STM 32 F 469 Ae
STM 32 F 469 Ae
Arm®Cortex®-M4 32b MCU+FPU, 225DMIPS, up to 2MB Flash/384+4KB RAM, USB OTG HS/FS,
Ethernet, FMC, dual Quad-SPI, Graphical accelerator, Camera IF, LCD-TFT & MIPI DSI
Datasheet - production data
Features
• Includes ST state-of-the-art patented technology
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
LQFP100 (14 × 14 mm)
adaptive real-time accelerator (ART UFBGA169 (7 × 7 mm)
LQFP144 (20 × 20 mm)
Accelerator™) allowing 0-wait state execution LQFP176 (24 × 24 mm)
WLCSP168 UFBGA176 (10 x 10 mm)
from flash memory, frequency up to 180 MHz, LQFP208 (28 × 28 mm)
TFBGA216 (13 x 13 mm)
MPU, 225 DMIPS/1.25 DMIPS/MHz
• Debug mode
(Dhrystone 2.1), and DSP instructions – SWD and JTAG interfaces
• Memories – Cortex®-M4 Trace Macrocell™
– 512 bytes of OTP memory • Up to 161 I/O ports with interrupt capability
– Up to 2 MB of flash memory organized into two – Up to 157 fast I/Os up to 90 MHz
banks allowing read-while-write – Up to 159 5 V-tolerant I/Os
– Up to 384+4 KB of SRAM including 64 KB of • Up to 21 communication interfaces
CCM (core coupled memory) data RAM
– Up to three I2C interfaces (SMBus/PMBus)
– Flexible external memory controller with up to
32-bit data bus: SRAM, PSRAM, – Up to four USARTs and four UARTs
SDRAM/LPSDR, SDRAM, flash NOR/NAND (11.25 Mbit/s, ISO7816 interface, LIN, IrDA,
memories modem control)
– Dual-flash mode Quad-SPI interface – Up to six SPIs (45 Mbits/s), two with muxed
• Graphics full-duplex I2S for audio class accuracy via
– Chrom-ART Accelerator™ (DMA2D), internal audio PLL or external clock
graphical hardware accelerator enabling – 1x SAI (serial audio interface)
enhanced graphical user interface with – 2× CAN (2.0B Active)
minimum CPU load – SDIO interface
– LCD parallel interface, 8080/6800 modes • Advanced connectivity
– LCD TFT controller supporting up to XGA – USB 2.0 full-speed device/host/OTG
resolution controller with on-chip PHY
– MIPI® DSI host controller supporting up to – USB 2.0 high-speed/full-speed
720p 30 Hz resolution device/host/OTG controller with dedicated
• Clock, reset, and supply management DMA, on-chip full-speed PHY and ULPI
– 1.7 V to 3.6 V application supply and I/Os – Dedicated USB power rail enabling on-chip
– POR, PDR, PVD, and BOR PHYs operation throughout the entire MCU
– 4-to-26 MHz crystal oscillator power supply range
– Internal 16 MHz factory-trimmed RC – 10/100 Ethernet MAC with dedicated DMA:
(1% accuracy) supports IEEE 1588v2 hardware, MII/RMII
– 32 kHz oscillator for RTC with calibration • 8- to 14-bit parallel camera interface up to
– Internal 32 kHz RC with calibration 54 Mbytes/s.
• Low power • True random number generator
– Sleep, Stop, and Standby modes • CRC calculation unit
– VBAT supply for RTC, 20×32 bit backup • RTC: subsecond accuracy, hardware calendar
registers + optional 4 KB backup SRAM • 96-bit unique ID
• 3× 12-bit, 2.4 MSPS ADC: up to 24 channels and Table 1. Device summary
7.2 MSPS in triple interleaved mode
• 2× 12-bit D/A converters Reference Part numbers
• General-purpose DMA: 16-stream DMA STM32F469AE, STM32F469AG, STM32F469AI
STM32F469BE, STM32F469BG, STM32F469BI
controller with FIFOs and burst support STM32F469IE, STM32F469IG, STM32F469II
STM32F469xx
• Up to 17 timers: up to twelve 16-bit and two STM32F469NE, STM32F469NG, STM32F469NI
32-bit timers up to 180 MHz, each with up to four STM32F469VE, STM32469VG, STM32469VI
STM32F469ZE, STM32469ZG, STM32469ZI
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input. 2x watchdogs and
SysTick timer
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.1 LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.2 LQFP208 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.3 UFBGA176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.4 TFBGA216 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 Arm® Cortex®-M4 with FPU and embedded flash and SRAM . . . . . . . . . 20
2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 20
2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 21
2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.10 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.11 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.12 DSI Host (DSIHOST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.13 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 26
2.15 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.16 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.17 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.18 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.19 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.19.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.19.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.20 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.20.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.20.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 95
5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 95
5.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 95
5.3.6 Overdrive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.8 Wake-up time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 122
5.3.13 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.14 MIPI D-PHY PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.15 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.16 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.17 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.18 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 132
5.3.19 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.20 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.21 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.22 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.23 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.24 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
List of tables
List of figures
1 Description
The STM32F469xx devices are based on the high-performance Arm®(a) Cortex®-M4 32-bit
RISC core operating at a frequency of up to 180 MHz. The Cortex®-M4 core features a
floating-point unit (FPU) single precision which supports all Arm® single-precision data-
processing instructions and data types. It also implements a full set of DSP instructions and
a memory protection unit (MPU) which enhances application security.
The STM32F469xx devices incorporate high-speed embedded memories (Flash memory
up to 2 Mbytes, up to 384 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an
extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB
buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers,
and a true random number generator (RNG). They also feature standard and advanced
communication interfaces.
• Up to three I2Cs
• Six SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals can
be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
• Four USARTs plus four UARTs
• One USB OTG full-speed and one USB OTG high-speed with full-speed capability
(with the ULPI)
• Two CANs
• One SAI serial audio interface
• An SDMMC host interface
• Ethernet and camera interface
• LCD-TFT display controller
• Chrom-ART Accelerator™
• DSI Host.
Advanced peripherals include an SDMMC interface, a flexible memory control (FMC)
interface, a Quad-SPI flash memory, and a camera interface for CMOS sensors. Refer to
Table 2 for the list of peripherals available on each part number.
The STM32F469xx devices operate in the –40 to +105 °C temperature range from a 1.7 to
3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) only in full
speed mode, is available on all packages.
The supply voltage can drop to 1.7 V (refer to Section 2.19.2). A comprehensive set of
power-saving modes allows the design of low-power applications.
The STM32F469xx devices are offered in eight packages, ranging from 100 to 216 pins.
The set of included peripherals changes with the device chosen, according to Table 2.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
These features make the STM32F469xx microcontrollers suitable for a wide range of
applications:
• Motor drive and application control
• Medical equipment
• Industrial applications: PLC, inverters, circuit breakers
• Printers, and scanners
• Alarm systems, video intercom, and HVAC
• Home audio appliances
Figure 5 shows the general block diagram of the device family.
STM32F469Ax
STM32F469Bx
STM32F469Nx
STM32F469Vx
STM32F469Zx
STM32F469Ix
Peripherals
STM32F469Ax
STM32F469Bx
STM32F469Nx
STM32F469Vx
STM32F469Zx
STM32F469Ix
Peripherals
LCD-TFT Yes
Chrom-ART Accelerator™
Yes
(DMA2D)
GPIOs 71 106 128 131 161 161
12-bit ADC 3
Number of channels 14 20 24 16 24 24
12-bit DAC Yes
Number of channels 2
Maximum CPU frequency 180 MHz
Operating voltage 1.7 to 3.6V(2)
Ambient operating temperature: −40 to 85 °C / −40 to 105 °C
Operating temperatures
Junction temperature: −40 to 105 °C / −40 to 125 °C
UFBGA169 LQFP176
Package LQFP100 LQPF144 LQFP208 TFBGA216
WLCSP168 UFBGA176
1. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
2. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.19.2).
For information on the device errata with respect to the datasheet and reference manual,
refer to the errata sheet (ES0321), available from the STMicroelectronics website
www.st.com.
VSS
VSS
PI3
PI2
PI3
PI1
135 134 133 135 134 133
132 PI0 132 PI1
131 VDD 131 PI0
130 VSS 130 PH15
129 VCAP2 129 PH14
128 PA13 128 PH13
127 PA12 127 VDD
126 PA11 126 VSS
125 PA10 125 VCAP2
124 PA9 124 PA13
123 PA8 123 PA12
122 PC9 122 PA11
121 PC8 121 PA10
120 PC7 120 PA9
119 PC6 119 PA8
118 VDDUSB 118 PC9
117 VSS 117 PC8
116 PG8 116 PC7
STM32F469xx/479xx 115 PG7 STM32F4xx 115 PC6
LQFP176 114 PG6 LQFP176 114 VDD
113 PG5 113 VSS
112 PG4 112 PG8
111 PG3 111 PG7
110 PG2 110 PG6
109 VSSDSI 109 PG5
108 DSIHOST_D1N 108 PG4
107 DSIHOST_D1P 107 PG3
106 VDD12DSI 106 PG2
105 DSIHOST_CKN 105 PD15
104 DSIHOST_CKP 104 PD14
103 VSSDSI 103 VDD
102 DSIHOST_D0N 102 VSS
101 DSIHOST_D0P 101 PD13
100 VCAPDSI 100 PD12
99 VDDSI 99 PD11
98 PD15 98 PD10
97 PD14 97 PD9
96 VDD 96 PD8
95 VSS 95 PB15
94 PD13 94 PB14
93 PD12 93 PB13
92 PD11 92 PB12
91 PD10 91 VDD
90 PD9 90 VSS
89 PD8 89 PH12
84 85 86 87 88 84 85 86 87 88
PH7
PH8
PH10
PH9
PH11
PB12
PH7
PB13
PB14
PB15
MS38294V2
MS38295V1
1. Pins from 118 to 128 and pin 137 are not compatible.
A PE3 PE2 PE 1 PE0 PB8 PB5 PG14 PG13 PB 4 PB3 PD7 PC12 PA15 PA14 PA13
D PC13 PI8 VSS VSS VSS VSS PD4 PD 3 PD2 VDD12 PI1 PA10
PI9 PI4 BOO T0
DSI
DSI DSI
E PC14 PF0 PI10 PI11 HOST_ HOST_ PI0 PA 9
D1P D1N
F PC15 VSS VDD PH2 VSS VSS VSS VSS VSS VSS VCAP2 PC9 PA 8
G PH0 VSS VDD PH3 VSS VSS VSS VSS VSS VSS VDD PC8 PC7
PF4 VDD
J NR ST PF3 PH5 VSS VSS VSS VSS VSS VDD PG7 PG6
DSI
DSI DSI
L PF9 PF8 BYPASS PD15 PG2
PF10 HOST_ HOST_
_REG
CKP CKN
DSI DSI
VCAP PH6 PD14 PD13
M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS VSS HOST_ HOST_
_1
D0P D0N
N VREF- PA1 PA0 PA4 PC4 PF13 PG0 VDD VDD VDD PE13 PH7 PD12 PD11 PD10
VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE 8 PE 9 PE11 PE14 PB 12 PB13 PD9 PD8
P
VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PF10 PE12 PE15 PB 10 PB11 PB14 PB15
R
STM32F42xx/3xx STM32F469xx
STM32F40xx/41xx STM32F479xx
PD1 PI3 PI2 PD1 PI3 NC
DSI DSI
PH13 PH14 PI0 HOST_ HOST_ PI0
D1P D1N
VSS VDD_
VSS VDD PG8 PG8
DSI USB
VDD
VDD VDD PG7 VDD PG7
DSI
VCAP
PH12 PG5 PG4 PG5 PG4
DSI
DSI DSI
PH11 PH10 PD15 HOST_ HOST_ PD15
CKP CKN
DSI DSI
PH8 PH9 PD14 HOST_ HOST_ PD14
D0P D0N
MS39403V1
1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A PE4 PE3 PE2 PG14 PE1 PE0 PB8 PB5 PB4 PB3 PD7 PC12 PA15 PA14 PA13
B PE5 PE6 PG13 PB9 PB7 PB6 PG15 PG11 PJ13 PJ12 PD6 PD0 PC11 PC10 PA12
C VBAT PI8 PI4 PK7 PK6 PK5 PG12 PG10 PJ14 PD5 PD3 PD1 PI3 PI2 PA11
D PC13 PF0 PI5 PI7 PI10 PI6 PK4 PK3 PG9 PJ15 PD4 PD2 PH15 PI1 PA10
PDR
E PC14 PF1 PI12 PI9 BOOT0 VDD VDD VDD VDD VCAP2 PH13 PH14 PI0 PA9
ON
F PC15 VSS PI11 VDD VDD VSS VSS VSS VSS VSS VDD PC9 PA8
J NRST PF4 PH5 PH3 VDD VSS VSS VDD PG7 PG6
K PF7 PF6 PF5 PH2 VDD VSS VSS VSS VSS VSS VDD PD15 PB13 PD10
BYPASS
L PF10 PF9 PF8 PC3 VSS VDD VDD VDD VDD VCAP1 PD14 PB12 PD9 PD8
-REG
M VSSA PC0 PC1 PC2 PB2 PF12 PG1 PF15 PJ4 PD12 PD13 PG3 PG2 PJ5 PH12
N VREF- PA1 PA0 PA4 PC4 PF13 PG0 PJ3 PE8 PD11 PG5 PG4 PH7 PH9 PH11
P VREF+ PA2 PA6 PA5 PC5 PF14 PJ2 PF11 PE9 PE11 PE14 PB10 PH6 PH8 PH10
R VDDA PA3 PA7 PB1 PB0 PJ0 PJ1 PE7 PE10 PE12 PE15 PE13 PB11 PB14 PB15
STM32F42xx/3xx STM32F469xx
STM32F40xx/41xx STM32F479xx
DSI DSI
VDD PK1 PL2 VDD HOST_ HOST_
D1P D1N
DSI DSI
VDD HOST_
VDD PJ8 PJ10 HOST_
DSI
CKP CKN
DSI DSI
VDD PJ7 PJ9 VDD HOST_ HOST_
D0P D0N
VCAP
VDD PJ6 PD15 VDD PD15
DSI
MSv39404V1
1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.
ACCEL/
Flash 1MB
CACHE
Flash 1MB
PHY
D+, D-
VDDUSB = 3.0 to 3.6 V
USB DMA/
ULPI : CLK, D(7:0), OTG HS FIFO
DIR, STP, NXT RNG
SCL/SDA, INT, ID, VBUS 8 Streams SRAM1 160KB HSYNC, VSYNC
GP-DMA2
FIFO FIFO
FIFO CAMERA PIXCK, D(13:0)
SRAM2 32KB ITF
8 Streams
GP-DMA1 SRAM3 128KB USB
PHY
FIFO D+, D-,
OTG FS VDDUSB = 3.0 to 3.6 V,
AHB2
AHB2 180 MHz
180MHz SCL, SDA, INT, ID, VBUS
LCD-TFT FIFO
AHB1 180MHz
DMA-2D FIFO
PA[15:0] @VDDA
USART
GPIO PORT
2MBpsA
POR SUPPLY
RC HS
PB[15:0] GPIO PORT SUPERVISION
USART 2MBpsB Reset
RC LS POR/PDR/
PC[15:0] Int BOR VDDA, VSSA,
GPIO PORT
USART 2MBpsC PLL1,2,3 NRST
PVD
PD[15:0]
USART
GPIO PORT
2MBpsD
@VDDA @VDD
PE[15:0] USART
GPIO PORT
2MBpsE XTAL OSC OSCIN
RESET&
CLOCK 4-26MHz OSCOUT
PF[15:0] MANAGT
GPIO PORT
USART 2MBpsF CTRL
IWDG
PG[15:0] USART
GPIO PORT
2MBpsG Standbyinterface
VBAT = 1.8 to 3.6 V
HCLKx
PCLKx
@VBAT
PH[15:0] USART
GPIO PORT
2MBpsH OSC32_IN
XTAL 32kHz OSC32_OUT
LS
PI[15:0] USART
GPIO 2MBps
PORT I RTC RTC_TAMP1
CRC AWU RTC_TAMP2
PJ[15:0] USART
GPIO PORT
2MBpsJ Backup Register
RTC_OUT
LS
DSIHOST_CK P/N
VDD12DSI, VDDSI, VSSDSI DSI Host TIM3 16b 4 Channels, ETR as AF
VCAPDSI
DSIHOST_TE
DMA2 DMA1 TIM4 16b 4 Channels, ETR as AF
168 AF EXT IT.
USART WKUP
2MBps
TIM5 32b 4 Channels
FIFO
D[7:0]
CMD, CK as AF SDIO / MMC AHB/APB2 AHB/APB1
4 compl. chan. (TIM1_CH1[1:4]N), TIM12 16b 2 Channels as AF
4 chan. (TIM8_CH1[1:4]ETR), 16b
BKIN as AF USART
TIMER 12MBps
/ PWM
4 compl. chan. (TIM1_CH1[1:4]N), TIM13 16b 1 Channels as AF
4 chan. (TIM8_CH1[1:4]ETR), 16b
BKIN as AF USART
TIMER 82MBps
/ PWM
TIM14 16b 1 CH as AF
16b
APB1 45 MHz
2 channels as AF TIMER
USART92MBps smcard RX, TX, SCK,
USART2
irDA CTS, RTS as AF
1 channel as AF 16b
TIMER10
USART 2MBps smcard RX, TX, SCK
USART3
irDA CTS, RTS as AF
16b
1 channel as AF TIMER11
USART 2MBps WWDG
UART4 RX, TX as AF
APB2 90 MHz
16b
APB2 60M Hz
SD, SCK, FS
Dig. Filter
MCLK as AF USARTSAI 1
2MBps
SCL, SDA, SMBA as AF
I2C2/SMBUS
@VDDA
SCL, SDA, SMBA as AF
V DDREF_ADC I2C3/SMBUS
USART 2MBps
TEMP SENSOR @VDDA
8 analog inputs common
to the 3 ADCs
ADC1 DAC1
ITF bxCAN1 TX, RX
FIFO
DAC1 as AF DAC2 as AF
MS38288V1
1. The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to
APB1 are clocked from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration
in the RCC_DCKCFGR register.
2 Functional overview
2.1 Arm® Cortex®-M4 with FPU and embedded flash and SRAM
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems, developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU core is a 32-bit RISC processor that features exceptional
code-efficiency, delivering the high-performance expected from an Arm® core in the
memory size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions that allow efficient signal processing and
complex algorithm execution. Its single-precision FPU (floating-point unit) speeds up
software development by using metalanguage development tools, while avoiding saturation.
The STM32F46x line is compatible with all Arm® tools and software.
Figure 5 shows the general block diagram of the STM32F46x line.
Note: Cortex®-M4 with FPU core is binary compatible with the Cortex®-M3 core.
D-bus
S-bus
DMA2D
DMA_PI
DMA_P2
DMA_MEM1
DMA_MEM2
USB_HS_M
LCD-TFT_M
ETHERNET_M
ICODE
Flash
ACCEL
DCODE memory
SRAM1
160 Kbyte
SRAM2
32 Kbyte
SRAM3
128 Kbyte
AHB2
APB1
peripherals
AHB1
peripherals APB2
FMC external
MemCtl
QuadSPI
Bus matrix-S MS33862V1
VDDUSB_MAX
USB functional area
VDDUSB
VDDUSB_MIN
USB non USB non
functional VDD = VDDA functional
area area
VDD_MIN
Power-down time
Power-on Operating mode
MS37590V1
The DSI (Display serial interface) subsystem uses several power supply pins that are
independent from the other supply pins:
• VDDDSI is an independent DSI power supply dedicated for DSI regulator and MIPI
D-PHY. This supply must be connected to global VDD.
• VCAPDSI pin is the output of DSI regulator (1.2 V), which must be connected
externally to VDD12DSI.
• VDD12DSI pin is used to supply the MIPI D-PHY, and to supply clock and data lanes
pins. An external capacitor of 2.2 µF must be connected on VDD12DSI pin.
• VSSDSI pin is an isolated supply ground used for DSI subsystem.
• If DSI functionality is not used at all, then:
– VDDDSI pin must be connected to global VDD.
VDD
STM32F469xx
Application reset
signal (optional)
VBAT
PDR_ON
VSS
PDR not active: 1.7 V < VDD < 3.6 V
MS38296V1
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 9).
A comprehensive set of power-saving modes allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
• The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
• The brownout reset (BOR) circuitry must be disabled
• The embedded programmable voltage detector (PVD) is disabled
• VBAT functionality is no more available and VBAT pin should be connected to VDD.
All packages allow to disable the internal reset through the PDR_ON signal when connected
to VSS.
V DD
PDR = 1.7 V
time
NRST
MS19009V7
2.20.1 Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
• MR mode used in Run/sleep modes or in Stop modes
– In Run/Sleep mode
The MR mode is used either in the normal mode (default mode) or the overdrive
mode (enabled by software). Different voltage scalings are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
The overdrive mode allows operating at a higher frequency than the normal mode
for a given voltage scaling.
– In Stop modes
The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode).
MR operates in underdrive mode (reduced leakage mode).
• LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during stop mode:
– LPR operates in normal mode (default mode when LPR is ON)
– LPR operates in underdrive mode (reduced leakage mode).
• Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin. Refer to
Section 2.18 and Table 126: Package thermal characteristics.
All packages have the regulator ON feature.
VDD
PA0 NRST
VDD
BYPASS_REG
V12
VCAP_1
VCAP_2
ai18498V3
VDD
time
NRST
PA0
time ai18491g
1. This figure is valid whatever the internal reset mode (ON or OFF).
VCAP_1, VCAP_2
V12
Min V12
time
NRST
PA0
time ai18492f
1. This figure is valid whatever the internal reset mode (ON or OFF).
WLCSP168
UFBGA169
Yes No
LQFP144
LQFP208 Yes Yes
PDR_ON set to VDD PDR_ON set to VSS
LQFP176 Yes Yes
UFBGA176 BYPASS_REG set BYPASS_REG set
TFBGA216 to VSS to VDD
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary autoreload downcounter with programmable resolution is available
and allows automatic wake-up and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data,
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 2.22). It can be enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 2.22).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
• Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wake-up / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
Any integer
TIM9 16-bit Up between 1 No 2 No 90 180
General and 65536
purpose TIM10 Any integer
, 16-bit Up between 1 No 1 No 90 180
TIM11 and 65536
Any integer
TIM12 16-bit Up between 1 No 2 No 45 90/180
and 65536
TIM13 Any integer
, 16-bit Up between 1 No 1 No 45 90/180
TIM14 and 65536
Any integer
TIM6,
Basic 16-bit Up between 1 Yes 0 No 45 90/180
TIM7
and 65536
1. The maximum timer clock is either 90 or 180 MHz depending on the TIMPRE bit configuration in the
RCC_DCKCFGR register.
Pulse width of suppressed spikes ≥ 50 ns Programmable length, from one to fifteen I2C peripheral clocks
APB2
USART1 X X X X X X 5.62 11.25 (max.
90 MHz)
APB1
USART2 X X X X X X 2.81 5.62 (max.
45 MHz)
APB1
USART3 X X X X X X 2.81 5.62 (max.
45 MHz)
APB1
UART4 X - X - X - 2.81 5.62 (max.
45 MHz)
APB1
UART5 X - X - X - 2.81 5.62 (max.
45 MHz)
APB2
USART6 X X X X X X 5.62 11.25 (max.
90 MHz)
APB1
UART7 X - X - X - 2.81 5.62 (max.
45 MHz)
APB1
UART8 X - X - X - 2.81 5.62 (max.
45 MHz)
1. X = feature supported.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port
B and GPIO Port D.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
2.33 Ethernet MAC interface with dedicated DMA and IEEE 1588
support
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
The devices include the following features:
• Supports 10 and 100 Mbit/s rates
• A dedicated DMA controller allowing high-speed transfers between the dedicated
SRAM and the descriptors (see the STM32F4xx reference manual for details)
• Tagged MAC frame support (VLAN support)
• Half-duplex (CSMA/CD) and full-duplex operation
• MAC control sublayer (control frames) support
• 32-bit CRC generation and removal
• Several address filtering modes for physical and multicast address (multicast and
group addresses)
• 32-bit status code for each transmitted or received frame
• Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
• Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
• Triggers interrupt when system time becomes greater than target time
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third-party debugger software tools.
BOOT0
VCAP2
PC12
PC10
PC11
PA15
PA14
VDD
VDD
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PB9
PB8
PB7
PB6
PB5
PB4
PB3
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PE2 1 75 PA13
VSS 2 74 PA12
VBAT 3 73 PA11
PC13 4 72 PA10
PC14 5 71 PA9
PC15 6 70 PA8
VSS 7 69 PC9
VDD 8 68 PC8
PH0 9 67 PC7
PH1 10 66 PC6
NRST 11 65 VDDUSB
PC0 12 64 DSIHOST_D1N
PC1 13 LQFP100 63 DSIHOST_D1P
PC2 14 62 VDD12DSI
PC3 15 61 DSIHOST_CKN
VSSA 16 60 DSIHOST_CKP
VREF+ 17 59 VSSDSI
VDDA 18 58 DSIHOST_D0N
PA0 19 57 DSIHOST_D0P
PA1 20 56 VCAPDSI
PA2 21 55 VDDDSI
PA3 22 54 PD15
VSS 23 53 PD14
VDD 24 52 PD10
PA4 25 51 PD9
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE12
PE13
PE14
PE15
PB10
VCAP1
VSS
VDD
PB12
PB13
PB14
PB15
PD8
PA5
PA6
PA7
PE11
PB11
MS40560V1
PDR_ON
BOOT0
PG15
PG12
PG10
PC12
PC10
PG11
PC11
PA15
PA14
VDD
VDD
VDD
VDD
VSS
PG9
VSS
VSS
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PE2
PE1
PE0
PB9
PB8
PB7
PB6
PB5
PB4
PB3
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
109
119
118
117
116
115
114
113
112
110
111
PE3 1 108 VCAP2
PE4 2 107 PA13
PE5 3 106 PA12
PE6 4 105 PA11
VBAT 5 104 PA10
PC13 6 103 PA9
PC14 7 102 PA8
PC15 8 101 PC9
PF0 9 100 PC8
PF1 10 99 PC7
PF2 11 98 PC6
PF3 12 97 VDDUSB
PF4 13 96 PG8
PF5 14 95 PG7
VSS 15 94 PG6
VDD 16 93 PG5
PF10 17 92 PG4
PH0 18 91 PG3
PH1 19 LQFP144 90 PG2
NRST 20 89 DSIHOST_D1N
PC0 21 88 DSIHOST_D1P
PC1 22 87 VDD12DSI
PC2 23 86 DSIHOST_CKN
PC3 24 85 DSIHOST_CKP
VDD 25 84 VSSDSI
VSSA 26 83 DSIHOST_D0N
VREF+ 27 82 DSIHOST_D0P
VDDA 28 81 VCAPDSI
PA0 29 80 VDDDSI
PA1 30 79 PD15
PA2 31 78 PD14
PA3 32 77 VDD
VSS 33 76 VSS
VDD 34 75 PD12
PA4 35 74 PD11
PA5 36 73 PD10
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PC4
PC5
PB0
PB1
PB2
PF12
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE12
PE13
PE14
PE15
PB10
VCAP1
VDD
PB12
PB13
PB14
PB15
PD8
PD9
PA6
PA7
PF11
PE11
PB11
MS40561V2
12 11 10 9 8 7 6 5 4 3 2 1
A PI7 VDD PE0 PB7 PB3 VDD PG12 PD7 VSS PD1 PA15 PI2
B PE5 PI6 VSS PB8 PB5 VSS PG11 VDD PD4 PC11 PI3 PH13
C VBAT PE4 PI5 PE1 PB4 PG10 PD5 PD2 PC12 PI1 VDD VSS
PDR_
D PC13 PE6 PI4 PG15 PG9 PD3 PC10 PA14 PH14 VCAP2 PA13
ON
E PC15 PC14 PE3 PB9 PG13 PD6 PD0 PI0 PH15 PA10 PA9 PA8
VDD
F VSS PI11 PI10 PE2 BOOT0 PA11 PA12 PC9 PC8 PC6 VSS
USB
G PF2 VDD PF0 PI9 PB6 PC7 PG8 PG2 PG3 PG6 PG4 PG5
DSI DSI
VSS
H PF5 PF3 PF1 NRST PF15 VSS PG7 PB12 PD13 HOST HOST
DSI
_D1P _D1N
DSI
VDD12 VCAP
PH1 PH0 PF10 PA1 PH5 PF11 PE9 PB11 PB13 HOST
K _D0P
DSI DSI
VDD
L PC1 VSSA PA0 PA2 PA5 PF14 PE13 PH9 PD8 PD14 PD15
DSI
N PH3 VSS PA3 PB1 VSS PE7 PE11 PB10 VCAP1 PH11 PB15 PD9
P VDD PA6 PB0 PB2 VDD PG1 PE10 PE15 VSS VDD PH12 PB14
MSv35729V2
1 2 3 4 5 6 7 8 9 10 11 12 13
A PI6 PI5 PE1 PE0 BOOT0 PG13 PG12 PD7 PC12 PA14 PA13 PA12 PA11
B PI7 PE2 PI4 PB7 PB3 PG11 PD5 PD2 PC11 PAI3 PA15 PI2 PI0
PDR_
C PE3 PE4
ON
PB9 PB6 PD4 PD1 PD3 PD0 PC10 PI1 PH15 PH14
D PE5 PE6 VDD PB8 PB5 PB4 PD6 PA8 PH13 VDD VSS VCAP2 PG8
E PC14 PI9 VSS PI10 VBAT PG9 PG10 PA9 PA10 PC8 PG7 PG5 PG4
F PC15 PI11 PF0 VDD VSS PG15 VDD VSS PC6 PC7 PG6 PG3 PG2
DSI DSI
VDD
G PH1 PH0 PF1 PC13 PF2 PE8 VSS VDD VSS PC9 HOST_ HOST_
USB
D1P D1N
DSI DSI_
H PF10 NRST PF5 PF3 PF14 PE9 PE10 PH8 PH9 PH12 VSSDSI HOST_ HOST
CKP CKN
DSI DSI
VDD12
J VSS VSSA VDDA VDD PA0 VSS VSS PE13 PH10 VSS
DSI
HOST_ HOST_
D0P D0N
VCAP VDD
K PA1 PA2 PA3 PA7 PB1 VDD PE11 PE14 PH11 VDD VSSDSI
DSI DSI
L PH3 PH2 PH5 PF4 PB2 VDD PE12 PE15 VDD PD8 PD10 PD14 PD15
M PC0 PH4 PA5 PF13 PF11 PF15 PG1 PB10 VSS PD9 PD11 PD13 PD12
N PC1 PA4 PA6 PB0 PF12 PG0 PE7 PB11 VCAP1 PB12 PB13 PB14 PB15
MSv35730V2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A PE3 PE2 PE 1 PE0 PB8 PB5 PG 14 PG 13 PB 4 PB3 PD7 PC12 PA15 PA14 P A 13
B PE4 PE5 PE6 PB9 PB7 PB6 PG 15 PG 12 PG 11 PG 10 PD6 PD0 PC11 PC10 PA12
P I7 P I6 P I5 PDR
VBAT VDD VDD VDD VDD PG9 PD5 PD1 P I3 NC PA11
C _ON
D P C 13 PI8 VSS BOOT0 VSS VSS VSS PD4 PD 3 PD2 VDD12 PI1 PA10
P I9 P I4
DSI
DSI DSI
E P C 14 PF0 PI10 P I1 1 HOST_ HOST_ P I0 PA 9
D1P D1N
F P C 15 VSS VDD PH2 VSS VSS VSS VSS VSS V SS VCAP2 PC9 PA 8
P F4 VDD
J NRST PF3 PH5 VSS VSS VSS VSS VSS VDD PG7 PG6
DSI
K PF6 V DD VCAP
PF7 PF5 VSS VSS VSS VSS VSS PG5 PG4 PG3
DSI
DSI DSI
L PF9 PF8 BYPASS PD15 PG2
PF10 HOST_ HOST_
_REG
CKP CKN
DSI DSI
VCAP PH6
M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS VSS HOST_ HOST_ PD14 PD13
_1
D0P D0N
VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE 8 PE 9 P E 11 PE14 PB 1 2 PB13 PD9 PD8
P
VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 P B 14 P B 15
R
MS39400V2
PDR_ON
BOOT0
PG15
PG14
PG13
PG12
PG10
PC12
PC10
PG11
PC11
PA15
PA14
VDD
VDD
VDD
VDD
VSS
PG9
VSS
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PE1
PE0
PB9
PB8
PB7
PB6
PB5
PB4
PB3
PI7
PI6
PI5
PI4
PI3
PI1
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
141
140
152
151
150
149
148
147
146
145
144
143
142
139
138
137
136
135
134
133
PE2 1 132 PI0
PE3 2 131 VDD
PE4 3 130 VSS
PE5 4 129 VCAP2
PE6 5 128 PA13
VBAT 6 127 PA12
PI8 7 126 PA11
PC13 8 125 PA10
PC14 9 124 PA9
PC15 10 123 PA8
PI9 11 122 PC9
PI10 12 121 PC8
PI11 13 120 PC7
VSS 14 119 PC6
VDD 15 118 VDDUSB
PF0 16 117 VSS
PF1 17 116 PG8
PF2 18 115 PG7
PF3 19 114 PG6
PF4 20 113 PG5
PF5 21 112 PG4
VSS
VDD
22
23
LQFP176 111
110
PG3
PG2
PF6 24 109 VSSDSI
PF7 25 108 DSIHOST_D1N
PF8 26 107 DSIHOST_D1P
PF9 27 106 VDD12DSI
PF10 28 105 DSIHOST_CKN
PH0 29 104 DSIHOST_CKP
PH1 30 103 VSSDSI
NRST 31 102 DSIHOST_D0N
PC0 32 101 DSIHOST_D0P
PC1 33 100 VCAPDSI
PC2 34 99 VDDDSI
PC3 35 98 PD15
VDD 36 97 PD14
VSSA 37 96 VDD
VREF+ 38 95 VSS
VDDA 39 94 PD13
PA0 40 93 PD12
PA1 41 92 PD11
PA2 42 91 PD10
PH2 43 90 PD9
PH3 44 89 PD8
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
80
69
70
71
72
73
74
75
76
77
78
79
88
81
82
83
84
85
86
87
PH4
PH5
VDD
PC4
PC5
PB0
PB1
PB2
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE12
PE13
PE14
PE15
PB10
VCAP_1
VDD
PH6
PH7
PB12
PB13
PB14
PB15
BYPASS_REG
PA3
PA4
PA5
PA6
PA7
PF11
PE11
PB11
MS33870V4
PDR_ON
BOOT0
PG15
PG14
PG13
PG12
PG10
PC12
PC10
PG11
PC11
PA15
PA14
PJ15
PJ14
PJ13
PJ12
VDD
VDD
VDD
VDD
VSS
VSS
PG9
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PE1
PE0
PB9
PB8
PB7
PB6
PB5
PB4
PB3
PK7
PK6
PK5
PK4
PK3
PI7
PI6
PI5
PI4
PI3
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
PE2 1 156 PI2
PE3 2 155 PI1
PE4 3 154 PI0
PE5 4 153 PH15
PE6 5 152 PH14
VBAT 6 151 PH13
PI8 7 150 VDD
PC13 8 149 VSS
PC14 9 148 VCAP2
PC15 10 147 PA13
PI9 11 146 PA12
PI10 12 145 PA11
PI11 13 144 PA10
VSS 14 143 PA9
VDD 15 142 PA8
PF0 16 141 PC9
PF1 17 140 PC8
PF2 18 139 PC7
PI12 19 138 PC6
PI13 20 137 VDDUSB
PI14 21 136 VSS
PF3 22 135 PG8
PF4 23 134 PG7
PF5 24 133 PG6
VSS 25 132 PG5
VDD
PF6
26
27 LQFP208 131
130
PG4
PG3
PF7 28 129 PG2
PF8 29 128 VSSDSI
PF9 30 127 DSIHOST_D1N
PF10 31 126 DSIHOST_D1P
PH0 32 125 VDD12DSI
PH1 33 124 DSIHOST_CKN
NRST 34 123 DSIHOST_CKP
PC0 35 122 VSSDSI
PC1 36 121 DSIHOST_D0N
PC2 37 120 DSIHOST_D0P
PC3 38 119 VCAPDSI
VDD 39 118 VDDDSI
VSSA 40 117 PD15
VREF+ 41 116 PD14
VDDA 42 115 VDD
PA0 43 114 VSS
PA1 44 113 PD13
PA2 45 112 PD12
PH2 46 111 PD11
PH3 47 110 PD10
PH4 48 109 PD9
PH5 49 108 PD8
PA3 50 107 PB15
VSS 51 106 PB14
VDD 52 105 PB13
100
101
102
103
104
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
PC4
PC5
VDD
VSS
PB0
PB1
PB2
VSS
PE9
VSS
PI15
PJ0
PJ1
PJ2
PJ3
PJ4
PF12
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
VDD
PE10
PE12
PE13
PE14
PE15
PB10
VCAP1
VSS
VDD
PJ5
PH6
PH7
PH8
PH9
PH10
PH12
VDD
PB12
PA4
PA5
PA6
PA7
PF11
PE11
PB11
PH11
MSv33876V5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A PE4 PE3 PE2 PG14 PE1 PE0 PB8 PB5 PB4 PB3 PD7 PC12 PA15 PA14 PA13
B PE5 PE6 PG13 PB9 PB7 PB6 PG15 PG11 PJ13 PJ12 PD6 PD0 PC11 PC10 PA12
C VBAT PI8 PI4 PK7 PK6 PK5 PG12 PG10 PJ14 PD5 PD3 PD1 PI3 PI2 PA11
D PC13 PF0 PI5 PI7 PI10 PI6 PK4 PK3 PG9 PJ15 PD4 PD2 PH15 PI1 PA10
PDR
E PC14 PF1 PI12 PI9 BOOT0 VDD VDD VDD VDD VCAP2 PH13 PH14 PI0 PA9
ON
DSI DSI
F PC15 VSS PI11 VDD VDD VSS VSS VSS VSS VSS VDD HOST_ HOST_ PC9 PA8
D1P D1N
DSI DSI
VDD
H PH1 PF3 PI14 PH4 VDD VSS VSS HOST_ HOST_ PG8 PC6
DSI
CKP CKN
DSI DSI
J NRST PF4 PH5 PH3 VDD VSS VSS VDD HOST_ HOST_ PG7 PG6
D0P D0N
VCAP
K PF7 PF6 PF5 PH2 VDD VSS VSS VSS VSS VSS VDD PD15 PB13 PD10
DSI
BYPASS-
L PF10 PF9 PF8 PC3 VSS VDD VDD VDD VDD VCAP1 PD14 PB12 PD9 PD8
REG
M VSSA PC0 PC1 PC2 PB2 PF12 PG1 PF15 PJ4 PD12 PD13 PG3 PG2 PJ5 PH12
N VREF- PA1 PA0 PA4 PC4 PF13 PG0 PJ3 PE8 PD11 PG5 PG4 PH7 PH9 PH11
P VREF+ PA2 PA6 PA5 PC5 PF14 PJ2 PF11 PE9 PE11 PE14 PB10 PH6 PH8 PH10
R VDDA PA3 PA7 PB1 PB0 PJ0 PJ1 PE7 PE10 PE12 PE15 PE13 PB11 PB14 PB15
MSv33871V4
Unless otherwise specified in brackets below the pin name, the pin function during and after
Pin name
reset is the same as the actual pin name
S Supply pin
Pin type I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
TTa 3.3 V tolerant I/O directly connected to analog parts
I/O structure
B Dedicated BOOT0 pin
RST Bidirectional reset pin with weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
Functions selected through GPIOx_AFR registers
functions
Additional
Functions directly selected/enabled through peripheral registers
functions
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
TRACECLK, SPI4_SCK,
SAI1_MCLK_A,
1 144 B2 F9 A2 1 1 A3 PE2 I/O FT - QUADSPI_BK1_IO2, -
ETH_MII_TXD3, FMC_A23,
EVENTOUT
NC TRACED0, SAI1_SD_B,
(3) 1 C1 E10 A1 2 2 A2 PE3 I/O FT - -
FMC_A19, EVENTOUT
TRACED1, SPI4_NSS,
NC SAI1_FS_A, FMC_A20,
(3) 2 C2 C11 B1 3 3 A1 PE4 I/O FT - -
DCMI_D4, LCD_B0,
EVENTOUT
TRACED2, TIM9_CH1,
NC SPI4_MISO, SAI1_SCK_A,
(3) 3 D1 B12 B2 4 4 B1 PE5 I/O FT - -
FMC_A21, DCMI_D6,
LCD_G0, EVENTOUT
TRACED3, TIM9_CH2,
NC SPI4_MOSI, SAI1_SD_A,
(3) 4 D2 D11 B3 5 5 B2 PE6 I/O FT - -
FMC_A22, DCMI_D7,
LCD_G1, EVENTOUT
2 - - - - - - G6 VSS S - - - -
- - - - - - - F5 VDD S - - - -
3 5 E5 C12 C1 6 6 C1 VBAT S - - - -
(4) RTC_TAMP1/
- - - - D2 7 7 C2 PI8 I/O FT (5) EVENTOUT RTC_TAMP2/
RTC_TS
(4) RTC_TAMP1/
4 6 G4 D12 D1 8 8 D1 PC13 I/O FT (5) EVENTOUT RTC_TS/
RTC_OUT
(4)
PC14-OSC32_IN
5 7 E1 E11 E1 9 9 E1 I/O FT (5) EVENTOUT OSC32_IN
(PC14)
PC15- (4)
6 8 F1 E12 F1 10 10 F1 OSC32_OUT I/O FT (5) EVENTOUT OSC32_OUT
(PC15)
- - - - - - - G5 VDD S - - - -
CAN1_RX, FMC_D30,
- - E2 G9 D3 11 11 E4 PI9 I/O FT -
LCD_VSYNC, EVENTOUT
ETH_MII_RX_ER,
- - E4 F10 E3 12 12 D5 PI10 I/O FT FMC_D31, LCD_HSYNC, -
EVENTOUT
LCD_G6,
- - F2 F11 E4 13 13 F3 PI11 I/O FT OTG_HS_ULPI_DIR, -
EVENTOUT
- - F5 F12 F2 14 14 F2 VSS S - - - -
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
- - F4 G11 F3 15 15 F4 VDD S - - - -
I2C2_SDA, FMC_A0,
- 9 F3 G10 E2 16 16 D2 PF0 I/O FT -
EVENTOUT
I2C2_SCL, FMC_A1,
- 10 G3 H10 H3 17 17 E2 PF1 I/O FT -
EVENTOUT
I2C2_SMBA, FMC_A2,
- 11 G5 G12 H2 18 18 G2 PF2 I/O FT -
EVENTOUT
7 15 G7 J11 G2 22 25 H6 VSS S - - - -
8 16 G8 J12 G3 23 26 H5 VDD S - - - -
TIM10_CH1, SPI5_NSS,
(6) SAI1_SD_B, UART7_Rx,
- - - - K2 24 27 K2 PF6 I/O FT ADC3_IN4
QUADSPI_BK1_IO3,
EVENTOUT
TIM11_CH1, SPI5_SCK,
(6) SAI1_MCLK_B, UART7_Tx,
- - - - K1 25 28 K1 PF7 I/O FT ADC3_IN5
QUADSPI_BK1_IO2,
EVENTOUT
SPI5_MISO, SAI1_SCK_B,
(6) TIM13_CH1,
- - - - L3 26 29 L3 PF8 I/O FT ADC3_IN6
QUADSPI_BK1_IO0,
EVENTOUT
SPI5_MOSI, SAI1_FS_B,
(6) TIM14_CH1,
- - - - L2 27 30 L2 PF9 I/O FT ADC3_IN7
QUADSPI_BK1_IO1,
EVENTOUT
QUADSPI_CLK,
- 17 H1 K10 L1 28 31 L1 PF10 I/O FT (6) DCMI_D11, LCD_DE, ADC3_IN8
EVENTOUT
PH0-OSC_IN
9 18 G2 K11 G1 29 32 G1 I/O FT - EVENTOUT OSC_IN
(PH0)
PH1-OSC_OUT
10 19 G1 K12 H1 30 33 H1 I/O FT - EVENTOUT OSC_OUT
(PH1)
OTG_HS_ULPI_STP,
(6) ADC123_
12 21 M1 J9 M2 32 35 M2 PC0 I/O FT FMC_SDNWE, LCD_R5,
IN10
EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
TRACED0,
(6) SPI2_MOSI/I2S2_SD, ADC123_
13 22 N1 L12 M3 33 36 M3 PC1 I/O FT
SAI1_SD_A, ETH_MDC, IN11
EVENTOUT
SPI2_MISO, I2S2ext_SD,
(6) OTG_HS_ULPI_DIR, ADC123_
14 23 - - M4 34 37 M4 PC2 I/O FT
ETH_MII_TXD2, IN12
FMC_SDNE0, EVENTOUT
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
(6) ADC123_
15 24 - - M5 35 38 L4 PC3 I/O FT ETH_MII_TX_CLK,
IN13
FMC_SDCKE0,
EVENTOUT
- 25 - - - 36 39 J5 VDD S - - - -
- - - - - - - J6 VSS S - - - -
16 26 J2 L11 M1 37 40 M1 VSSA S - - - -
- - - - N1 - - N1 VREF- S - - - -
17 27 - - P1 38 41 P1 VREF+ S - - - -
18 28 J3 M12 R1 39 42 R1 VDDA S - - - -
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
(7) ADC123_IN0,
19 29 J5 L10 N3 40 43 N3 PA0-WKUP(PA0) I/O FT USART2_CTS, UART4_TX,
WKUP
ETH_MII_CRS,
EVENTOUT
TIM2_CH2, TIM5_CH2,
USART2_RTS, UART4_RX,
(6) QUADSPI_BK1_IO3,
20 30 K1 K9 N2 41 44 N2 PA1 I/O FT ADC123_IN1
ETH_MII_RX_CLK/ETH_R
MII_REF_CLK, LCD_R2,
EVENTOUT
TIM2_CH3, TIM5_CH3,
(6) TIM9_CH1, USART2_TX,
21 31 K2 L9 P2 42 45 P2 PA2 I/O FT ADC123_IN2
ETH_MDIO, LCD_R1,
EVENTOUT
QUADSPI_BK2_IO0,
ETH_MII_CRS,
- - L2 M11 F4 43 46 K4 PH2 I/O FT - -
FMC_SDCKE0, LCD_R0,
EVENTOUT
QUADSPI_BK2_IO1,
ETH_MII_COL,
- - L1 N12 G4 44 47 J4 PH3 I/O FT - -
FMC_SDNE0, LCD_R1,
EVENTOUT
I2C2_SCL, LCD_G5,
- - M2 M10 H4 45 48 H4 PH4 I/O FT - OTG_HS_ULPI_NXT, -
LCD_G4, EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
I2C2_SDA, SPI5_NSS,
- - L3 K8 J4 46 49 J3 PH5 I/O FT - -
FMC_SDNWE, EVENTOUT
TIM2_CH4, TIM5_CH4,
TIM9_CH2, USART2_RX,
(6) LCD_B2,
22 32 K3 N10 R2 47 50 R2 PA3 I/O FT ADC123_IN3
OTG_HS_ULPI_D0,
ETH_MII_COL, LCD_B5,
EVENTOUT
23 33 J1 N11 - - 51 K6 VSS S - - - -
- - - - L4 48 - L5 BYPASS_REG I FT - - -
24 34 J4 P12 K4 49 52 K5 VDD S - - - -
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK, ADC12_IN4,
25 35 N2 M9 N4 50 53 N4 PA4 I/O TTa -
OTG_HS_SOF, DAC_OUT1
DCMI_HSYNC,
LCD_VSYNC, EVENTOUT
TIM2_CH1/TIM2_ETR,
TIM8_CH1N, SPI1_SCK, ADC12_IN5,
26 36 M3 L8 P4 51 54 P4 PA5 I/O TTa -
OTG_HS_ULPI_CK, DAC_OUT2
LCD_R4, EVENTOUT
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
(6)
27 37 N3 P11 P3 52 55 P3 PA6 I/O FT TIM13_CH1, ADC12_IN6
DCMI_PIXCLK, LCD_G2,
EVENTOUT
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N, SPI1_MOSI,
TIM14_CH1,
28 38 K4 J8 R3 53 56 R3 PA7 I/O FT (6) QUADSPI_CLK, ADC12_IN7
ETH_MII_RX_DV/ETH_RMI
I_CRS_DV, FMC_SDNWE,
EVENTOUT
ETH_MII_RXD0/ETH_RMII
NC (6)
(3) 39 - - N5 54 57 N5 PC4 I/O FT _RXD0, FMC_SDNE0, ADC12_IN14
EVENTOUT
ETH_MII_RXD1/ETH_RMII
NC (6)
(3) 40 - - P5 55 58 P5 PC5 I/O FT _RXD1, FMC_SDCKE0, ADC12_IN15
EVENTOUT
- - - - - - 59 L7 VDD S - - - -
- - - - - - 60 L6 VSS S - - - -
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N, LCD_R3,
(6)
29 41 N4 P10 R5 56 61 R5 PB0 I/O FT OTG_HS_ULPI_D1, ADC12_IN8
ETH_MII_RXD2, LCD_G1,
EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N, LCD_R6,
(6)
30 42 K5 N9 R4 57 62 R4 PB1 I/O FT OTG_HS_ULPI_D2, ADC12_IN9
ETH_MII_RXD3, LCD_G0,
EVENTOUT
PB2-
31 43 L5 P9 M6 58 63 M5 I/O FT - EVENTOUT -
BOOT1(PB2)
LCD_G2, LCD_R0,
- - - - - - 64 G4 PI15 I/O FT - -
EVENTOUT
LCD_R7, LCD_R1,
- - - - - - 65 R6 PJ0 I/O FT - -
EVENTOUT
SPI5_MOSI,
- 44 M5 K7 R6 59 70 P8 PF11 I/O FT - FMC_SDNRAS, -
DCMI_D12, EVENTOUT
- - J6 N8 M8 61 72 K7 VSS S - - - -
- 46 K6 P8 N8 62 73 L8 VDD S - - - -
TIM1_ETR, UART7_Rx,
32 52 N7 N7 R8 68 79 R8 PE7 I/O FT - QUADSPI_BK2_IO0, -
FMC_D4, EVENTOUT
TIM1_CH1N, UART7_Tx,
33 53 G6 M7 P8 69 80 N9 PE8 I/O FT - QUADSPI_BK2_IO1, -
FMC_D5, EVENTOUT
TIM1_CH1,
34 54 H6 K6 P9 70 81 P9 PE9 I/O FT - QUADSPI_BK2_IO2, -
FMC_D6, EVENTOUT
- 55 J7 - M9 71 82 K8 VSS S - - - -
- 56 L6 - N9 72 83 L9 VDD S - - - -
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
TIM1_CH2N,
35 57 H7 P6 R9 73 84 R9 PE10 I/O FT - QUADSPI_BK2_IO3, -
FMC_D7, EVENTOUT
TIM1_CH2, SPI4_NSS,
36 58 K7 N6 P10 74 85 P10 PE11 I/O FT - FMC_D8, LCD_G3, -
EVENTOUT
TIM1_CH3N, SPI4_SCK,
37 59 L7 M6 R10 75 86 R10 PE12 I/O FT - FMC_D9, LCD_B4, -
EVENTOUT
TIM1_CH3, SPI4_MISO,
38 60 J8 L6 N11 76 87 R12 PE13 I/O FT - FMC_D10, LCD_DE, -
EVENTOUT
TIM1_CH4, SPI4_MOSI,
39 61 K8 J5 P11 77 88 P11 PE14 I/O FT - FMC_D11, LCD_CLK, -
EVENTOUT
TIM1_BKIN, FMC_D12,
40 62 L8 P5 R11 78 89 R11 PE15 I/O FT - -
LCD_R7, EVENTOUT
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
USART3_TX,
41 63 M8 N5 R12 79 90 P12 PB10 I/O FT - QUADSPI_BK1_NCS, -
OTG_HS_ULPI_D3,
ETH_MII_RX_ER, LCD_G4,
EVENTOUT
TIM2_CH4, I2C2_SDA,
USART3_RX,
OTG_HS_ULPI_D4,
42 64 N8 K5 R13 80 91 R13 PB11 I/O FT - -
ETH_MII_TX_EN/ETH_RMI
I_TX_EN, DSIHOST_TE,
LCD_G5, EVENTOUT
I2C2_SMBA, SPI5_SCK,
TIM12_CH1,
- - - - M11 83 96 P13 PH6 I/O FT - ETH_MII_RXD2, -
FMC_SDNE1, DCMI_D8,
EVENTOUT
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
- - - - N12 84 97 N13 PH7 I/O FT - -
FMC_SDCKE1, DCMI_D9,
EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
I2C3_SDA, FMC_D16,
- - H8 M5 - - 98 P14 PH8 I/O FT - DCMI_HSYNC, LCD_R2, -
EVENTOUT
I2C3_SMBA, TIM12_CH2,
- - H9 L5 - - 99 N14 PH9 I/O FT - FMC_D17, DCMI_D0, -
LCD_R3, EVENTOUT
TIM5_CH1, FMC_D18,
- - J9 M4 - - 100 P15 PH10 I/O FT - DCMI_D1, LCD_R4, -
EVENTOUT
TIM5_CH2, FMC_D19,
- - K9 N3 - - 101 N15 PH11 I/O FT - DCMI_D2, LCD_R5, -
EVENTOUT
TIM5_CH3, FMC_D20,
- - H10 P2 - - 102 M15 PH12 I/O FT - DCMI_D3, LCD_R6, -
EVENTOUT
- - - H7 - - - K10 VSS S - - - -
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
USART3_CK, CAN2_RX,
46 67 N10 H5 P12 85 104 L13 PB12 I/O FT - OTG_HS_ULPI_D5, -
ETH_MII_TXD0/ETH_RMII
_TXD0, OTG_HS_ID,
EVENTOUT
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
USART3_CTS, CAN2_TX, OTG_HS_
47 68 N11 K4 P13 86 105 K14 PB13 I/O FT -
OTG_HS_ULPI_D6, VBUS
ETH_MII_TXD1/ETH_RMII
_TXD1, EVENTOUT
TIM1_CH2N, TIM8_CH2N,
SPI2_MISO, I2S2ext_SD,
48 69 N12 P1 R14 87 106 R14 PB14 I/O FT - USART3_RTS, -
TIM12_CH1, OTG_HS_DM,
EVENTOUT
RTC_REFIN, TIM1_CH3N,
TIM8_CH3N,
49 70 N13 N2 R15 88 107 R15 PB15 I/O FT - SPI2_MOSI/I2S2_SD, -
TIM12_CH2, OTG_HS_DP,
EVENTOUT
USART3_TX, FMC_D13,
50 71 L10 L4 P15 89 108 L15 PD8 I/O FT - -
EVENTOUT
USART3_RX, FMC_D14,
51 72 M10 N1 P14 90 109 L14 PD9 I/O FT - -
EVENTOUT
USART3_CK, FMC_D15,
52 73 L11 M3 N15 91 110 K15 PD10 I/O FT - -
LCD_B3, EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
USART3_CTS,
QUADSPI_BK1_IO0,
- 74 M11 J4 N14 92 111 N10 PD11 I/O FT - -
FMC_A16/FMC_CLE,
EVENTOUT
TIM4_CH1, USART3_RTS,
QUADSPI_BK1_IO1,
- 75 M13 M2 N13 93 112 M10 PD12 I/O FT - -
FMC_A17/FMC_ALE,
EVENTOUT
TIM4_CH2,
- - M12 H4 M15 94 113 M11 PD13 I/O FT - QUADSPI_BK1_IO3, -
FMC_A18, EVENTOUT
TIM4_CH3, FMC_D0,
53 78 L12 L3 M14 97 116 L12 PD14 I/O FT - -
EVENTOUT
TIM4_CH4, FMC_D1,
54 79 L13 L2 L14 98 117 K13 PD15 I/O FT - -
EVENTOUT
FMC_A14/FMC_BA0,
- 92 E13 G2 K14 112 131 N12 PG4 I/O FT - -
EVENTOUT
FMC_A15/FMC_BA1,
- 93 E12 G1 K13 113 132 N11 PG5 I/O FT - -
EVENTOUT
DCMI_D12, LCD_R7,
- 94 F11 G3 J15 114 133 J15 PG6 I/O FT - -
EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
SAI1_MCLK_A,
USART6_CK, FMC_INT,
- 95 E11 H6 J14 115 134 J14 PG7 I/O FT - -
DCMI_D13, LCD_CLK,
EVENTOUT
SPI6_NSS, USART6_RTS,
ETH_PPS_OUT,
- 96 D13 G6 H14 116 135 H14 PG8 I/O FT - -
FMC_SDCLK, LCD_G7,
EVENTOUT
TIM3_CH1, TIM8_CH1,
I2S2_MCK, USART6_TX,
66 98 F9 F3 H15 119 138 H15 PC6 I/O FT - -
SDIO_D6, DCMI_D0,
LCD_HSYNC, EVENTOUT
TIM3_CH2, TIM8_CH2,
I2S3_MCK, USART6_RX,
67 99 F10 G7 G15 120 139 G15 PC7 I/O FT - -
SDIO_D7, DCMI_D1,
LCD_G6, EVENTOUT
TRACED1, TIM3_CH3,
TIM8_CH3, USART6_CK,
68 100 E10 F4 G14 121 140 G14 PC8 I/O FT - -
SDIO_D0, DCMI_D2,
EVENTOUT
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S_CKIN,
69 101 G10 F5 F14 122 141 F14 PC9 I/O FT - -
QUADSPI_BK1_IO0,
SDIO_D1, DCMI_D3,
EVENTOUT
MCO1, TIM1_CH1,
I2C3_SCL, USART1_CK,
70 102 D8 E1 F15 123 142 F15 PA8 I/O FT - -
OTG_FS_SOF, LCD_R6,
EVENTOUT
TIM1_CH2, I2C3_SMBA,
SPI2_SCK/I2S2_CK, OTG_FS_
71 103 E8 E2 E15 124 143 E15 PA9 I/O FT -
USART1_TX, DCMI_D0, VBUS
EVENTOUT
TIM1_CH3, USART1_RX,
72 104 E9 E3 D15 125 144 D15 PA10 I/O FT - OTG_FS_ID, DCMI_D1, -
EVENTOUT
TIM1_CH4, USART1_CTS,
73 105 A13 F7 C15 126 145 C15 PA11 I/O FT - CAN1_RX, OTG_FS_DM, -
LCD_R4, EVENTOUT
TIM1_ETR, USART1_RTS,
74 106 A12 F6 B15 127 146 B15 PA12 I/O FT - CAN1_TX, OTG_FS_DP, -
LCD_R5, EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
PA13(JTMS-
75 107 A11 D1 A15 128 147 A15 I/O FT - JTMS-SWDIO, EVENTOUT -
SWDIO)
TIM8_CH1N, CAN1_TX,
- - D9 B1 - - 151 E12 PH13 I/O FT - FMC_D21, LCD_G2, -
EVENTOUT
TIM8_CH2N, FMC_D22,
- - C13 D3 - - 152 E13 PH14 I/O FT - DCMI_D4, LCD_G3, -
EVENTOUT
TIM8_CH3N, FMC_D23,
- - C12 E4 - - 153 D13 PH15 I/O FT - DCMI_D11, LCD_G4, -
EVENTOUT
TIM5_CH4,
SPI2_NSS/I2S2_WS(8),
- - B13 E5 E14 132 154 E14 PI0 I/O FT - -
FMC_D24, DCMI_D13,
LCD_G5, EVENTOUT
SPI2_SCK/I2S2_CK(8),
- - C11 C3 D14 133 155 D14 PI1 I/O FT - FMC_D25, DCMI_D8, -
LCD_G6, EVENTOUT
TIM8_CH4, SPI2_MISO,
NC I2S2ext_SD, FMC_D26,
- - B12 A1 - (3) 156 C14 PI2 I/O FT - -
DCMI_D9, LCD_G7,
EVENTOUT
TIM8_ETR,
SPI2_MOSI/I2S2_SD,
- - B10 B2 C13 134 157 C13 PI3 I/O FT - -
FMC_D27, DCMI_D10,
EVENTOUT
78 - - - D9 135 - F9 VSS S - - - -
JTDI,
TIM2_CH1/TIM2_ETR,
80 112 B11 A2 A13 138 160 A13 PA15(JTDI) I/O FT - SPI1_NSS, -
SPI3_NSS/I2S3_WS,
EVENTOUT
SPI3_SCK/I2S3_CK,
USART3_TX, UART4_TX,
81 113 C10 D5 B14 139 161 B14 PC10 I/O FT - QUADSPI_BK1_IO1, -
SDIO_D2, DCMI_D8,
LCD_R2, EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
I2S3ext_SD, SPI3_MISO,
USART3_RX, UART4_RX,
82 114 B9 B3 B13 140 162 B13 PC11 I/O FT - QUADSPI_BK2_NCS, -
SDIO_D3, DCMI_D4,
EVENTOUT
TRACED3,
SPI3_MOSI/I2S3_SD,
83 115 A9 C4 A12 141 163 A12 PC12 I/O FT - USART3_CK, UART5_TX, -
SDIO_CK, DCMI_D9,
EVENTOUT
CAN1_RX, FMC_D2,
84 116 C9 E6 B12 142 164 B12 PD0 I/O FT - -
EVENTOUT
CAN1_TX, FMC_D3,
85 117 C7 A3 C12 143 165 C12 PD1 I/O FT - -
EVENTOUT
TRACED2, TIM3_ETR,
86 118 B8 C5 D12 144 166 D12 PD2 I/O FT - UART5_RX, SDIO_CMD, -
DCMI_D11, EVENTOUT
SPI2_SCK/I2S2_CK,
USART2_CTS, FMC_CLK,
87 119 C8 D6 D11 145 167 C11 PD3 I/O FT - -
DCMI_D5, LCD_G7,
EVENTOUT
USART2_RTS, FMC_NOE,
88 120 C6 B4 D10 146 168 D11 PD4 I/O FT - -
EVENTOUT
USART2_TX, FMC_NWE,
89 121 B7 C6 C11 147 169 C10 PD5 I/O FT - -
EVENTOUT
SPI3_MOSI/I2S3_SD,
SAI1_SD_A, USART2_RX,
90 124 D7 E7 B11 150 172 B11 PD6 I/O FT - -
FMC_NWAIT, DCMI_D10,
LCD_B2, EVENTOUT
USART2_CK, FMC_NE1,
91 - A8 A5 A11 151 173 A11 PD7 I/O FT - -
EVENTOUT
LCD_G3, LCD_B0,
- - - - - - 174 B10 PJ12 I/O FT - -
EVENTOUT
LCD_G4, LCD_B1,
- - - - - - 175 B9 PJ13 I/O FT - -
EVENTOUT
USART6_RX,
QUADSPI_BK2_IO2,
- 125 E6 D7 C10 152 178 D9 PG9 I/O FT - -
FMC_NE2/FMC_NCE,
DCMI_VSYNC, EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
LCD_G3, FMC_NE3,
- 126 E7 C7 B10 153 179 C8 PG10 I/O FT - DCMI_D2, LCD_B2, -
EVENTOUT
ETH_MII_TX_EN/ETH_RMI
- 127 B6 B6 B9 154 180 B8 PG11 I/O FT - I_TX_EN, DCMI_D3, -
LCD_B3, EVENTOUT
SPI6_MISO,
USART6_RTS, LCD_B4,
- 128 A7 A6 B8 155 181 C7 PG12 I/O FT - -
FMC_NE4, LCD_B1,
EVENTOUT
TRACED0, SPI6_SCK,
USART6_CTS,
- - A6 E8 A8 156 182 B3 PG13 I/O FT - ETH_MII_TXD0/ETH_RMII -
_TXD0, FMC_A24,
LCD_R0, EVENTOUT
TRACED1, SPI6_MOSI,
USART6_TX,
QUADSPI_BK2_IO3,
- - - - A7 157 183 A4 PG14 I/O FT - -
ETH_MII_TXD1/ETH_RMII
_TXD1, FMC_A25,
LCD_B0, EVENTOUT
- 129 - B7 D7 158 184 F7 VSS S - - - -
USART6_CTS,
- 131 F6 D8 B7 160 191 B7 PG15 I/O FT - FMC_SDNCAS, -
DCMI_D13, EVENTOUT
JTDO/TRACESWO,
PB3(JTDO/TRA TIM2_CH2, SPI1_SCK,
92 132 B5 A8 A10 161 192 A10 I/O FT - -
CESWO) SPI3_SCK/I2S3_CK,
EVENTOUT
NJTRST, TIM3_CH1,
93 133 D6 C8 A9 162 193 A9 PB4(NJTRST) I/O FT - SPI1_MISO, SPI3_MISO, -
I2S3ext_SD, EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
TIM3_CH2, I2C1_SMBA,
SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
CAN2_RX,
94 134 D5 B8 A6 163 194 A8 PB5 I/O FT - -
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1, DCMI_D10,
LCD_G7, EVENTOUT
TIM4_CH1, I2C1_SCL,
USART1_TX, CAN2_TX,
95 135 C5 G8 B6 164 195 B6 PB6 I/O FT - QUADSPI_BK1_NCS, -
FMC_SDNE1, DCMI_D5,
EVENTOUT
TIM4_CH2, I2C1_SDA,
96 136 B4 A9 B5 165 196 B5 PB7 I/O FT - USART1_RX, FMC_NL, -
DCMI_VSYNC, EVENTOUT
TIM4_CH3, TIM10_CH1,
I2C1_SCL, CAN1_RX,
98 138 D4 B9 A5 167 198 A7 PB8 I/O FT - ETH_MII_TXD3, SDIO_D4, -
DCMI_D6, LCD_B6,
EVENTOUT
TIM4_CH4, TIM11_CH1,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
99 139 C4 E9 B4 168 199 B4 PB9 I/O FT - -
CAN1_TX, SDIO_D5,
DCMI_D7, LCD_B7,
EVENTOUT
TIM4_ETR, UART8_Rx,
NC
(3) 140 A4 A10 A4 169 200 A6 PE0 I/O FT - FMC_NBL0, DCMI_D2, -
EVENTOUT
NC UART8_Tx, FMC_NBL1,
(3) 141 A3 C9 A3 170 201 A5 PE1 I/O FT - -
DCMI_D3, EVENTOUT
TIM8_BKIN, FMC_NBL2,
- - B3 D10 D4 173 205 C3 PI4 I/O FT - DCMI_D5, LCD_B4, -
EVENTOUT
TIM8_CH1, FMC_NBL3,
- - A2 C10 C4 174 206 D3 PI5 I/O FT - DCMI_VSYNC, LCD_B5, -
EVENTOUT
I/O structures
Pin types
UFBGA176(2)
Pin name
WLCSP168
UFBGA169
TFBGA216
Notes
Additional
LQFP100
LQFP144
LQFP176
LQFP208
(function after Alternate functions
functions
reset)(1)
TIM8_CH2, FMC_D28,
- - A1 B11 C3 175 207 D6 PI6 I/O FT - DCMI_D6, LCD_B6, -
EVENTOUT
TIM8_CH3, FMC_D29,
- - B1 A12 C2 176 208 D4 PI7 I/O FT - DCMI_D7, LCD_B7, -
EVENTOUT
PF0 A0 - - A0
PF1 A1 - - A1
PF2 A2 - - A2
PF3 A3 - - A3
PF4 A4 - - A4
PF5 A5 - - A5
PF12 A6 - - A6
PF13 A7 - - A7
PF14 A8 - - A8
PF15 A9 - - A9
PG0 A10 - - A10
PG1 A11 - - A11
PG2 A12 - - A12
PG3 A13 - -
PG4 A14 - - BA0
PG5 A15 - - BA1
PD11 A16 A16 CLE -
PD12 A17 A17 ALE -
PD13 A18 A18 - -
PE3 A19 A19 - -
PE4 A20 A20 - -
PE5 A21 A21 - -
PE6 A22 A22 - -
PE2 A23 A23 - -
PG13 A24 A24 - -
PG14 A25 A25 - -
PD14 D0 DA0 D0 D0
PD15 D1 DA1 D1 D1
PD0 D2 DA2 D2 D2
PD1 D3 DA3 D3 D3
PE7 D4 DA4 D4 D4
PE8 D5 DA5 D5 D5
PE9 D6 DA6 D6 D6
PE10 D7 DA7 D7 D7
PE11 D8 DA8 D8 D8
PE12 D9 DA9 D9 D9
PE13 D10 DA10 D10 D10
PE14 D11 DA11 D11 D11
PE15 D12 DA12 D12 D12
PD8 D13 DA13 D13 D13
PD9 D14 DA14 D14 D14
PD10 D15 DA15 D15 D15
PH8 D16 - - D16
PH9 D17 - - D17
PH10 D18 - - D18
PH11 D19 - - D19
PH12 D20 - - D20
PH13 D21 - - D21
PH14 D22 - - D22
PH15 D23 - - D23
PI0 D24 - - D24
PI1 D25 - - D25
PI2 D26 - - D26
PI3 D27 - - D27
PI6 D28 - - D28
PI7 D29 - - D29
PI9 D30 - - D30
PI10 D31 - - D31
PD7 NE1 NE1 - -
PG9 NE2 NE2 NCE -
PG10 NE3 NE3 - -
PG11 - - - -
PG12 NE4 NE4 - -
PD3 CLK CLK - -
PD4 NOE NOE NOE -
PD5 NWE NWE NWE -
PD6 NWAIT NWAIT NWAIT -
PB7 NADV NADV - -
PF6 - - - -
PF7 - - - -
PF8 - - - -
PF9 - - - -
PF10 - - - -
PG6 - - - -
PG7 - - INT -
PE0 NBL0 NBL0 - NBL0
PE1 NBL1 NBL1 - NBL1
PI4 NBL2 - - NBL2
PI5 NBL3 - - NBL3
PG8 - - - SDCLK
PC0 - - - SDNWE
PF11 - - - SDNRAS
PG15 - - - SDNCAS
PH2 - - - SDCKE0
PH3 - - - SDNE0
PH6 - - - SDNE1
PH7 - - - SDCKE1
PH5 - - - SDNWE
PC2 - - - SDNE0
PC3 - - - SDCKE0
PB5 - - - SDCKE1
PB6 - - - SDNE1
ETH_MII_RX_
USART2_ UART4_ QUADSPI_ EVENT
PA1 - TIM2_CH2 TIM5_CH2 - - - - RTS RX BK1_IO3 - CLK/ETH_RMI - - LCD_R2
OUT
I_REF_CLK
USART2_T EVENT
PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - - X - - - ETH_MDIO - - LCD_R1
OUT
OTG_HS
TIM2_CH1/ TIM8_CH1 EVENT
PA5 - TIM2_ETR
-
N - SPI1_SCK - - - - _ULPI_C - - - LCD_R4
OUT
K
ETH_MII_RX_
TIM1_ TIM8_CH1 SPI1_ QUADSPI FMC_SDN EVENT
Port PA7 - CH1N
TIM3_CH2
N - MOSI - - - TIM14_CH1
_CLK
DV/ETH_RMII
WE - - OUT
A _CRS_DV
JTMS- EVENT
PA13
SWDIO - - - - - - - - - - - - - - OUT
JTCK- EVENT
PA14
SWCLK - - - - - - - - - - - - - - OUT
73/225
EVENT
PB2 - - - - - - - - - - - - - - - OUT
JTDO /
SPI3_SCK/ EVENT
PB3 TRACES TIM2_CH2 - - SPI1_SCK
I2S3_CK - - - - - - - - OUT
WO
QUADSPI
USART1 FMC_ EVENT
PB6 - - TIM4_CH1 - I2C1_SCL - - _TX - CAN2_TX _BK1_NC - SDNE1
DCMI_D5
OUT
S
ETH_MII_TX_
USART3 OTG_HS DSIHOST_ EVENT
PB11 - TIM2_CH4 - - I2C2_SDA - _RX - _ULPI_D4
EN/ETH_RMII - TE
LCD_G5
OUT
_TX_EN
ETH_MII_TXD
SPI2_NSS/I USART3 OTG_HS OTG_HS_ EVENT
PB12 - TIM1_BKIN - - I2C2_SMBA
2S2_WS - _CK - CAN2_RX
_ULPI_D5
0/ETH_RMII_T
ID - - OUT
XD0
ETH_MII_TXD
STM32F469xx
SPI2_SCK/I USART3 OTG_HS EVENT
PB13 - TIM1_CH1N - - - 2S2_CK - _CTS - CAN2_TX
_ULPI_D6
1/ETH_RMII_T - - - OUT
XD1
STM32F469xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
OTG_HS
I2S2ext_S ETH_MII_TXD FMC_SDN EVENT
PC2 - - - - - SPI2_MISO
D - - - _ULPI_DI
2 E0 - - OUT
R
OTG_HS
SPI2_MOSI ETH_MII_TX_ FMC_SDC EVENT
PC3 - - - - - /I2S2_SD
- - - - _ULPI_N
CLK KE0 - - OUT
XT
ETH_MII_RXD
DS11189 Rev 8
FMC_SDN EVENT
PC4 - - - - - - - - - - - 0/ETH_RMII_R
E0 - - OUT
XD0
ETH_MII_RXD
FMC_SDC EVENT
PC5 - - - - - - - - - - - 1/ETH_RMII_R
KE0 - - OUT
XD1
QUADSPI_ EVENT
PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN - - - BK1_IO0 - - SDIO_D1 DCMI_D3 - OUT
EVENT
PC13 - - - - - - - - - - - - - - - OUT
EVENT
PC14 - - - - - - - - - - - - - - - OUT
75/225
EVENT
PC15 - - - - - - - - - - - - - - - ‘OUT
Table 12. Alternate function (continued)
76/225
EVENT
PD1 - - - - - - - - - CAN1_TX - - FMC_D3 - - OUT
USART2_ EVENT
PD4 - - - - - - - RTS - - - - FMC_NOE - - OUT
USART2_T EVENT
- - - - - - - - - - - - -
DS11189 Rev 8
PD5 FMC_NWE
X OUT
USART2_ EVENT
PD7 - - - - - - - CK - - - - FMC_NE1 - - OUT
Port
D
USART3_T EVENT
PD8 - - - - - - - X - - - - FMC_D13 - - OUT
USART3_ EVENT
PD9 - - - - - - - RX - - - - FMC_D14 - - OUT
USART3_ EVENT
PD10 - - - - - - - CK - - - - FMC_D15 - LCD_B3
OUT
QUADSPI_ EVENT
PD13 - - TIM4_CH2 - - - - - - BK1_IO3 - - FMC_A18 - - OUT
EVENT
PD14 - - TIM4_CH3 - - - - - - - - - FMC_D0 - - OUT
STM32F469xx
EVENT
PD15 - - TIM4_CH4 - - - - - - - - - FMC_D1 - - ‘OUT
Table 12. Alternate function (continued)
STM32F469xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
UART8_ EVENT
PE1 - - - - - - - - Tx - - - FMC_NBL1 DCMI_D3 - OUT
QUADSPI EVENT
PE9 - TIM1_CH1 - - - - - - - - _BK2_IO2 - FMC_D6 - - OUT
QUADSPI EVENT
PE10 - TIM1_CH2N - - - - - - - - _BK2_IO3 - FMC_D7 - - OUT
EVENT
PE11 - TIM1_CH2 - - - SPI4_NSS - - - - - - FMC_D8 - LCD_G3
EVENT
PE12 - TIM1_CH3N - - - SPI4_SCK - - - - - - FMC_D9 - LCD_B4
OUT
EVENT
PE13 - TIM1_CH3 - - - SPI4_MISO - - - - - - FMC_D10 - LCD_DE
OUT
EVENT
PE14 - TIM1_CH4 - - - SPI4_MOSI - - - - - - FMC_D11 - LCD_CLK
OUT
EVENT
PE15 - TIM1_BKIN - - - - - - - - - - FMC_D12 - LCD_R7
‘OUT
77/225
Table 12. Alternate function (continued)
78/225
EVENT
PF1 - - - - I2C2_SCL - - - - - - - FMC_A1 - -
OUT
EVENT
PF2 - - - - I2C2_SMBA - - - - - - - FMC_A2 - -
OUT
EVENT
PF3 - - - - - - - - - - - - FMC_A3 - -
OUT
EVENT
PF4 - - - - - - - - - - - - FMC_A4 - -
OUT
EVENT
DS11189 Rev 8
PF5 - - - - - - - - - - - - FMC_A5 - -
OUT
QUADSPI_ EVENT
PF10 - - - - - - - - - - - DCMI_D11 LCD_DE
CLK OUT
FMC_SDN EVENT
PF11 - - - - - SPI5_MOSI - - - - - - DCMI_D12 -
RAS OUT
EVENT
PF12 - - - - - - - - - - - - FMC_A6 - -
OUT
EVENT
PF13 - - - - - - - - - - - - FMC_A7 - -
OUT
EVENT
PF14 - - - - - - - - - - - - FMC_A8 - -
OUT
STM32F469xx
EVENT
PF15 - - - - - - - - - - - - FMC_A9 - -
‘OUT
Table 12. Alternate function (continued)
STM32F469xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
EVENT
PG1 - - - - - - - - - - - - FMC_A11 - - OUT
EVENT
PG2 - - - - - - - - - - - - FMC_A12 - - OUT
EVENT
PG3 - - - - - - - - - - - - FMC_A13 - - OUT
FMC_A14/F EVENT
PG4 - - - - - - - - - - - -
MC_BA0 - - OUT
FMC_A15/F EVENT
- -
DS11189 Rev 8
PG5 - - - - - - - - - - - -
MC_BA1 OUT
EVENT
PG6 - - - - - - - - - - - - DCMI_D12 LCD_R7
OUT
EVENT
PG10 - - - - - - - - LCD_G3 - - FMC_NE3 DCMI_D2 LCD_B2
OUT
ETH_MII
USART6 EVENT
PG12 - - - - - SPI6_MISO - - LCD_B4 - - FMC_NE4 - LCD_B1
_RTS OUT
ETH_MII
TRACE USART6 _TXD0 / EVENT
PG13 - - - - SPI6_SCK - - - - FMC_A24 - LCD_R0
D0 _CTS ETH_RMII OUT
_TXD0
ETH_MII
TRACE USART6 QUADSPI_ _TXD1 / EVENT
PG14 - - - - SPI6_MOSI - - - FMC_A25 - LCD_B0
D1 _TX BK2_IO3 ETH_RMII OUT
79/225
_TXD1
EVENT
PH1 - - - - - - - - - - - - - -
OUT
OTG_HS
EVENT
PH4 - - - - I2C2_SCL - - - - LCD_G5 _ULPI_N - - - LCD_G4
OUT
XT
DS11189 Rev 8
FMC_SDN EVENT
PH5 - - - - I2C2_SDA SPI5_NSS - - - - - - - -
WE OUT
EVENT
PH9 - - - - I2C3_SMBA - - - - TIM12_CH2 - - FMC_D17 DCMI_D0 LCD_R3
OUT
EVENT
PH10 - - TIM5_CH1 - - - - - - - - - FMC_D18 DCMI_D1 LCD_R4
OUT
EVENT
PH11 - - TIM5_CH2 - - - - - - - - - FMC_D19 DCMI_D2 LCD_R5
OUT
EVENT
PH12 - - TIM5_CH3 - - - - - - - - - FMC_D20 DCMI_D3 LCD_R6
OUT
TIM8_CH1 EVENT
PH13 - - - - - - - - CAN1_TX - - FMC_D21 - LCD_G2
N OUT
TIM8_CH2 EVENT
STM32F469xx
PH14 - - - - - - - - - - - FMC_D22 DCMI_D4 LCD_G3
N OUT
TIM8_CH3 EVENT
PH15 - - - - - - - - - - - FMC_D23 DCMI_D11 LCD_G4
N ‘OUT
Table 12. Alternate function (continued)
STM32F469xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SPI2_SCK/I EVENT
PI1 - - - - - - - - - - - FMC_D25 DCMI_D8 LCD_G6
2S2_CK OUT
I2S2ext_S EVENT
PI2 - - - TIM8_CH4 - SPI2_MISO - - - - - FMC_D26 DCMI_D9 LCD_G7
D OUT
SPI2_MOSI EVENT
PI3 - - - TIM8_ETR - - - - - - - FMC_D27 DCMI_D10
/I2S2_SD OUT
TIM8_BKI EVENT
PI4 - - - - - - - - - - - FMC_NBL2 DCMI_D5 LCD_B4
N OUT
DCMI_VS EVENT
DS11189 Rev 8
EVENT
PI6 - - - TIM8_CH2 - - - - - - - - FMC_D28 DCMI_D6 LCD_B6
OUT
EVENT
PI7 - - - TIM8_CH3 - - - - - - - - FMC_D29 DCMI_D7 LCD_B7
OUT
Port I
EVENT
PI8 - - - - - - - - - - - - - -
OUT
LCD_VSY EVENT
PI9 - - - - - - - - - CAN1_RX - - FMC_D30 -
NC OUT
OTG_HS
EVENT
LCD_HSY EVENT
PI12 - - - - - - - - - - - - - -
NC OUT
LCD_VSY EVENT
PI13 - - - - - - - - - - - - - -
NC OUT
EVENT
PI14 - - - - - - - - - - - - - - LCD_CLK
OUT
EVENT
PI15 - - - - - - - - - LCD_G2 - - - - LCD_R0
‘OUT
81/225
Table 12. Alternate function (continued)
82/225
EVENT
PJ1 - - - - - - - - - - - - - - LCD_R2
OUT
DSIHOST EVENT
PJ2 - - - - - - - - - - - - - LCD_R3
_TE OUT
EVENT
PJ3 - - - - - - - - - - - - - - LCD_R4
OUT
EVENT
PJ4 - - - - - - - - - - - - - - LCD_R5
OUT
Port
J
EVENT
DS11189 Rev 8
PJ5 - - - - - - - - - - - - - - LCD_R6
OUT
EVENT
PJ12 - - - - - - - - - LCD_G3 - - - - LCD_B0
OUT
EVENT
PJ13 - - - - - - - - - LCD_G4 - - - - LCD_B1
OUT
EVENT
PJ14 - - - - - - - - - - - - - - LCD_B2
OUT
EVENT
PJ15 - - - - - - - - - - - - - - LCD_B3
OUT
EVENT
PK3 - - - - - - - - - - - - - - LCD_B4
OUT
EVENT
PK4 - - - - - - - - - - - - - - LCD_B5
OUT
Port EVENT
PK5 - - - - - - - - - - - - - - LCD_B6
K OUT
EVENT
PK6 - - - - - - - - - - - - - - LCD_B7
OUT
EVENT
PK7 - - - - - - - - - - - - - - LCD_DE
OUT
STM32F469xx
STM32F469xx Memory mapping
4 Memory mapping
0xD000 0000
0xCFFF FFFF AHB1
512-Mbyte
Block 5
FMC and
QUADSPI
0xA000 0000
0x9FFF FFFF
512-Mbyte
Block 4 0x4002 0000
FMC bank3 and Reserved 0x4001 7400 - 0x4001 FFFF
QUADSPI bank
0x4001 73FF
0x8000 0000
0x7FFF FFFF
512-Mbyte
Block 3
FMC bank1 to
QUADSPI bank 2
0x6000 0000
0x5FFF FFFF
512-Mbyte APB2
Block 2
Peripherals
0x4000 0000
0x3FFF FFFF
512-Mbyte
Block 1
SRAM Reserved 0x2005 0000 - 0x3FFF FFFF
0x4001 0000
0x2000 0000 SRAM3
(128 KB aliased by bit-banding) 0x2003 0000 - 0x2004 FFFF Reserved 0x4000 8000 - 0x4000 FFFF
0x1FFF FFFF
SRAM2 0x4000 7FFF
512-Mbyte 0x2002 8000 - 0x2002 FFFF
Block 0 (32 KB aliased by bit-banding)
SRAM SRAM1 0x2000 0000 - 0x2002 7FFF
(160 KB aliased by bit-banding)
0x0000 0000
Reserved 0x1FFF C008 - 0x1FFF FFFF
Option Bytes 0x1FFF C000 - 0x1FFF C00 F
Reserved 0x1FFF 7A10 - 0x1FFF 7FFF
System memory 0x1FFF 0000 - 0x1FFF 7A0F
Reserved 0x1FFE C008 - 0x1FFE FFFF APB1
Option bytes 0x1FFE C000 - 0x1FFE C00 F
Reserved 0x1001 0000 - 0x1FFE BFFF
CCM data RAM 0x1000 0000 - 0x1000 FFFF
(64 KB data SRAM)
Reserved 0x0820 0000 - 0x0FFF FFFF
Flash memory 0x0800 0000 - 0x081F FFFF
Reserved 0x0020 0000 - 0x07FF FFFF
Aliased to Flash, system 0x4000 0000
memory or SRAM depending 0x0000 0000 - 0x001F FFFF
on the BOOT pins
MSv33863V2
5 Electrical characteristics
Figure 22. Pin loading conditions Figure 23. Pin input voltage
C = 50 pF VIN
MS19011V2 MS19010V2
Level shifter
OUT
IO
GPIOs
IN Logic
VDD12DSI DSI
PHY
2.2 μF VSSDSI
Reset
PDR_ON controller
VDD
VDDA
VREF
VREF+
Analog:
100 nF 100 nF VREF- ADC RCs, PLL,..
+ 1 μF + 1 μF
VSSA
MS38256V1
1. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.19 and Section 2.20.
2. The two 2.2 µF ceramic capacitors on VCAP_1 and VCAP_2 should be replaced by two 100 nF decoupling
capacitors when the voltage regulator is OFF.
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pins.
4. VDDA and VSSA must be connected to VDD and VSS, respectively.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
IDD_VBAT
VBAT
IDD
VDD
VDDA
ai14126
∑IVDD Total current into sum of all VDD_x power lines (source)(1) 290
(1)
∑IVSS Total current out of sum of all VSS_x ground lines (sink) − 290
∑IVDDUSB Total current into VDDUSB power line (source) 25
IVDD Maximum current into each VDD_x power line (source)(1) 100
(1)
IVSS Maximum current out of each VSS_x ground line (sink) − 100
Output current sunk by any I/O and control pin 25
IIO
Output current sourced by any I/Os and control pin − 25
mA
Total output current sunk by sum of all I/O and control pins (2) 120
∑IIO Total output current sunk by sum of all USB I/Os 25
Total output current sourced by sum of all I/Os and control pins(2) − 120
(4)
Injected current on FT pins
− 5/+0
IINJ(PIN) (3) Injected current on NRST and BOOT0 pins (4)
∑IINJ(PIN)(5) Total injected current (sum of all I/O and control pins)(6) ±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.24.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 14 for the values of the maximum allowed input voltage.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled.
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
ESR
R Leak
MS19044V2
HSI - 45 -
HSE max for 4 MHz
Over_drive switch 45 - 100
Tod_swen and min for 26 MHz
enable time
External HSE
- 40 -
50 MHz
µs
HSI - 20 -
HSE max for 4 MHz
Over_drive switch 20 - 80
Tod_swdis and min for 26 MHz.
disable time
External HSE
- 15 -
50 MHz
1. Guaranteed by design.
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM,
regulator ON
Max(1)
Symbol Parameter Conditions fHCLK (MHz) Typ Unit
TA = TA = TA =
25 °C 85 °C 105 °C
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled), regulator ON
Max(1)
fHCLK
Symbol Parameter Conditions Typ Unit
(MHz) TA = TA = TA =
25 °C 85 °C 105 °C
Supply current in 25 18 20 39 59
IDD mA
Run mode 168 49 55 79 105
150 44 49 44 100
144 40 45 68 92
Table 26. Typical and maximum current consumption in Run mode, code with data
processing running from Flash memory (ART accelerator enabled except prefetch),
regulator OFF
Typ Max(1)
fHCLK
Symbol Parameter Conditions TA = 25 °C TA = 85 °C TA = 105 °C Unit
(MHz)
IDD12 IDD
IDD12 IDD IDD12 IDD IDD12 IDD
Table 27. Typical and maximum current consumption in Sleep mode, regulator ON
Max(1)(2)(3)
Symbol Parameter Conditions fHCLK (MHz) Typ Unit
TA = 25 °C TA = 85 °C TA = 105 °C
Table 28. Typical and maximum current consumption in Sleep mode, regulator OFF
Typ Max(1)
fHCLK
Symbol Parameter Conditions TA = 25 °C TA = 85 °C TA = 105 °C Unit
(MHz)
IDD12 IDD
IDD12 IDD IDD12 IDD IDD12 IDD
TA = TA = TA =
TA = 25 °C
Symbol Parameter Conditions 25 °C 85 °C 105 °C Unit
TA = TA = TA =
TA = 25 °C
Symbol Parameter Conditions(1) 25 °C 85 °C 105 °C Unit
6
1.65V
5 1.70V
1.80V
4
IDD_VBAT (μA)
2.00V
3 2.40V
2 2.70V
3.00V
1
3.30V
0 3.60V
0 20 40 60 80 100
Temperature (°C)
7
1.65V
6 1.70V
5 1.80V
IDD_VBAT (μA)
2.00V
4
2.40V
3
2.70V
2 3.00V
1 3.30V
3.60V
0
0 20 40 60 80 100
Temperature (°C)
the current from the MCU supply voltage to supply the I/O pin circuitry and to
charge/discharge the capacitive load internal or external connected to the pin:
I SW = V DD × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load.
VDD is the MCU supply voltage.
fSW is the I/O switching frequency.
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
2 MHz 0.0
8 MHz 0.2
25 MHz 0.6
VDD = 3.3 V
50 MHz 1.1
C= CINT(2)
60 MHz 1.3
84 MHz 1.8
2 MHz 0.18
8 MHz 0.67
CPU clock
tWUSLEEP(2) Wakeup from Sleep - 5 6
cycles
Main regulator is ON 12.9 15.0
VHSEH
90 %
10 %
VHSEL
tr(HSE) tf(HSE) tW(HSE) tW(HSE) t
THSE
External fHSE_ext
IL
clock source OSC_IN
STM32F
ai17528
VLSEH
90%
10%
VLSEL
tr(LSE) tf(LSE) tW(LSE) tW(LSE) t
TLSE
External fLSE_ext
OSC32_IN IL
clock source
STM32F
ai17529
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 31). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance, which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from www.st.com.
Resonator with
integrated capacitors
CL1
OSC_IN fHSE
Bias
8 MHz RF controlled
resonator
gain
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from www.st.com.
Resonator with
integrated capacitors
CL1
OSC32_IN fLSE
Bias
32.768 kH z RF controlled
resonator
gain
OSC32_OU T STM32F
CL2
ai17531
2
ACCHSI(%)
0
-40 0 25 55 85 105 125
TA ( °C)
-2
-4
-8
MSv41055V1
50
max
40 avg
min
30
Normalized deviati on (%)
20
10
-10
-20
-30
-40
-45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105
Temperat ure (°C)
MS19013V1
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER = round [ fPLL_IN ⁄ ( 4 × f Mod ) ]
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
15
INCSTEP = round [ ( ( 2 – 1 ) × md × PLLN ) ⁄ ( 100 × 5 × MODEPER ) ]
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
15
md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2 – 1 ) × PLLN )
As a result:
15
md quantized % = ( 250 × 126 × 100 × 5 ) ⁄ ( ( 2 – 1 ) × 240 ) = 2.002%(peak)
Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Frequency
(PLL_OUT)
md
F0
md
Time
tmode 2x tmode
MS39983V1
Frequency
(PLL_OUT)
F0
2x md
Time
tmode 2x tmode
MS39982V1
Figure 37. MIPI D-PHY HS/LP clock lane transition timing diagram
TCLK-POST TEOT
Clock VIL
Lane
Data VIL
Lane
MS38282V1
Figure 38. MIPI D-PHY HS/LP data lane transition timing diagram
Clock
Lane
TLPX THS-PREPARE THS-ZERO
Data
VIL
Lane
TREOT
LP-11 LP-01 LP-00 TEOT
THS-TRAIL THS-EXIT
MS38283V1
Program/erase parallelism
tprog Word programming time - 16 100(2) µs
(PSIZE) = x 8/16/32
Program/erase parallelism
- 400 800
(PSIZE) = x 8
Program/erase parallelism
tERASE16KB Sector (16 KB) erase time - 300 600 ms
(PSIZE) = x 16
Program/erase parallelism
- 250 500
(PSIZE) = x 32
Program/erase parallelism
- 1200 2400
(PSIZE) = x 8
Program/erase parallelism
tERASE64KB Sector (64 KB) erase time - 700 1400 ms
(PSIZE) = x 16
Program/erase parallelism
- 550 1100
(PSIZE) = x 32
Program/erase parallelism
- 2 4
(PSIZE) = x 8
Program/erase parallelism
tERASE128KB Sector (128 KB) erase time - 1.3 2.6 s
(PSIZE) = x 16
Program/erase parallelism
- 1 2
(PSIZE) = x 32
Program/erase parallelism
- 16 32
(PSIZE) = x 8
Program/erase parallelism
tME Mass erase time - 11 22
(PSIZE) = x 16
Program/erase parallelism
- 8 16
(PSIZE) = x 32
s
Program/erase parallelism
- 16 32
(PSIZE) = x 8
Program/erase parallelism
tBE Bank erase time - 11 22
(PSIZE) = x 16
Program/erase parallelism
- 8 16
(PSIZE) = x 32
32-bit program operation 2.7 - 3.6
Vprog Programming voltage 16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6
1. Based on test during characterization.
2. The maximum programming time is measured after 100 K erase operations.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
• Corrupted program counter
• Unexpected reset
• Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 54. EMI characteristics for fHSE=8 MHz and fCPU=168 MHz
Max vs.
Monitored [fHSE/fCPU]
Symbol Parameter Conditions Unit
frequency band
8/168 MHz
0.1 to 30 MHz 2
VDD = 3.3 V, TA = 25 °C, TFBGA216
Peak(1) package, conforming to SAE J1752/3 30 to 130 MHz 4 dBµV
EEMBC, ART ON, all peripheral clocks 130 MHz to 1GHz 10
enabled, clock dithering disabled.
Level(2) 0.1 MHz to 1 GHz 3 -
SEMI
0.1 to 30 MHz 5
(1)
VDD = 3.3 V, TA = 25 °C, TFBGA216
Peak package, conforming to SAE J1752/3 30 to 130 MHz 3 dBµV
EEMBC, ART ON, all peripheral clocks 130 MHz to 1GHz 8
enabled, clock dithering enabled
Level(2) 0.1 MHz to 1 GHz 2 -
Table 55. EMI characteristics for fHSE=8 MHz and fCPU=180 MHz
Max vs.
Monitored [fHSE/fCPU]
Symbol Parameter Conditions Unit
frequency band
8/180 MHz
0.1 to 30 MHz 2
(1) VDD = 3.3 V, TA = 25 °C, TFBGA216
Peak package, conforming to SAE J1752/3 30 to 130 MHz 1 dBµV
EEMBC, ART ON, all peripheral clocks 130 MHz to 1GHz 10
enabled, clock dithering disabled.
Level(2) 0.1 MHz to 1 GHz 3 -
SEMI
0.1 to 30 MHz -10
VDD = 3.3 V, TA = 25 °C, TFBGA216
Peak(1) package, conforming to SAE J1752/3 30 to 130 MHz -15 dBµV
EEMBC, ART ON, all peripheral clocks 130 MHz to 1GHz 0
enabled, clock dithering enabled
Level(2) 0.1 MHz to 1 GHz 2 -
Electrostatic discharge
TA = +25 °C
VESD(HBM) voltage 2 2000
conforming to ANSI/ESDA/JEDEC JS-001
(human body model)
TA = +25 °C conforming to ANSI/ESD S5.3.1, V
Electrostatic discharge
LQFP100, LQFP144, LQFP176, LQFP208,
VESD(CDM) voltage C3 250
UFBGA169, UFBGA176, TFBGA216 and
(charge device model)
WLCSP148 packages
1. Guaranteed based on test during characterization.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
• A supply overvoltage is applied to each power supply pin
• A current injection is applied to each input, output, and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins, which may
potentially inject negative currents.
All pins
except for
PA10/PB12 30 40 50
Weak pull-up (OTG_FS_ID,
RPU equivalent OTG_HS_ID) VIN = VSS
resistor(6)
PA10/PB12
(OTG_FS_ID, 7 10 14
OTG_HS_ID)
kΩ
All pins
except for
Weak pull- PA10/PB12 30 40 50
down (OTG_FS_ID,
RPD OTG_HS_ID) VIN = VDD
equivalent
resistor(7) PA10/PB12
(OTG_FS_ID, 7 10 14
OTG_HS_ID)
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by design.
2. Tested in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, refer to Table 58
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 58
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10%).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10%).
8. Hysteresis voltage between Schmitt trigger switching levels. Based on test during characterization.
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 39.
2.52 DD
7V
0.
=
in
I Hm
tV
en
m
ire
qu TTL requirement
re VIHmin = 2V
2.0 OS .3
1.92 - CM +0
DD
tio
n
. 4 5V
1.7 uc in =0
od IHm
pr ,V
in s
te
d tion
s ula
Te sim
n
esig
1.22 nD Area not
1.19 e do -0.0
4
as determined VDD
1.065
B
x= 0.35
I Lma
ns, V
sim ulatio
0.8 sign
n De
ed o
TTL requirement VILmax
Bas
0.55 = 0.8V
0.51
Tested in production - CMOS requirement VILmax = 0.3VDD
VDD (V)
1.7 2.0 2.4 2.7 3.3 3.6
MS33746V1
VOL(1) Output low level voltage for an I/O pin CMOS port (2)
- 0.4
IIO = +8 mA
VOH(3) Output high level voltage for an I/O pin
2.7 V ≤ VDD ≤ 3.6 V
VDD − 0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2) - 0.4
IIO =+ 8mA
VOH (3) Output high level voltage for an I/O pin 2.4 -
2.7 V ≤ VDD ≤ 3.6 V
VOL(1) Output low level voltage for an I/O pin IIO = +20 mA - 1.3(4) V
VOH(3) Output high level voltage for an I/O pin 2.7 V ≤ VDD ≤ 3.6 V VDD −1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +6 mA - 0.4(4)
VOH(3) Output high level voltage for an I/O pin 1.8 V ≤ VDD ≤ 3.6 V VDD −0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA - 0.4(5)
VOH(3) Output high level voltage for an I/O pin 1.7 V ≤ VDD ≤ 3.6V VDD −0.4(5) -
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Based on characterization data.
5. Guaranteed by design.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 40 and
Table 61, respectively.
Unless otherwise specified, the parameters given in Table 61 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 17.
90% 10%
50% 50%
10% 90%
t r(IO)out t f(IO)out
Maximum frequency is achieved with a duty cycle at (45 - 55%) when loaded by the
specified capacitance.
MS32132V4
VDD
External
reset circuit (1)
RPU
NRST (2) Internal Reset
Filter
0.1 μF
STM32F
ai14132c
AHB/APBx prescaler =
1 or 2 or 4, 1 - tTIMxCLK
tres(TIM) fTIMxCLK = 180 MHz
Timer resolution time
AHB/APBx prescaler > 4,
1 - tTIMxCLK
fTIMxCLK = 90 MHz
Master mode,
2.7 V ≤ VDD ≤ 3.6 V, - - 45
SPI1,4,5,6,
Master mode,
1.71 V ≤ VDD ≤ 3.6 V, - - 22.5
SPI1,4,5,6
Master transmitter mode,
1.7 V ≤ VDD ≤ 3.6 V, - - 45
SPI1,4,5,6
tw(SCKH)
SCK high and low time Master mode, SPI presc = 2 TPCLK−1.5 TPCLK TPCLK+1.5
tw(SCKL)
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4 TPCLK
- -
th(NSS) NSS hold time Slave mode, SPI presc = 2 2 TPCLK
tsu(MI) Master mode 2 - -
Data input setup time
tsu(SI) Slave mode 3 - -
th(MI) Master mode 4 - -
Data input hold time
th(SI) Slave mode 2 - -
ta(SO) Data output access time Slave mode, SPI presc = 2 7 - 21 ns
NSS input
tc(SCK) th(NSS)
tsu(NSS) tw(SCKH)
CPHA=0
SCK input
CPOL=0
CPHA=0
CPOL=1
ta(SO) tw(SCKL) tv(SO) th(SO) tdis(SO)
MISO output First bit OUT Next bits OUT Last bit OUT
tsu(SI) th(SI)
MSv41658V2
NSS input
tc(SCK) th(NSS)
tsu(NSS) tw(SCKH)
CPHA=1
SCK input
CPOL=0
CPHA=1
CPOL=1
ta(SO) tw(SCKL) tv(SO) th(SO) tdis(SO)
MISO output First bit OUT Next bits OUT Last bit OUT
tsu(SI) th(SI)
MSv41659V2
High
NSS input
tc(SCK)
tw(SCKH)
CPHA=0
SCK output
CPOL=0
CPHA=0
CPOL=1
tw(SCKL)
CPHA=1
SCK output
CPOL=0
CPHA=1
CPOL=1
tsu(MI) th(MI)
MOSI output First bit OUT Next bits OUT Last bit OUT
tv(MO) th(MO)
MSv72626V1
Note: Refer to the I2S section of RM0386 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior, source clock precision
might slightly change the values. The values of these parameters might be slightly impacted
by the source clock precision. DCK depends mainly on the value of ODD bit. The digital
CPOL = 0
CK Input
CPOL = 1
WS input
tsu(SD_SR) th(SD_SR)
ai14881b
1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
tf(CK) tr(CK)
tc(CK)
CK output
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS) tw(CKL) th(WS)
WS output
tv(SD_MT) th(SD_MT)
tsu(SD_MR) th(SD_MR)
ai14884b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
SAI characteristics
Unless otherwise specified, the parameters given in Table 67 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency, and VDD supply voltage
conditions summarized in Table 17, with the following configuration:
• output speed set to OSPEEDRy[1:0] = 10
• capacitive load C=30 pF
• measurement points at CMOS levels: 0.5 VDD
Refer to Section 5.3.20 for more details on the input/output alternate function
characteristics (SCK, SD, WS).
SAI_SCK_X
th(FS)
SAI_FS_X
(output) tv(FS) tv(SD_MT) th(SD_MT)
SAI_SD_X
Slot n Slot n+2
(transmit)
tsu(SD_MR) th(SD_MR)
SAI_SD_X Slot n
(receive)
MS32771V1
1/fSCK
SAI_SCK_X
tw(CKH_X) tw(CKL_X) th(FS)
SAI_FS_X
(input) tsu(FS) tv(SD_ST) th(SD_ST)
SAI_SD_X
Slot n Slot n+2
(transmit)
tsu(SD_SR) th(SD_SR)
SAI_SD_X Slot n
(receive)
MS32772V1
Output VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) - - 0.3
levels VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
PA11, PA12, PB14, PB15
(USB_FS_DP/DM, 17 21 24
USB_HS_DP/DM)
RPD VIN = VDD
PA9, PB13
(OTG_FS_VBUS, 0.65 1.1 2.0
OTG_HS_VBUS) kΩ
PA12, PB15 (USB_FS_DP,
VIN = VSS 1.5 1.8 2.1
USB_HS_DP)
RPU PA9, PB13
(OTG_FS_VBUS, VIN = VSS 0.25 0.37 0.55
OTG_HS_VBUS)
1. All the voltages are measured from the local ground potential.
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed
electrical characteristics, which are degraded in the 2.7 to 3.0 V VDD voltage range.
3. Guaranteed by design.
4. RL is the load connected on the USB OTG full speed drivers.
Note: When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state
(floating input), not as alternate function. A typical 200 µA current consumption of the
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 and PB13 when the feature is enabled.
Figure 49. USB OTG full speed timings: definition of data signal rise and fall time
Cross over
points
Differential
data lines
VCRS
VSS
tf tr
ai14137b
tr Rise time(2) CL = 50 pF 4 20
ns
tf Fall time(2) CL = 50 pF 4 20
trfm Rise/ fall time matching t r / tf 90 110 %
VCRS Output signal crossover voltage - 1.3 2.0 V
Driving
ZDRV Output driver impedance(3) 28 44 Ω
high or low
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching
impedance is included in the embedded driver.
Clock
tSC tHC
Control In
(ULPI_DIR,
ULPI_NXT) tSD tHD
data In
(8-bit)
tDC tDC
Control out
(ULPI_STP)
tDD
data out
(8-bit)
ai17361c
Ethernet characteristics
Unless otherwise specified, the parameters given in Table 74, Table 75 and Table 76 for
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK
frequency, and VDD supply voltage conditions summarized in Table 17, with the following
configuration:
• Output speed is set to OSPEEDRy[1:0] = 10
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5 VDD.
Refer to Section 5.3.20 for more details on the input/output characteristics.
Table 74 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 51 shows the corresponding timing diagram.
ETH_MDC
td(MDIO)
ETH_MDIO(O)
tsu(MDIO) th(MDIO)
ETH_MDIO(I)
MS31384V1
Table 75 gives the list of Ethernet MAC signals for the RMII and Figure 52 shows the
corresponding timing diagram.
RMII_REF_CLK
td(TXEN)
td(TXD)
RMII_TX_EN
RMII_TXD[1:0]
tsu(RXD) tih(RXD)
tsu(CRS) tih(CRS)
RMII_RXD[1:0]
RMII_CRS_DV
ai15667
Table 76 gives the list of Ethernet MAC signals for MII and Figure 52 shows the
corresponding timing diagram.
MII_RX_CLK
tsu(RXD) tih(RXD)
tsu(ER) tih(ER)
tsu(DV) tih(DV)
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
MII_TX_CLK
td(TXEN)
td(TXD)
MII_TX_EN
MII_TXD[3:0]
ai15668
The above formula (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Table 81. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
Table 82. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins, which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ∑IINJ(PIN) in
Section 5.3.20 does not affect the ADC accuracy.
V REF+ V DDA
[1LSB IDEAL = (or depending on package)]
4096 4096
EG
4095
4094
4093
(2)
ET
7 (3)
(1)
6
5
EO EL
4
3
ED
2
1L SBIDEAL
1
0
1 2 3 456 7 4093 4094 4095 4096
V SSA VDDA
ai14395c
Figure 55. Typical connection diagram using the ADC with FT/TT pins featuring
VDDA(4) VREF+(4)
MSv67871V3
Figure 56. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F
VREF+(1)
1 μF // 10 nF
VDDA
1 μF // 10 nF
VSSA/VREF+(1)
MS38278V1
1. VREF+ and VREF– inputs are both available on UFBGA176 and TFBGA216. VREF+ is also available on
LQFP100, LQFP144, LQFP176, and LQFP208. When VREF+ and VREF– are not available, they are
internally connected to VDDA and VSSA.
Figure 57. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F
VREF+/VDDA(1)
1 μF // 10 nF
VREF-/VDDA(1)
MS38279V1
1. VREF+ and VREF– inputs are both available on UFBGA176 and TFBGA216. VREF+ is also available on
LQFP100, LQFP144, LQFP176, and LQFP208. When VREF+ and VREF– are not available, they are
internally connected to VDDA and VSSA.
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
ADC sampling time when reading the
TS_vrefint(1) 10 - - µs
internal reference voltage
Internal reference voltage spread over the
VRERINT_s(2) VDD = 3V ± 10mV - 3 5 mV
temperature range
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
Differential non linearity - - ±0.5 LSB Given for the DAC in 10-bit configuration.
DNL(4) Difference between two
consecutive code-1LSB)
- - ±2 LSB Given for the DAC in 12-bit configuration.
Integral non linearity - - ±1 LSB Given for the DAC in 10-bit configuration.
(difference between
measured value at Code i
INL(4)
and the value at Code i on a - - ±4 LSB Given for the DAC in 12-bit configuration.
line drawn between Code 0
and last Code 1023)
- - ±10 mV Given for the DAC in 12-bit configuration
Offset error
(difference between Given for the DAC in 10-bit at VREF+ =
- - ±3 LSB
Offset(4) measured value at Code 3.6 V
(0x800) and the ideal value =
Given for the DAC in 12-bit at VREF+ =
VREF+/2) - - ±12 LSB
3.6 V
Gain
Gain error - - ±0.5 % Given for the DAC in 12-bit configuration
error(4)
Settling time (full scale: for a
10-bit input code transition
(4) between the lowest and the CLOAD ≤ 50 pF,
tSETTLING - 3 6 µs
highest input codes when RLOAD ≥ 5 kΩ
DAC_OUT reaches final
value ±4LSB
Total Harmonic Distortion CLOAD ≤ 50 pF,
THD(4) - - - dB
Buffer ON RLOAD ≥ 5 kΩ
Buffered/Non-buffered DAC
Buffer(1)
RL
12-bit DAC_OUTx
digital to
analog
converter
CL
ai17157V2
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
tw(NE)
FMC_NE
FMC_NOE
FMC_NWE
tv(A_NE) t h(A_NOE)
FMC_A[25:0] Address
tv(BL_NE) t h(BL_NOE)
FMC_NBL[1:0]
t h(Data_NE)
t su(Data_NOE) th(Data_NOE)
t su(Data_NE)
FMC_D[15:0] Data
t v(NADV_NE)
tw(NADV)
FMC_NADV (1)
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32753V1
FMC_NEx
FMC_NOE
tv(NWE_NE) tw(NWE) t h(NE_NWE)
FMC_NWE
tv(A_NE) th(A_NWE)
FMC_A[25:0] Address
tv(BL_NE) th(BL_NWE)
FMC_NBL[1:0] NBL
tv(Data_NE) th(Data_NWE)
FMC_D[15:0] Data
t v(NADV_NE)
tw(NADV)
FMC_NADV (1)
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32754V1
FMC_ NE
tv(NOE_NE) t h(NE_NOE)
FMC_NOE
t w(NOE)
FMC_NWE
tv(A_NE) th(A_NOE)
t v(NADV_NE) th(AD_NADV)
tw(NADV)
FMC_NADV
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32755V1
FMC_ NEx
FMC_NOE
tv(NWE_NE) tw(NWE) t h(NE_NWE)
FMC_NWE
tv(A_NE) th(A_NWE)
t v(NADV_NE) th(AD_NADV)
tw(NADV)
FMC_NADV
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32756V1
FMC_CLK
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
FMC_NEx
t d(CLKL-NADVL) td(CLKL-NADVH)
FMC_NADV
td(CLKL-AV) td(CLKH-AIV)
FMC_A[25:16]
td(CLKL-NOEL) td(CLKH-NOEH)
FMC_NOE
td(CLKL-ADIV) th(CLKH-ADV)
t d(CLKL-ADV) tsu(ADV-CLKH) tsu(ADV-CLKH) th(CLKH-ADV)
FMC_AD[15:0] AD[15:0] D1 D2
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32757V1
FMC_CLK
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
FMC_NEx
td(CLKL-NADVL) td(CLKL-NADVH)
FMC_NADV
td(CLKL-AV) td(CLKH-AIV)
FMC_A[25:16]
td(CLKL-NWEL) td(CLKH-NWEH)
FMC_NWE
td(CLKL-ADIV) td(CLKL-Data)
td(CLKL-ADV) td(CLKL-Data)
FMC_AD[15:0] AD[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV)
td(CLKH-NBLH)
FMC_NBL
MS32758V1
FMC_CLK
td(CLKL-NExL) td(CLKH-NExH)
Data latency = 0
FMC_NEx
td(CLKL-NADVL) td(CLKL-NADVH)
FMC_NADV
td(CLKL-AV) td(CLKH-AIV)
FMC_A[25:0]
td(CLKL-NOEL) td(CLKH-NOEH)
FMC_NOE
tsu(DV-CLKH) th(CLKH-DV)
tsu(DV-CLKH) th(CLKH-DV)
FMC_D[15:0] D1 D2
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
tsu(NWAITV-CLKH) t h(CLKH-NWAITV)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32759V1
FMC_CLK
td(CLKL-NExL) td(CLKH-NExH)
Data latency = 0
FMC_NEx
td(CLKL-NADVL) td(CLKL-NADVH)
FMC_NADV
td(CLKL-AV) td(CLKH-AIV)
FMC_A[25:0]
td(CLKL-NWEL) td(CLKH-NWEH)
FMC_NWE
td(CLKL-Data) td(CLKL-Data)
FMC_D[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b) tsu(NWAITV-CLKH) td(CLKH-NBLH)
th(CLKH-NWAITV)
FMC_NBL
MS32760V1
FMC_NCEx
ALE (FMC_A17)
CLE (FMC_A16)
td(ALE-NOE) th(NOE-ALE)
FMC_NWE
tw(NOE)
FMC_NOE (NRE)
tsu(D-NOE) th(NOE-D)
FMC_D[y:0]
MSv73150V1
FMC_NCEx
ALE (FMC_A17)
CLE (FMC_A16)
td(ALE-NWE) tw(NWE) th(NWE-ALE)
FMC_NWE
FMC_NOE (NRE)
td(D-NWE)
tv(NWE-D) th(NWE-D)
FMC_D[y:0]
MSv73151V1
FMC_SDCLK
td(SDCLKL_AddC)
td(SDCLKL_AddR) th(SDCLKL_AddR)
th(SDCLKL_AddC)
td(SDCLKL_SNDE) th(SDCLKL_SNDE)
FMC_SDNE[1:0]
td(SDCLKL_NRAS) th(SDCLKL_NRAS)
FMC_SDNRAS
td(SDCLKL_NCAS) th(SDCLKL_NCAS)
FMC_SDNCAS
FMC_SDNWE
tsu(SDCLKH_Data) th(SDCLKH_Data)
MS32751V2
FMC_SDCLK
td(SDCLKL_AddC)
td(SDCLKL_AddR) th(SDCLKL_AddR)
th(SDCLKL_AddC)
td(SDCLKL_SNDE) th(SDCLKL_SNDE)
FMC_SDNE[1:0]
td(SDCLKL_NRAS) th(SDCLKL_NRAS)
FMC_SDNRAS
td(SDCLKL_NCAS) th(SDCLKL_NCAS)
FMC_SDNCAS
td(SDCLKL_NWE) th(SDCLKL_NWE)
FMC_SDNWE
td(SDCLKL_Data)
td(SDCLKL_NBL) th(SDCLKL_Data)
FMC_NBL[3:0]
MS32752V2
Clock
tv(OUT) th(OUT)
Data output D0 D1 D2
ts(IN) th(IN)
Data input D0 D1 D2
MSv36878V1
Clock
tvf(OUT) thr(OUT) tvr(OUT) thf(OUT)
Data output D0 D1 D2 D3 D4 D5
Data input D0 D1 D2 D3 D4 D5
MSv36879V1
1/DCMI_PIXCLK
DCMI_PIXCLK
tsu(HSYNC) th(HSYNC)
DCMI_HSYNC
tsu(VSYNC) th(HSYNC)
DCMI_VSYNC
tsu(DATA) th(DATA)
DATA[0:13]
MS32414V2
tCLK
LCD_CLK
LCD_VSYNC
tv(HSYNC) tv(HSYNC)
LCD_HSYNC
tv(DE) th(DE)
LCD_DE
tv(DATA)
LCD_R[0:7]
LCD_G[0:7] Pixel Pixel Pixel
1 2 N
LCD_B[0:7]
th(DATA)
One line
MS32749V1
tCLK
LCD_CLK
tv(VSYNC) tv(VSYNC)
LCD_VSYNC
LCD_R[0:7]
LCD_G[0:7] M lines data
LCD_B[0:7]
One frame
MS32750V1
CK
tOVD tOHD
D, CMD
(output)
ai14888
Table 111. Dynamic characteristics: SD / MMC characteristics, VDD = 2.7 to 3.6 V(1)
Symbol Parameter Conditions Min Typ Max Unit
Table 112. Dynamic characteristics: SD / MMC characteristics, VDD = 1.71 to 1.9 V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
6 Package information
ș2 ș
(2)
R1
H
R2
B
B-
N
O
(6)
TI
C
SE
D1/4 B GAUGE PLANE
S
E1/4
B ș
4x N/4 TIPS
ș L
4x (L1)
aaa C A-B D
bbb H A-B D (1) (11)
(N-4) x e (13)
C
A (9) (11)
0.05
ccc C b WITH PLATING
A2 A1 b aaa C A-BD
(12)
SIDE VIEW
D (4)
(11) c
(2) (5) D1 c1 (11)
D (3)
(10) (4)
N
b1 BASE METAL
1 (11)
2
3 E1/4 SECTION B-B
E1 E
SECTION A-A
A A
θ1 0° - - 0° - -
Notes:
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3. Datums A-B and D to be determined at datum plane H.
4. To be determined at seating datum plane C.
5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6. Details of pin 1 identifier are optional but must be located within the zone indicated.
7. All Dimensions are in millimeters.
8. No intrusion allowed inwards the leads.
9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
76 50
0.5
0.3
16.7 14.3
100 26
1.2
1 25
12.3
16.7
1L_LQFP100_FP_V1
BOTTOM VIEW
2 1
(2)
R1
H
R2
B
B-
N
O
TI
C
SE
(6) B GAUGE PLANE
0.25
D 1/4
S
B
L
3
E 1/4 (L1)
(1) (11)
4x N/4 TIPS
aaa C A-B D SECTION A-A
bbb H A-B D 4x
(N-4)x e
C
A
0.05 (12) ddd C A-B D
A2 A1 b ccc C
D (4)
D1 (2) (5)
(10) (3) D (9) (11)
N (4)
b WITH PLATING
1
2
3 E 1/4
(11) (11)
c c1
(6)
D 1/4 (2)
(3) A B (3) (5)
E1 E b1 BASE METAL
(11)
SECTION B-B
A A
(Section A-A)
TOP VIEW
1A_LQFP144_ME_V2
A - - 1.60 - - 0.0630
(12)
A1 0.05 - 0.15 0.0020 - 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
(9)(11)
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
(11)
b1 0.17 0.20 0.23 0.0067 0.0079 0.0090
(11)
c 0.09 - 0.20 0.0035 - 0.0079
c1(11) 0.09 - 0.16 0.0035 - 0.0063
(4)
D 22.00 BSC 0.8661 BSC
(2)(5)
D1 20.00 BSC 0.7874 BSC
E(4) 22.00 BSC 0.8661 BSC
E1(2)(5) 20.00 BSC 0.7874 BSC
e 0.50 BSC 0.0197 BSC
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 1.00 REF 0.0394 REF
N(13) 144
θ 0° 3.5° 7° 0° 3.5° 7°
θ1 0° - - 0° - -
Notes:
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3. Datums A-B and D to be determined at datum plane H.
4. To be determined at seating datum plane C.
5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6. Details of pin 1 identifier are optional but must be located within the zone indicated.
7. All Dimensions are in millimeters.
8. No intrusion allowed inwards the leads.
9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
108 73
1.35
109 0.35 72
0.50
19.90 17.85
22.60
144 37
1 36
19.90
22.60
1A_LQFP144_FP
A1 ball location
e1 bbb Z
F
Detail A
e2
A3
e A2
Bottom view
Bump side A
Side view
X
Y
D
Bump A3
eee Z A1
E
b
ccc Z XY Seating Z
A1 orientation plane
ddd Z
reference
Detail A
Rotated 90°
aaa
Top view
Wafer back side (4X)
A02S_ME_V2
Table 116. WLCSP168 - 168-ball, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip
scale
package mechanical data
millimeters inches(1)
Symbol
Min Typ Max Min Typ Max
Figure 83. WLCSP168 - 168-ball, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip
scale
package recommended footprint
Dpad
Dsm MS18965V2
Pitch 0.4 mm
260 µm max. (circular)
Dpad
220 µm recommended
Dsm 300 µm min. (for 260 µm diameter pad)
PCB pad design Non-solder mask defined via underbump allowed
Z Seating plane
A2 A4
ddd Z
A
A3 A1
b
SIDE VIEW A1 ball A1 ball
identifier index area X
E
E1
e F
A
F
D1 D
e
Y
N
13 1
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 119. UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA)
Dimension Values
Pitch 0.5 mm
Dpad 0.27 mm
0.35 mm typ. (depends on the soldermask
Dsm
registration tolerance)
Solder paste 0.27 mm aperture diameter.
ș2 ș1
(2) R1
H R2
A2 0.05
(N-4) x e
C
A
A1 (12) ddd C A-BD ccc C
b
SIDE VIEW
D (4)
(2) (5) D1
D (9) (11)
(10) N
(4) b WITH PLATING
E1/4
(11) c c1 (11)
D1/4 (6) (5)
A B (2)
E1 E b1 BASE METAL
(11)
SECTION A-A
A A
SECTION B-B
Notes:
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3. Datums A-B and D to be determined at datum plane H.
4. To be determined at seating datum plane C.
5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6. Details of pin 1 identifier are optional but must be located within the zone indicated.
7. All Dimensions are in millimeters.
8. No intrusion allowed inwards the leads.
9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
1.2
176 133
1 0.5 132
0.3
26.7
21.8
44 89
45 88
1.2
21.8
26.7
1T_FP_V1
A
A2 A3 b A1
A1 ball A
A1 ball index E
identifier area
E1
e F
A
F
D1 D
e
B
R
15 1
Øb (176 + 25 balls)
BOTTOM VIEW TOP VIEW
Ø eee M C A B
Ø fff M C
A0E7_ME_V10
A - - 0.600 - - 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 -
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 9.850 10.000 10.150 0.3878 0.3937 0.3996
D1 - 9.100 - - 0.3583 -
E 9.850 10.000 10.150 0.3878 0.3937 0.3996
E1 - 9.100 - - 0.3583 -
e - 0.650 - - 0.0256 -
F - 0.450 - - 0.0177 -
ddd - - 0.080 - - 0.0031
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 122. UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA)
Dimension Values
Pitch 0.65 mm
Dpad 0.300 mm
0.400 mm typ. (depends on the soldermask
Dsm
registration tolerance)
Stencil opening 0.300 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Z Seating plane
ddd Z
A2
A1 A
D1 A1 ball A1 ball X
identifier index area D
e F
A
G
E1 E
e
Y
R
15 1
BOTTOM VIEW Øb (216 balls) TOP VIEW
Ø eee M Z Y X
Ø fff M Z
A0L2_ME_V3
A - - 1.200 - - 0.0472
(2)
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
(3)
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 12.850 13.000 13.150 0.5059 0.5118 0.5177
D1 - 11.200 - - 0.4409 -
E 12.850 13.000 13.150 0.5059 0.5118 0.5177
E1 - 11.200 - - 0.4409 -
e - 0.800 - - 0.0315 -
F - 0.900 - - 0.0354 -
G - 0.900 - - 0.0354 -
ddd - - 0.100 - - 0.0039
(4)
eee - - 0.150 - - 0.0059
(5)
fff - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
2. • The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized
markings, or other feature of package body or integral heat slug.
• A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
corner. Exact shape of each corner is optional.
3. Initial ball equal 0.350 mm.
4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true
position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone.
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each
tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball
must lie simultaneously in both tolerance zones.
Dpad
Dsm
BGA_WLCSP_FT_V1
Pitch 0.8 mm
Dpad 0.400 mm
0.470 mm typ. (depends on the soldermask
Dsm
registration tolerance)
Stencil opening 0.400 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
BOTTOM VIEW
2 1
(2)
R1
R2
B
H
B-
N
O
TI
C
SE
B GAUGE PLANE
0.25
D 1/4 (6)
S
B
L
3
(L1) (1) (11)
4x N/4 TIPS
aaa C A-B D bbb H A-B D 4x
(N – 4)x e (13)
C
A
A2
b ddd C A-B D
0.05 A1(12) ccc C
D (4)
(2) (5) D1
D (3)
(10) N
(4) (9) (11)
b WITH
1 PLATING
2
3
E 1/4
(11) (11)
c c1
D 1/4 (6)
b1 BASE METAL
(3) A B (3) (11)
E1 E SECTION B-B
(2)
(5)
A A
(Section A-A)
A - - 1.60 - - 0.0630
(12)
A1 0.05 - 0.15 0.0020 - 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
(9)(11)
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
(11)
b1 0.17 0.20 0.23 0.0067 0.0079 0.0091
(11)
c 0.09 - 0.20 0.0035 - 0.0079
c1(11) 0.09 - 0.16 0.0035 - 0.0063
(4)
D 30.00 BSC 1.1732 BSC
(2)(5)
D1 28.00 BSC 1.0945 BSC
E(4) 30.00 BSC 1.1732 BSC
E1(2)(5) 28.00 BSC 1.0945 BSC
e 0.50 BSC 0.0197 BSC
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 1.00 REF 0.0394 REF
N(13) 208
θ 0° 3.5° 7° 0° 3.5° 7°
θ1 0° - - 0° - -
Notes:
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3. Datums A-B and D to be determined at datum plane H.
4. To be determined at seating datum plane C.
5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6. Details of pin 1 identifier are optional but must be located within the zone indicated.
7. All Dimensions are in millimeters.
8. No intrusion allowed inwards the leads.
9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
208 157
1 156
0.50 1.25
0.30
28.3
30.7
52 105
53 104 1.2
25.8
30.7
UH_LQFP208_FP_V3
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
7 Part numbering
Device family
STM32 = Arm®-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
469= STM32F469xx, USB OTG FS/HS, camera interface, Ethernet,
LCD-TFT, DSI Host, Quad-SPI, Chrom-ART graphical accelerator.
Pin count
V = 100 pins
Z = 144 pins
A = 168 and 169 pins
I = 176 pins
B = 208 pins
N = 216 pins
Package
T = LQFP
H = BGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
xxx = programmed parts
TR = tape and reel
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, contact your nearest ST sales office.
The STMicroelectronics group of companies (ST) places a high value on product security,
which is why the ST product(s) identified in this documentation may be certified by various
security certification bodies and/or may implement our own security measures as set forth
herein. However, no level of security certification and/or built-in security measures can
guarantee that ST products are resistant to all forms of attacks. As such, it is the
responsibility of each of ST's customers to determine if the level of security provided in an
ST product meets the customer needs both in relation to the ST product alone, as well as
when combined with other components and/or software for the customer end product or
application. In particular, take note that:
• ST products may have been certified by one or more security certification bodies, such
as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation
standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST
product(s) referenced herein have received security certification along with the level
and current status of such certification, either visit the relevant certification standards
website or go to the relevant product page on www.st.com for the most up to date
information. As the status and/or level of security certification for an ST product can
change from time to time, customers should re-check security certification status/level
as needed. If an ST product is not shown to be certified under a particular security
standard, customers should not assume it is certified.
• Certification bodies have the right to evaluate, grant and revoke security certification in
relation to ST products. These certification bodies are therefore independently
responsible for granting or revoking security certification for an ST product, and ST
does not take any responsibility for mistakes, evaluations, assessments, testing, or
other activity carried out by the certification body with respect to any ST product.
• Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open
standard technologies which may be used in conjunction with an ST product are based
on standards which were not developed by ST. ST does not take responsibility for any
flaws in such cryptographic algorithms or open technologies or for any methods which
have been or may be developed to bypass, decrypt or crack such algorithms or
technologies.
• While robust security testing may be done, no level of certification can absolutely
guarantee protections against all attacks, including, for example, against advanced
attacks which have not been tested for, against new or unidentified forms of attack, or
against any form of attack when using an ST product outside of its specification or
intended use, or in conjunction with other components or software which are used by
customer to create their end product or application. ST is not responsible for resistance
against such attacks. As such, regardless of the incorporated security features and/or
any information or support that may be provided by ST, each customer is solely
responsible for determining if the level of attacks tested for meets their needs, both in
relation to the ST product alone and when incorporated into a customer end product or
application.
• All security features of ST products (inclusive of any hardware, software,
documentation, and the like), including but not limited to any enhanced security
features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the
applicable written and signed contract terms specifically provide otherwise.
When the internal reset is OFF, the following integrated features are no longer supported:
• The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
• The brownout reset (BOR) circuitry must be disabled.
• The embedded programmable voltage detector (PVD) is disabled.
• VBAT functionality is no more available and VBAT pin should be connected to VDD.
• The over-drive mode is not supported.
Revision history
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product
or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.