Comm File
Comm File
Topic
Expeximest -l
Theoy
pegicdaymltpazagvicAnment
pgami devekeped
and
LanggeMathlwotka muneic
empheg
MaTLAS allow mdix manipuatioh
and data, imphmertatin a aenth
intetacea and ictoxbing ith pema
LOtuttern another
derrn these
hebe nimatnd
both
And 2-D3-D
pagsamming enicknnent pagga
T als
theanpudaton a tateseek
tatesee in Cemmand oindo)
WRITO-LINE ecos itsely Teacher's Sign..
title('nom
periodic
xlabel(tine")
sigal") Sbplot(2,1,2)
ylabel(ampli plot(x)xlabel(tine')
X=rand
ylabel(anplitude')
signal)
periodic
title( plot(t,y)
y=sin(t);
subplott=-18:e.e1:1
title('discrete
inpulse')
; xlabel('n')subplot
('u(n)
ylabel")(n,u)
continuousylabel(
inpulse')
stemtítle(" plot
'u(t)subplot(2, u)1,
1)
(n,n=-18:19;
U-[zeros
(1,
xlabel(t "); );
t-20:e.01:
y=heaviside
axis plot(t); 20;
152) (2,
(2,
1, (1, ([
(t,y,
tude) ; 1) 1, -20
2) 18) "linekidth',20
1 -2
zeros
2]);
(1,
3)
19) ;
];
Siscrete
impuie Continuous
impuise
Deiic
sia
n=-28:20; xenYalu e x
10 7D
xn=2.*(0.9. ^n); 5
SINE WAVE
zapmental ath
a-2; sine plot
f=2;
t=0:8.01:1; O 05
x=sin(2"pi"ft)
plot(t, x, 'linawidth', 3);
title('sine plot');
a apeetie he iotezval while
xlabel(" tine') ; 02
time
06 0.9
neASakay epeti ite path and can
ylabel(' arplitude '); MYe at any path
Convoltoh
ol
Rectanguler
Puikes
E lShawD
hea Requiaed.
Bofase. Plßes shou Convalue. 2
PulleHence Topic
+end
that that
Canladatian gctSinet ’Canvalstion
Canval ub
Canvalutian
he teckangdat pulbed
andon.
deviatin
Riandasd Sinet
onf
Exferimct2
vatil MATLAB.
Date
in adasg
(t- Ainc MATLAB
er'Sgns X,
Tldz plded
let
iáa Page No
e
te kinc
mn plbe
Date
Title. Page.
se-oeined
num
paname tes
2ulses = inutEnter the nunber of rectangular pulses: ):
2lse cth iNt('Enten the idt blt-I= A
f each Nctangular alse: ):
lse_height = innut( Enter the height of each rectangular pulse: ')
1 heate a vecton reonesenting one rectangul ar pulse
Lalse linspace(-5, 5, 1002);
ret_lse = retals(t_aul se,
Comvolve mulinle rectangulan pulse_with;
I
aulses
canvelve_result
for i= 2:hun alses t_ulse;
comvolve_result = conv(convolved result, rct_pulse, 'same') t<-27
max(camv(convalved_result, rect_ulse, 'same'));
visualization
Normalize for better ERTA A|)At+) -2T<t<o
end A (27-t) D<t<2T
1 2lot the reslts tT
subnlot (2,1,1);
plot(t_ulse, rect_pulse, Lineidth', 2); A2T -lt)
title('he Rectangular Pulse )
label("Tine )s
ylabel(Anplituce');
subplot (2,1,2);
plot(t_pulse, convalved_result, 'Linewiath', 2);
title("Convalution of Nltiple Rectangular Pulses');
dabel(Tìne' )s The
ylabel (Anplitude);
sgtitle(Verification af Central Linit Theoren' );
alot(t, convalved_pulse, Linekidth', 2);
title('Convolution of Sync Pulses');
label("Tìne' );
ylabel("'Anplitude):
title('Demonstrating Convalution of Syne Pulses') ahtained
plathed imilaL
mAILAßai
auccaaju
Land he
Verication of Central Lmt Theorem
eRaatangar Pse icdeapiabad thenmaaly
CLASSTIME
Page No
Date
Topic
Exp£RImENT- 3
1rneers
1 Sanpling nequency ( )
Duration of sgnal (s)
t2/Ps:t/2:Tine vecton Aim - To the
1 Create a Gussiam puse signal
1 Standane deviation
e-t.2(2*siga"2)):
1 Cute the Fourier transt t the original signal
Ptshif(Ft x)):
17ne shLft panametes
tsht2. 1Tine shitt amount
1S he signal in tine omai
ted ep(-(t - sh)."2/("sigma));
1 Comute the Fourier transfom f the shefted signal
Lshfted - tshift(fft(x_shifted)):
1ecuency ector
ength(t):
-(-Fs2:FsNFs/2-Fs N)
Translan A a mathemateal
2 Puot the orginal and shahed sigals n tine and reauency domains
Thasy- Th a a
gune: Orgina Sigrai Mapntuu SpetmDngima
sot(2, 2, 1)E
Frecuenc
sgot(2, 2, 4):
plt, absK_shiftec)):
title g t u e Spectu (Shftec)"):
KLatel(Fneauency
Flo) e^ljut
WRITO-LINE eco Teacher's Sign.
Page No.
Date
Topic
the
ananetens the hoe
1Sanpl ing frequency (H2) amawnt
1Duration ef signal (s)
t:1Es:t; 1Tine vector
demain t the ahiftd
1heate a cosine wave signal
* Frequency of the cosine wave (Hz)
olamain
lanvelution A a mdhemahcal
ConYutm puaperty pscdusa
Opaton thataled
1Define two functions f(t) and g(t)
t-5:0.e1:5: hitdfunchim hat sprasea
f sin(t); % Define f(t)
8- cos(t); XDefine g(t) othe The Canveluto sapeuty
S Compute h(t) f(t) g(t) 2tatesthat
h conv(f, g, 'same' ); ftheouxir tanh fah
$Conpute Fourier transforms of f(t), g(t), and h(t) Tnotbes
their foiee Torarkfaok
F fft(f);
G fft(g); the pduct a
agnali and glt, thu
f(t
fft (h) ;
2
S Plot the results
Lonyetution hlt) can be cOitten as
subplot (3, 1, 1);
plot(t, f); 1 2
Time
títle(' f(t) "); g()
xlabel("Time' );
ylabel( ' Amplitude');
denptes LonvelhooThen the t u r
subplot (3, 1, 2); ohee
plot(t, 8); Tune
h() t) o t ) O O a tensfo~ho of hlt) Hlo) can be
title('g(t) ');
xlabel ('Time' );
ylabel ("Amplitude');
Hlw) =Elw) clw)
subplot (3, 1, 3) ; 530 ase he
whese Flw) and clo)
Time
plot(t, h);
títle("h (t) f(t) g(t)"');
xlabel ('Time'); oflt) and
ylabel('Amplitude ');
*Verify Fourier transform property: F{h(t)} = F(f(t) g(t)}
figure;
ard
subplot (3, 1, 1);
plot (abs (fftshift (F)));
title('Fourier Transform of f(t)');
Fourier Transform off ( t ) 0 0 the zgeph
pepehes Lore
pletted
xlabel(" Frequency' ) ; VasiDus
ylabel ("Magnítude'); 400 1030 120
Frequency
subplot (3, 1, 2); Fourier Transform of gt)
plot (abs (fftshift(G) );
title('Fourier Transform of g(t)');
xlabel("'Frequency' );
ylabel ("Magnitude'); Frisancy
1010 1200
TUEABL biskit
Caital Iabesduchao to ETI Kt
9-15/1A OPOMER
PANSIG Expeimestes
Traot ol i
UUES
Darme impie the Enm Da Teleumk
A t lommuni catiao and
abot
hed te helo 2tudenta leatn
destboks A
ll conition
ANALOC
DECODER he hlackd n that mare
impifed repraeatation f a
GD
DIGITAL MODUL
Coroplex citcuid
MULTIPLIER
0ER
T
ERIAL |Slack diagtms abet hoo he
X electnoie Aystrok corthat a
ciscuit wokA each bdck 2epaent named
SNE)
that peifernk eperate task and i
EMONA
Telecoms-Trainer
101 CornmOLocksi
CISITAL to wbat it deek Example
the addese multpler,
ANALOG
DUAL
GEAYLSE Camunicathion eqipment indude
SWHCH
ENCODER and
TDM
Addes
GENEHANDE The addes medleia led
Ihe Becand
The Addes |) intludes adjutable gai
ADDER LE adder Ix The Addes
VDc EXDR ampliter
Can as be Lwhed as a mmal
me iopt ad he inpu
Tbe cther
a vatiable anpiter The bulte Can be used
and a ttenuate
|educe)Jangeignal.
Cae 2hauldbe takern toenkwe thatlates
medles ate not aveloaded du de excestie gai
which ol Jead whichia
to dista'hin afigaliLohich
to be ave ided
Speech
The kpeech medule allows peech and audie ignal
to be coovted iot an elactioaldigral The spzch
dule includes senstive micaphene Lshich o
eally pick up mhmal 2pech and haaksaund naike
The ipheneail cahruiualy cutpd alecticalL
2yamß
Junable LPF
Fltel iapatact bildiog Llocki in electenici
&eleormnuni Cathn Aie Son
and Lloek other
blocki
The toble LPF allaeA to ohich
Latal
X tle
nadulto
Sredct "staden
Calie mte
CANues etal
ch
T
S8-SC
mdalaed
NE )Sed
the
Sape Poudune The
AidebandaCan
Pautbetemed DSB-CC
Cantaung and DsBscIhe LaldOALlloAtope
connech
Appanat
ReauiCIuteLad Amo
up a oiitohvalba
ue Toplo
th A)2Aidebande.Side
diar
medlated Aguchleneusdteate atnge.
-Stia haidettehieprcoduck
medulatex
uhith paee dundulathd
outputz
genenateamd
p QANe pcdc
ohich detector
Ltmeb the Conrtains Exprimot-h
hich which
caonaidtathe
bandA democulate a Date
gatu Ds&sc (demudlates) adapte.
wwea, kit
er's
lgn. taanimiásie
fignaThe aue denodulated
cairg
entsel Calcice Iel,
msdiclat theLowet a
a band TDual
to le alegoth Page No
kMz cackA Caxie IA dobeide
vies efeqn A channd
Cascek amd koken
higha
VCo Topic Date Page No
mERIK 7UNPSE NO1SE
CENC RATR
Dasd
LT donimit and
Trdeprdt Contal to 2msdiy pitim and t n Buex Mdue
VCO
antclrkoike
Pedud
WRITO-LNE eco Teacher's Sign.
Date
Title Page.
he cheo kdeataed
osdiy poitin
Loate phase 2hfte nuolle geun derntuel dtt
t pation and
middle sf teovel
Set
omikde
obtersefeet
Lwave
CascieF
ATalk in miuaphen Lohe vNu
unaynckeaniked.
Roul The epiOot
S4)
Bucawt
Pucau had be checked boxe cannzih
CLASSTIME
Date
Pge.
which
7 Cha
he Lave
Lanpltk
Am sinal dranianthog a pisaf
LandA
aled an
envelapedetee
St p theqipment mentioned in
t genkatl that iA ampltde
bMadulated aya 2kH2 Siocave
VASZ ASLE
Addene mdute 's Rutpt n Aape
Centeuntl Dc Jevel A V end a Cantelto
Labtain a Vp ine cwve
lal
5) St the Scapex mde Canto the DUAL palihim d vien
the A Aut e mulhpliet meele al cwell ad
Dlal CLASSTIME
Date
Title. Page
ttanuahienantl
the Seane'k Vehal a
2) Th additin to he
)The mhplex medue medeli the mathamaticad bae