HM112E
HM112E
Experiment Instructions
Last modification by: Dipl.-Ing. Peter Mittasch
Please read and follow the safety regulations before the first installation!
i
05/2016
Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Device description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
ii
05/2016
5 Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.1 Bleeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 Adjusting the zero point . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.3 Performance of the measurement . . . . . . . . . . . . . . . . . . . 26
5.3.4 Ending the measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Six tube manometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Electronic pressure measurement. . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
iii
05/2016
7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
iv
05/2016
1 Introduction 1
05/2016
2 Device description 3
05/2016
4 2 Device description
2.1 Experimental unit layout
11 10 9 8 7 6 5
2
12
1
13
14 15 16 17 18
2 Device description 5
05/2016
6 2 Device description
05/2016
After the pump (P), the water first off all passes the
flow rate-/ and temperature measurement (F1 &
T1) and the reducing valve (V1). If the hoses are
unplugged (6,7), the reducing valve can be used to
shut off the water supply. It is also used to adjust
the flow rate.
The water is then fed to the selected pipe
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
2 3 4 5
1 Measuring sections
2 Two tube manometer
3 Six tube manometer
4 Differential pressure sensor
5 Pressure sensors
6 Feeding hose
7 Return hose
V1 6 7 V2
B Water tank
P Pump
1
FI-01 Rotameter
TI-01 Thermometer
V1 Reducing valve
B V2 Return valve
P V3 Drain valve
V3
Fig. 2.4 Arrangement of pipe sections
2 Device description 7
05/2016
8 2 Device description
05/2016
3 Safety
specialist personnel
– Prior to opening the switch cabinet,
disconnect from the mains
– Protect switch cabinet and PC against
splashed water, as this can damage
components
3 Safety 9
05/2016
4 Software
4 Software 11
05/2016
12 4 Software
05/2016
– Pitot Tube
– Pipeline Fittings
– Venturi Nozzle
Pressures can be represented as water columns
or using a differential pressure gauge. To change
the setting, use the “View” option (3) in the menu.
The flow, pressures and temperature are
displayed online (5).
The “Start” option (2) takes you to the “measure-
ment diagram” option. This window can be used to
create the diagrams.
The “Language” option (4) can be used to select
one of the four available languages.
1 5
4 Software 13
05/2016
1 2 3 4 5 6
Background / Curve
Left clicking on the buttons for the background (2)
and the curve (1) allows you to set the colour of
these elements.
Measured value recording
Clicking on the button with the red spot (3) records
measured data and adds it to the active data
series.
14 4 Software
05/2016
Cursor
The arrow buttons (5) allow the cursor to be moved
over the measuring points already recorded.
Measured values are displayed at the cursor
position.
Delete measured value
The button with the red cross (4) deletes individual
measuring points from the active data series. The
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
4 Software 15
05/2016
• Start
– measurement diagram
Opens the window containing x/y
graphs for recording, editing and saving
measuring series.
– system diagram
Opens a window in which the ex-
perimental setup and the relevant
measured values are displayed online.
– EXIT
Exits the program.
• File
– print window
Prints the window on the default printer.
– open file (measurement diagram only)
Opens a previously saved file.
– new series (measurement diagram only)
Creates a new file for at least one data
series.
The following options are only active if a data
series is loaded in the “measurement
diagram” window.
– save series
Saves a measuring series from the
working memory to a file (e.g. on the
hard disk).
– delete series
Deletes a measuring series from the
working memory.
16 4 Software
05/2016
4 Software 17
05/2016
18 4 Software
05/2016
Datei
File The measured data file can consist of several
Messreihe
Set of records
1 1 measuring series.
Kopf
Header Each measuring series has a separate header,
Messdatensatz 1
Record n
which is followed by the measured data records.
Messdatensatz 2 A measured data record is the data that is
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
Messdatensatz
Record 3 3 recorded at a specific point in time.
Record 2 A measuring series contains the data records for
Record 1
Messdatensatz n several points in time, which are used to plot the
curves.
Messreihe
Set of records
2 2
Kopf
Header
Messdatensatz
Record n 1
Messdatensatz 2
Messdatensatz
Record 3 3
Record 2
Record 1
Messdatensatz n
.
.
.
.
4 Software 19
05/2016
5 Experimental method
5 Experimental method 21
05/2016
22 5 Experimental method
05/2016
p 1 = p L + h1 r g
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
p 2 = pL + h 2 r g .
Dh
The differential pressure is then
h1
D p = p 1 - p 2 = p L + h1 r g - p L - h 2 r g .
h2
The pressure pL cancels out and the following is
found
p1 p2
Dp = Dh r g mit D h = h1 - h 2 .
Fig. 5.2 Differential pressure
measurement Using the pressure pL the zero point for the differential
pressure measurement can be adjusted.
For a maximum measuring range it is best to
h + h2
position the zero point or mean value 1 in the
2
h
middle of the measuring scale max
2
h1 + h 2 h max p1 - pL + p 2 - pL
= = .
2 2 2rg
p1 + p 2 - h max r g
pL = .
2
5 Experimental method 23
05/2016
p abs = p 0 + ( h + h m ) r g .
hm
pabs
24 5 Experimental method
05/2016
5.3.1 Bleeding
5 Experimental method 25
05/2016
26 5 Experimental method
05/2016
5 Experimental method 27
05/2016
28 5 Experimental method
05/2016
2
The differential pressure unit has 2 connections,
P1 and P2 (1), between which differential pressure
up to a maximum of 200 mbar can be measured.
P1 (+) P2 (-) The higher pressure must be at P1 and the lower
pressure at P2. The valves (2) are used for
1 bleeding.
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
5 Experimental method 29
05/2016
6 Experiments
6 Experiments 31
05/2016
l ×l
pv = r ×v 2
2 ×d
l ×l v 2
hv =
d 2 ×g
limit curve
sm
oot
hp
ipe
laminar turbulent (k=
0)
32 6 Experiments
05/2016
vd
Re = .
n
4 V&
v = .
pd 2
0.3164
l= 4
.
Re
6 Experiments 33
05/2016
34 6 Experiments
05/2016
6 Experiments 35
05/2016
Calculated Measured
l calculation Coefficient of
Pipe section head loss head loss Variance
according to pipe friction l
hv in m hv in m
2 St, gal. 1/2" Colebrook 0.0335 0.253 0.255 + 0.78 %
3 Cu 18 x 1 Blasius 0.0234 0.217 0.220 +1.36 %
4 PVC 20 x 1.5 Blasius 0.0238 0.154 0.160 + 3.75%
36 6 Experiments
05/2016
r v 12 r v 22
+ p1 + r g z 1 = + p 2 + r g z 2 + Dp v .
2 2
r
Dp ges = p1 - p 2 = (v 22 - v 12 ) + Dpv .
2
1
hvges = (v 22 - v 12 ) + hv .
2g
v 2
pvz =zr
2
6 Experiments 37
05/2016
v 2
hvz =z .
2g
1 l l v 2 l l v 2 v 2
hvges = (v 22 - v 12 ) + 1 1 1 + 2 2 2 + z 2
2g 2 g d1 2 g d2 2g
2 hvges g é æd ö
4
ù é l æd 2 ö
4
l ù
z= - ê1 - çç 2 ÷÷ ú - êl 1 1 çç ÷÷ + l 2 2 ú.
v 22 êë è d 1 ø úû êë d 1 è d1 ø d2 ú
û
2 hvges g l
z= 2
-l .
v d
38 6 Experiments
05/2016
R>d For pipe angles, i.e. elbow radius less than the
Pipe bend Pipe angle Pipe knee pipe diameter (R/d<1) the coefficients of resis-
piece tance for knee pieces are approximately applica-
ble.
Fig. 6.2 Various pipe elbows
Bend
Kneepiece
Fig. 6.3 Coefficients of resistance of smooth 90° elbows (VDI Wärmeatlas 10. Aufl. 2006)
6 Experiments 39
05/2016
2 x Angle 90°
1.2 16 163
PVC 20 x 1.5
2 x Bend 90°
1.2 9 92
PVC 20 x 1.5
40 6 Experiments
05/2016
Volumetric flow
Flow speed v in
number Re
Reynolds’
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
Length l
in mm
m/s
d
6 Experiments 41
05/2016
Fig. 6.4 Change of cross-section Here, A0 and d0 respectively represent the con-
stricted cross-section. As this is normally un-
known, the coefficient of resistance for contraction
is taken from the following diagram.
0.6
0.4
z
0.2
0.0
0 0.2 0.4 0.6 0.8 1.0
Area ratio A2/A1
42 6 Experiments
05/2016
Measured results
Pipe section 6: Expansion of cross-section 20 - 32,
continuous, d1=17 mm, d2=28.6 mm, l=145 mm
0.7 0
0.9 0
10.8 0
1.2 0
1.8 -15
Measured results
Pipe section 5: Contraction of cross-section 20 - 16,
continuous, d1=17 mm, d2=14.6 mm, l=145 mm
0.7 +200
0.9 +300
10.8 +415
1.2 +545
1.3 +570
6 Experiments 43
05/2016
44 6 Experiments
05/2016
6 Experiments 45
05/2016
46 6 Experiments
05/2016
2 hvges g l
zR = 2
-l .
v d
Volumetric flow
number Re
Flow speed
Reynolds’
v in m/s
Length l
in mm
in mm
V& in
d
Fitting d/k
V& in m3/s
m3/h
Measured Coefficient of
l calculation ac- Coefficient of pipe
Fitting head loss hvges
cording to friction l resistance z
in m
Ball cock Blasius 0.035 0.008 0.27
Membrane valve Blasius 0.035 0.088 6.31
Slanted seat valve Blasius 0.035 0.027 1.71
Dirt trap Blasius 0.035 0.491 36.71
Non-return valve Blasius 0.035 0.049 3.37
6 Experiments 47
05/2016
48 6 Experiments
05/2016
Degressive
100% (shut-off valve)
Flow rate
Linear
50%
Progressive
(control valve)
0%
0% 50% 100 %
Opening
Fig. 6.10 Opening characteristics of valves
For example:
If a valve with a maximum opening of 10 revolu-
tions is opened from 1 to 2 revolutions, i.e. by 10%
absolute, and the volumetric flow will show a rela-
tive increase of e.g. 30%, e.g. from 1 to 1.3 l/min.
6 Experiments 49
05/2016
50 6 Experiments
05/2016
6 Experiments 51
05/2016
1,20
Flow rate in m3/h
1,00
0,80
0,60
0,40
0,20
0,00
0,00 1,00 2,00 3,00
Opening
52 6 Experiments
05/2016
The Pitot tube measures both the static (1) and the
total pressure (2). The difference between these
2: pges two values gives the dynamic pressure pdyn.
1: pstat follows:
Fig. 6.12 Pitot tube
r. 2
pdyn = v
2
6 Experiments 53
05/2016
kg
r = 998.2 .
m3
(d 12 - d 22 ) × p
A=
4
v
» 0.84
v max
54 6 Experiments
05/2016
v » v max × 0.84.
V&calculated = A × v .
r p dyn
V& measured in m3/h V& calculated in m3/h
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
in kg/m3 in mbar
998.2 21.5 1.36 1.38
998.2 19.0 1.30 1.30
998.2 12.6 1.09 1.06
998.2 9.2 0.92 0.90
998.2 6.6 0.76 0.77
6 Experiments 55
05/2016
2 × Dp
v& = a × e × Ad
r
56 6 Experiments
05/2016
1.3 28
1.1 20
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
0.9 13
0.7 9
1.3 15
1.2 12
1.1 10
0.9 6.5
d2
Ad = p ×
4
d2
m=
D2
6 Experiments 57
05/2016
d = 18.5 mm
58 6 Experiments
05/2016
6 Experiments 59
05/2016
r v 12 r v 22
+ p1 + r g z 1 = + p2 + r g z 2
2 2
v 12 × r v 22 × r
p1 + = p2 +
2 2
r
p1 - p 2 = (v 22 - v 12 ) ×
2
V&
v =
A
60 6 Experiments
05/2016
P3 P4 P5 P6 P7 P8
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
6 Experiments 61
05/2016
62 6 Experiments
05/2016
7 Appendix
Pressure measurement
Two tube manometer
Excess and differential pressure measurement
Filling medium Water
Measuring range 680 mm
(water column)
Six tube manometer panel
Excess and differential pressure measurement
Filling medium Water
Measuring range 390 mm
(water column)
7 Appendix 63
05/2016
Pipe sections
– Straight pipe section, 1/2", St, galvanized, 1000 mm long
– Straight pipe section, 18 x 1, Cu, 1000 mm long
– Straight pipe section, 20 x 1.5, PVC, 1000 mm long
– Continuously constricted pipe section, 20 x 1.5 to 16 x 1.2, PVC
– Continuously expanded pipe section, 20 x 1.5 to 32 x 1.8, PVC
– Measuring section for installation of various measuring objects
– Pipe section with 90° angle and 90° bend, 20 x 1.5, PVC
Measuring objects
- Slanted seat valve d = 20 mm
- Membrane valve d = 20 mm
- Ball cock d = 20 mm
- Non-return valve d = 20 mm
- Dirt trap d = 20 mm
- with 4 different filter inserts
Pressure measurement tube (Pitot tube) Ø 17 mm
Pitot tube Ø 3 mm
Measuring orifice Ø 18.5 mm
Measuring nozzle Ø 14 mm
Venturi nozzle Ø 28.4 - 14.0 mm
64 7 Appendix
05/2016
7.2 Bibliography
Wolfgang Kalide,
"Einführung in die technische Strömungslehre"
(Introduction to Technical Fluid Mechanics),
Carl Hanser Verlag,
6th revised edition, Munich, Vienna 1984
Tab. 7.1
7 Appendix 65
05/2016
Wall roughness
Diagrams
Instable
limit curve
sm
oot
hp
ipe
laminar turbulent (k=
0)
66 7 Appendix
05/2016
Bend
Kneepiece
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
Fig. 7.2 Coefficients of resistance of smooth 90° elbows (from VDI Wärmeatlas 10. Aufl. 2006)
0.6
Coefficient of resistance z
0.4
0.2
0.0
0 0.2 0.4 0.6 0.8 1.0
Area ratio A2/A1
7 Appendix 67
05/2016
Coefficient of resistance a
Diameter ratio d1/d2
68 7 Appendix
05/2016
7.4 Formulae
Pipe friction
Calculated Measured
l calculation Coefficient of
Pipe section head loss hv head loss hv in Variance
according to pipe friction l
in m m
7 Appendix 69
05/2016
Coefficients of resistance
Measurement
Performed by: Date:
Volumetric flow
Length l in mm
Flow speed v
number Re
Reynolds’
d in mm
Measured Coefficient of
l calculation Coefficient of Coefficient of
Fitting head loss hvges
according to pipe friction l resistance z resistance z90°
in m
70 7 Appendix
05/2016
Measurement
Performed by: Date:
Measuring object:
Water temperature:
Evaluation
7 Appendix 71
05/2016
7.5 Index
!
6 tube manometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A
Absolute pressure calculation . . . . . . . . . . . . . . . . . . . . . 24
Annular chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Aperture ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 - 58
Atmospheric air pressure. . . . . . . . . . . . . . . . . . . . . . . . . 24
B
Ball cock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Bernoulli equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Bernoulli’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Blasius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Bleed valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Bleeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
C
Change in cross-section . . . . . . . . . . . . . . . . . . . . . . 37, 42
Coefficient of resistance . . . . . . . . . . . . . . . . . . . . . . . . . 37
Colebrook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Constriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
D
DIN 1952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Degressive characteristic curve . . . . . . . . . . . . . . . . . . . . 52
Differential pressure measurement . . . . . . . . . . . . . . 23, 27
Digital display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Dirt trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Drain valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Dynamic pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
E
Energy conservation law . . . . . . . . . . . . . . . . . . . . . . . . . 60
Excess pressure measurement . . . . . . . . . . . . . . . . . . . . 24
Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Expansion coefficient. . . . . . . . . . . . . . . . . . . . . . . . . 56, 58
F
Flow coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 58
Flow rate measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Flow speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
H
Head loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
K
Kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 41
72 7 Appendix
05/2016
L
Laboratory trolley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Leak test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
M
Measuring objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Measuring range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Membrane valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44, 49
Multifunction circuit board . . . . . . . . . . . . . . . . . . . . . . . . . 3
N
Non-return valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
All Rights Reserved G.U.N.T. Gerätebau GmbH, Barsbüttel, Germany 05/2016
Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
O
Opening characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Orifice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
P
Pipe angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Pipe bend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Pipe elbow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Pipe fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Pipe friction coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Pipe roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Pipe sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pitot tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Pressure loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Pressure sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Q
Quick action coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
R
Reynolds’ number . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 33
S
Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Shut-off device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Slanted seat valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Specific density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 56
Speed change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Switch cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
T
Total pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Total pressure loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Turbulent pipe flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Two tube manometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Appendix 73
05/2016
V
Venturi nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Visualisation program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Voltage signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Volumetric flow measurement . . . . . . . . . . . . . . . . . . 53, 56
W
Work safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Z
Zero point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
74 7 Appendix