO2Me CAN (cat.) CO2Me
Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2001, 123, 5841–5842.
Full Paper: Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2002, 67, 7244–7254.
Allylic Transposition: Grieco, P. A. et al. J. Am. Chem. Soc. 1980, 102, 7587–7588.
Summary
Synthetic testing ground for new methods:
O O
O O
BH3•THF (0.6 equiv)
Corey–Bakshi-Shibata
C5H11
(R)-Me-CBS (10 mol%)
THF, 23 °C, 2 min C5H12 Catalytic Enantioselective Reduction of Ketones
PBO PBO OH
O
9:1 α : β
O O O
I
I2 (1.8 equiv) BBN-(CH2)6CO2Me 6 CO2Me
(70–80% yield)
OBn BnO
O O F3CO2SN NSO2CF3
Al
(10 mol%)
N
O Me O Catalytic Enantioselective Diels–Alder Reaction
CH2Cl2, -78 °C O N
O
(93% yield, > 95% ee)
I C5H11 I
O O CO2Me O
[M] (5 equiv)
Tandem conjugate OTBS CO2Me
addition/aldol reaction n-BuLi (1 equiv) C5H11 HMPA (10 equiv) C5H11
Me2Zn (1 equiv) -78 to -40 °C, 24 h
TBSO TBSO OTBS TBSO OTBS
THF, -78 °C, 1 h
(71% yield)
Useful References
Bindra, J. S. and Bindra, R., Prostaglandin Synthesis; Academic Press: New York, 1977.
Historical Background, Incl. Degradation Studies, Detailed breakdown of synthetic strategies through 1977
Noyori, R.; Suzuki, M. Angew. Chem. Int. Ed. Engl. 1984, 23, 847–876.
Account of 3 component coupling development (does not include most recent advances, i.e. tin and tin free alkylations)
O H
* CO2H
3H
CO2H Cyclooxygenase-1 3H
H * labelled substrate mixed with 14C
Me Me labelled substrate, then incubated
H with enzyme
HO H OH
3-fold 3H
enrichment after
75% conversion 0.05% retention of 3H label
O H
* CO2H
3H
CO2H
H * • pro-(S) hydrogen is selectively removed
Me Me • KIE consistent with H abstraction
preceeding reaction with oxygen
H
HO 3H
OH
No 3H
enrichment in partially
converted material 89% retention of 3H label
Review on fatty acid oxygenation: Rouzer, C. A.; Marnett, L. J. Chem. Rev. 2003, 103, 2239–2304.
Labelling studies:
Van Dorp, D. A. et al. Nature 1964, 203, 839–841.
Hamberg, M.; Samuelsson, B. J. Biol. Chem. 1967, 242, 5336–5343.
Prostaglandin Biosynthesis
HO H MeO H
18O 16O CO2Et
CO2H 2+ 2
6 CO2Et
Me vesicular gland Me
CO2Et
H H
HO OH MeO
then NaBH4
EtOH, 0 °C
• Both oxygen atoms on cyclopentane are derived from the same oxygen molecule
HO H O H
CO2H
CO2H CO2H
pig lung tissue Me Me
Me
H H
HO OH HO OH
PGF2α PGE2
• Labelled PGE2 is not converted to PGF2α under reaction conditions: Derived from common intermediate
30 seconds O Me O Me
Me
H H
OH O
OH
PGH2 PGG2
Structural confirmation:
HO H
CO2H
SnCl2 Me SnCl2
H
HO OH
H HO H H
O CO2H CO2H Pb(OAc)4 O CO2H
O Me Me O Me
H then PPh3 H
H
OH HO O O
OH
PGH2
PGG2
buffer O H buffer
O H
CO2H SnCl2
CO2H
Me
Me
H
HO OH H
HO O
OH
CO2H
Me
HO OH
PGF2α
OH
OH 1. NaBH4, H2O OH NaBH4
H H
O HCN O pH 3–3.5 O MeOH, 10 °C
HO O OH
HO O
HO
OH OH 2. Acetone, O Ac2O, pyr
OH cat. H2SO4 CHCl3, -7 °C
α-D-glucose HO OH O O
(68% yield overall)
NMe2
Me Me
Me MeO OMe Me
OH O O O O
O H NMe2 OAc Ac2O O
O Δ O
O OH Δ O
OAc O O O O OAc
Me (40% yield) Me
Me Me
Me Me Me Me
Me
Me
O CuSO4, MeOH, H2O OH
1. "base" O reflux
O O O O
2. MeO2CCl, acetone, H2SO4
pyr., 0 °C O O O
Me O OMe 25 °C Me
Me Me O
(54% yield,
4 steps)
CO2H
Me
HO OH
PGF2α
MeO2C
OH MeO OMe
Me
Me OMe O O Me
O O O O O
O O CH3CH2CO2H O O O O
Me OMe H Me
Me O (80% yield) Me O
O
MeO2C
1. n-Bu2CuLi (10 equiv)
1. NaOMe Et2O, -40°C O ethyl vinyl ether, H+
C5H11
O OTs
2. p-TsCl, pyr. 2. H2SO4(aq), LHMDS, THF, -78°C
O OEE THF, 25 °C HO OH
3. ethyl vinyl ether Me then
H+ Me Br 4 OTBDPS
(35% yield, 5 steps)
THF/HMPA, -40→ -20 °C
(71% yield)
O OH
OTBDPS 1. DIBAL OTBDPS
2. HCN, EtOH NC
O
3. 50% AcOH, THF, 35 °C
4. p-TsCl, pyr. TsO
EEO OEE OH OH
(37% yield)
CO2H
Me
HO OH
PGF2α
OEE CN
EEO
OTBDPS OTBDPS 1. F-, THF
NC KHMDS 2. CrO3•2pyr
PhH, reflux 3. AgNO3, H2O, EtOH, KOH
TsO
OEE OEE EEO OEE
(72% yield) (83% overall yield)
CN CN
EEO HO
CO2H AcOH CO2H L-Selectride
THF, 40 °C THF, -78 °C
EEO OEE HO OH (73% yield,
two steps)
HO
CO2H
filtered
O O
Murray, C. K.; Yang, D. C.; Wulff, W. D. J. Am. Chem. Soc. 1990, 112, 5660–5662.